1
|
Kupsco A, Bloomquist TR, Hu H, Reddam A, Tang D, Goldsmith J, Rundle AG, Baccarelli AA, Herbstman JB. Mitochondrial DNA copy number dynamics and associations with the prenatal environment from birth through adolescence in a population of Dominican and African American children. Mitochondrion 2023; 69:140-146. [PMID: 36804466 PMCID: PMC10006332 DOI: 10.1016/j.mito.2023.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Mitochondrial DNA copy number (mtDNAcn) dynamics throughout childhood are poorly understood. We profiled mtDNAcn from birth through adolescence and evaluated how the prenatal environment influences mtDNAcn across childhood. Data were collected from children from New York City followed through 18 years. Using duplexed qRT-PCR, we quantified mtDNAcn relative to nuclear DNA in blood collected from the umbilical cord (n = 450), children aged 5-7 (n = 510), and adolescents aged 15-18 (n = 278). We examined mtDNAcn across childhood with linear mixed-effects models (LMM). Relative mtDNAcn was lowest at birth (mean ± SD: 0.67 ± 0.35) and increased in childhood (1.24 ± 0.50) then slightly declined in adolescence (1.13 ± 0.44). We observed no differences in mtDNAcn by sex or race/ethnicity. mtDNAcn was positively associated with prenatal environmental tobacco smoke exposure (0.077 [ 0.01, 0.14] change in relative mtDNAcn) but negatively associated with maternal completion of high school (-0.066 [-0.13, 0.00]), with the receipt of public assistance at birth (-0.074 [-0.14, -0.01]), and when mother born outside the U.S (-0.061 [-0.13, 0.003]). Infant birth outcomes were not associated with mtDNAcn. MtDNAcn levels were dynamic through childhood and associated with some prenatal factors, underscoring the need for the investigation of longitudinal mtDNAcn for human health research.
Collapse
Affiliation(s)
- Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States.
| | - Tessa R Bloomquist
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Heng Hu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Aalekhya Reddam
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Deliang Tang
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
2
|
Effects of the amount and type of carbohydrates used in type 2 diabetes diets in animal models: A systematic review. PLoS One 2020; 15:e0233364. [PMID: 32530969 PMCID: PMC7292416 DOI: 10.1371/journal.pone.0233364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 05/04/2020] [Indexed: 12/28/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is among the most prevalent diseases in the world, affecting over 420 million people. The disease is marked by a poor metabolic effect of insulin leading to chronic hyperglycaemia, which can result in microvascular complications. It is widely known that postprandial glycaemia is reliant on the total carbohydrate content of a meal. However, the importance of the amount and the source of these carbohydrates remains controversial due to mechanisms other than insulin secretion. Oxidative stress, inflammation, pyruvate production and the quality of the intestinal microbiota, resulting in plasma lipopolysaccharides and short-chain fatty acids production, play an important role in blood sugar control and consequently in type 2 diabetes. Thus, we systematically reviewed the preclinical evidences on the impact of the amount and type of carbohydrate found in different diets and its influence on blood glucose levels in diabetic animals. We used a comprehensive and structured search in biomedical databases Medline (PubMed), Scopus and Web of Science, recovering and analyzing 27 original studies. Results showed that sucrose-rich diets deteriorated diabetic condition in animal models regardless of the total dietary carbohydrate content. On the other hand, fiber, particularly resistant starch, improved blood glucose parameters through direct and indirect mechanisms, such as delayed gastric emptying and improved gut microbiota. All studies used rodents as animal models and male animals were preferred over females. Improvements in T2DM parameters in animal models were more closely related to the type of dietary carbohydrate than to its content on a diet, i. e., resistant starch seems to be the most beneficial source for maintaining normoglycemia. Results show that current literature is at high risk of bias due to neglecting experimental methods.
Collapse
|
3
|
miR-24-mediated knockdown of H2AX damages mitochondria and the insulin signaling pathway. Exp Mol Med 2017; 49:e313. [PMID: 28386126 PMCID: PMC5420797 DOI: 10.1038/emm.2016.174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/02/2016] [Accepted: 11/06/2016] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial deficits or altered expressions of microRNAs are associated with the pathogenesis of various diseases, and microRNA-operated control of mitochondrial activity has been reported. Using a retrovirus-mediated short-hairpin RNA (shRNA) system, we observed that miR-24-mediated H2AX knockdown (H2AX-KD) impaired both mitochondria and the insulin signaling pathway. The overexpression of miR-24 decreased mitochondrial H2AX and disrupted mitochondrial function, as indicated by the ATP content, membrane potential and oxygen consumption. Similar mitochondrial damage was observed in shH2AX-mediated specific H2AX-KD cells. The H2AX-KD reduced the expression levels of mitochondrial transcription factor A (TFAM) and mitochondrial DNA-dependent transcripts. H2AX-KD mitochondria were swollen, and their cristae were destroyed. H2AX-KD also blocked the import of precursor proteins into mitochondria and the insulin-stimulated phosphorylation of IRS-1 (Y632) and Akt (S473 and T308). The rescue of H2AX, but not the nuclear form of ΔC24-H2AX, restored all features of miR-24- or shH2AX-mediated impairment of mitochondria. Hepatic miR-24 levels were significantly increased in db/db and ob/ob mice. A strong feedback loop may be present among miR-24, H2AX, mitochondria and the insulin signaling pathway. Our findings suggest that H2AX-targeting miR-24 may be a novel negative regulator of mitochondrial function and is implicated in the pathogenesis of insulin resistance.
Collapse
|
4
|
Zhang H, Li Y, Su W, Ying Z, Zhou L, Zhang L, Wang T. Resveratrol attenuates mitochondrial dysfunction in the liver of intrauterine growth retarded suckling piglets by improving mitochondrial biogenesis and redox status. Mol Nutr Food Res 2017; 61. [PMID: 27958670 DOI: 10.1002/mnfr.201600653] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/24/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022]
Abstract
SCOPE Emerging evidence has identified mitochondrial biogenesis and oxidative phosphorylation as potential targets for the prevention and treatment of metabolic syndrome. This study investigated the effect of resveratrol (RSV) on hepatic mitochondrial function in intrauterine growth-retarded (IUGR) suckling piglets. METHODS AND RESULTS Seven normal birth weight (NBW) and fourteen IUGR neonatal male piglets were selected. Piglets were fed control diets supplemented with 0 (NBW-CON), 0 (IUGR-CON), and 1.0 (IUGR-RSV) g RSV per kg of milk dry matter from 7 to 21 days of age (n = 7), respectively. Mitochondrial function, swelling, and redox status in the liver were assessed. Compared with NBW, IUGR impaired hepatic mitochondrial biogenesis and energy homeostasis of the control piglets. IUGR control piglets showed overproduction of superoxide radicals, increased concentration of malondialdehyde, and marked swelling in the mitochondria. RSV improved mitochondrial DNA content, ATP production, and fatty acid oxidation in the liver of IUGR piglets, along with an increased activity of sirtuin 1. RSV inhibited mitochondrial superoxide anion accumulation, increased complex III and manganese superoxide dismutase activities, and ameliorated mitochondrial swelling and lipid peroxidation in the IUGR piglets. CONCLUSION RSV may have beneficial effects in improving hepatic mitochondrial function and redox status in the IUGR piglets.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weipeng Su
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhixiong Ying
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Le Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Kwak SH, Park KS. Recent progress in genetic and epigenetic research on type 2 diabetes. Exp Mol Med 2016; 48:e220. [PMID: 26964836 PMCID: PMC4892885 DOI: 10.1038/emm.2016.7] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2DM) is a common complex metabolic disorder that has a strong genetic predisposition. During the past decade, progress in genetic association studies has enabled the identification of at least 75 independent genetic loci for T2DM, thus allowing a better understanding of the genetic architecture of T2DM. International collaborations and large-scale meta-analyses of genome-wide association studies have made these achievements possible. However, whether the identified common variants are causal is largely unknown. In addition, the detailed mechanism of how these genetic variants exert their effect on the pathogenesis of T2DM requires further investigation. Currently, there are ongoing large-scale sequencing studies to identify rare, functional variants for T2DM. Environmental factors also have a crucial role in the development of T2DM. These could modulate gene expression via epigenetic mechanisms, including DNA methylation, histone modification and microRNA regulation. There is evidence that epigenetic changes are important in the development of T2DM. Recent studies have identified several DNA methylation markers of T2DM from peripheral blood and pancreatic islets. In this review, we will briefly summarize the recent progress in the genetic and epigenetic research on T2DM and discuss how environmental factors, genetics and epigenetics can interact in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
6
|
Díaz M, Aragonés G, Sánchez-Infantes D, Bassols J, Pérez-Cruz M, de Zegher F, Lopez-Bermejo A, Ibáñez L. Mitochondrial DNA in placenta: associations with fetal growth and superoxide dismutase activity. Horm Res Paediatr 2015; 82:303-9. [PMID: 25247554 DOI: 10.1159/000366079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/21/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Prenatal growth restraint is associated with increased oxidative stress--as judged by mitochondrial dysfunction--in pregnancies complicated by preeclampsia or diabetes, but it is uncertain whether this is also the case in uncomplicated pregnancies. We assessed the link between fetal growth restraint and placental mitochondrial dysfunction, as reflected by changes in mitochondrial DNA (mtDNA) content and superoxide dismutase (SOD) activity. METHODS After uncomplicated pregnancies, placentas (n = 48) were collected at term delivery of singleton infants who were appropriate for gestational age (AGA) or small for gestational age (SGA) (n = 24 in each subgroup). Placental mtDNA content was assessed by real-time PCR, placental SOD activity by colorimetry, and citrate synthase activity--to determine mitochondrial mass--by the spectrophotometric method. RESULTS Placentas of SGA infants had a lower mtDNA content (p = 0.015) and a higher SOD activity (p = 0.001) than those of AGA controls. These differences were maintained after normalization of the mtDNA content by citrate synthase activity. In placentas of SGA infants, there was a negative association between mtDNA content and SOD activity (r = -0.58, p = 0.008). CONCLUSIONS Fetal growth restraint is accompanied by adaptive changes in the mitochondrial function of the placenta, also in uncomplicated pregnancies.
Collapse
Affiliation(s)
- Marta Díaz
- Hospital Sant Joan de Déu, University of Barcelona, Esplugues, Spain
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Maiti S, Sinha NK, Khan MM, Das PK, Chattopadhyay JC. Diabetes in rural individuals of different nutritional status and the alarming situation demands focus more on its under-nutrition association. Arch Physiol Biochem 2015; 121:26-31. [PMID: 25244251 DOI: 10.3109/13813455.2014.959973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To study the relationship of nutritional-status with diabetes. DESIGN The socioeconomics/anthropometrics, blood-glucose/systemic-hypertension are evaluated in consecutively-selected diabetic-patients. SETTING Semi-urban/rural India. SUBJECTS Hyperglycaemic patients (total 90/male 37). RESULTS Blood-glucose (PP-mean ± SE) in individuals is overweight - 38.89% (226.94 ± 9.59), normal-weight - 50% (217.58 ± 1.34), underweight - 11.11% (305.50 ± 21.35) indicating most hyperglycaemia in undernourished-group (F = 6.357, p < 0.003). This group occupies higher glucose-groups in ≤140, 141-270, and ≥270 mg/dL. The blood-glucose negatively correlates with waist(r = -0.282; p < 0.01) and hip (r = -0.254; p < 0.05) circumference indicating the under-nutrition association with glucose-homeostasis (F = 7.6-8.2, p < 0.001). The higher glucose is noticed in more number of individuals in lower (<40 years) age-group (χ(2 )= 12.86; p < 0.002/ρ = -0.355; p < 0.001). The prevalence of hypertension is 28% (underweight = 20%, overweight = 27%, normal = 30%). The group of 141-270 mg/dL glucose has 45% and rest groups together have 23% hypertensive individuals relating directly, hypertension and diabetic-onset. CONCLUSIONS Diabetes, explored in <40 years group and even more in female should be extensively studied accounting WHO categorization (1985/TRS/727) of malnutrition related diabetes (MRDM). Further, different interactive risk-factors should be properly addressed and the global-malnutrition/gender-based inequities be eradicated.
Collapse
Affiliation(s)
- Smarajit Maiti
- Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology , Midnapore, West Bengal , India
| | | | | | | | | |
Collapse
|
8
|
Mozhey OI, Zatolokin PA, Vasilenko MA, Litvinova LS, Kirienkova EV, Mazunin IO. Evaluating the number of mitochondrial DNA copies in leukocytes and adipocytes from metabolic syndrome patients: Pilot study. Mol Biol 2014. [DOI: 10.1134/s0026893314040074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Abstract
The oversupply of calories and sedentary lifestyle has resulted in a rapid increase of diabetes prevalence worldwide. During the past two decades, lines of evidence suggest that mitochondrial dysfunction plays a key role in the pathophysiology of diabetes. Mitochondria are vital to most of the eukaryotic cells as they provide energy in the form of adenosine triphosphate by oxidative phosphorylation. In addition, mitochondrial function is an integral part of glucose-stimulated insulin secretion in pancreatic β-cells. In the present article, we will briefly review the major functions of mitochondria in regard to energy metabolism, and discuss the genetic and environmental factors causing mitochondrial dysfunction in diabetes. In addition, the pathophysiological role of mitochondrial dysfunction in insulin resistance and β-cell dysfunction are discussed. We argue that mitochondrial dysfunction could be the central defect causing the abnormal glucose metabolism in the diabetic state. A deeper understanding of the role of mitochondria in diabetes will provide us with novel insights in the pathophysiology of diabetes. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00047.x, 2010).
Collapse
Affiliation(s)
| | - Kyong Soo Park
- Departments of Internal Medicine ; Molecular Medicine and Biopharmaceutical Sciences, Seoul National University College of Medicine
| | - Ki-Up Lee
- Department of Internal Medicine, University of Ulsan College of Medicine
| | - Hong Kyu Lee
- Department of Internal Medicine, Eulji University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Abstract
Development of metabolic syndrome is attributed to genes, dietary intake, physical activity and environmental factors. Fetal programming due to maternal nutrition is also an important factor especially in developing countries where intrauterine growth retardation followed by excess nutrition postnatally is causing mismatch predisposing individuals to development of metabolic syndrome and its components. Several epidemiological and animal studies have provided evidence for the link between intrauterine growth retardation and adult metabolic diseases. Deficiency of macronutrients, protein and carbohydrates, during pregnancy and gestation results in lower infant birth weight, a surrogate marker of fetal growth and subsequently insulin resistance, glucose intolerance, hypertension and adiposity in adulthood. The role of micronutrients is less extensively studied but however gaining attention with several recent studies focusing on this aspect. Several mechanisms have been proposed to explain the developmental origin of adult diseases important among them being alteration of hypothalamic pituitary axis, epigenetic regulation of gene expression and oxidative stress. All of these mechanisms may be acting at different time during gestation and contributing to development of metabolic syndrome in adulthood.
Collapse
Affiliation(s)
- Ramakrishnan Lakshmy
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, 110049, India,
| |
Collapse
|
11
|
Roysommuti S, Wyss JM. Perinatal taurine exposure affects adult arterial pressure control. Amino Acids 2012; 46:57-72. [PMID: 23070226 DOI: 10.1007/s00726-012-1417-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 10/04/2012] [Indexed: 12/13/2022]
Abstract
Taurine is an abundant, free amino acid found in mammalian cells that contributes to many physiologic functions from that of a simple cell osmolyte to a programmer of adult health and disease. Taurine's contribution extends from conception throughout life, but its most critical exposure period is during perinatal life. In adults, taurine supplementation prevents or alleviates cardiovascular disease and related complications. In contrast, low taurine consumption coincides with increased risk of cardiovascular disease, obesity and type II diabetes. This review focuses on the effects that altered perinatal taurine exposure has on long-term mechanisms that control adult arterial blood pressure and could thereby contribute to arterial hypertension through its ability to program these cardiovascular regulatory mechanisms very early in life. The modifications of these mechanisms can last a lifetime and transfer to the next generation, suggesting that epigenetic mechanisms underlie the changes. The ability of perinatal taurine exposure to influence arterial pressure control mechanisms and hypertension in adult life appears to involve the regulation of growth and development, the central and autonomic nervous system, the renin-angiotensin system, glucose-insulin interaction and changes to heart, blood vessels and kidney function.
Collapse
Affiliation(s)
- Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand,
| | | |
Collapse
|
12
|
Liu J, Yu B, Mao X, He J, Yu J, Zheng P, Huang Z, Chen D. Effects of intrauterine growth retardation and maternal folic acid supplementation on hepatic mitochondrial function and gene expression in piglets. Arch Anim Nutr 2012; 66:357-71. [PMID: 22889112 DOI: 10.1080/1745039x.2012.710084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Piglets with intrauterine growth retardation (IUGR) or with normal birth weight (NBW) were selected to evaluate the effects of maternal folic acid supplementation on hepatic mitochondrial function and expression levels of genes involved in mitochondrial DNA (mtDNA) biogenesis and mitochondrial function. During gestation, primiparous Yorkshire sows were fed a Control diet (folic acid 1.3 mg/kg) or a folic acid-supplemented diet (folic acid 30 mg/kg) with 16 replicates per diet. During the 28-d lactation period, sows were fed a common diet. Compared with NBW piglets, hepatic ATP concentrations and mtDNA contents were decreased in IUGR piglets. Furthermore, IUGR piglets exhibited lower membrane potential and decreased oxygen consumption in liver mitochondria, but these parameters were not affected by maternal folic acid supplementation. Intrauterine growth retardation decreased mRNA expression abundance of peroxisomal proliferator-activated receptor-γ coactivator-1α, mitochondrial transcription factor A, uncoupling protein 3, and cytochrome c oxidase subunit I and IV. Impaired antioxidant capacity characterised by increased malondialdehyde content and decreased manganese-superoxide dismutase activity was also observed in IUGR pigs. In IUGR piglets, however, nearly all of these parameters were normalised to the level of NBW piglets when the maternal diet was supplemented with folic acid during pregnancy. Hence, maternal folic acid supplementation was proved to be an effective way to reverse the changes in gene expressions in IUGR pigs, which provided a possible nutritional strategy to improve growth development of IUGR individuals.
Collapse
Affiliation(s)
- Jingbo Liu
- Institute of Animal Nutrition, Sichuan Agricultural University , Ya'an, Sichuan Province, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu J, Chen D, Yao Y, Yu B, Mao X, He J, Huang Z, Zheng P. Intrauterine growth retardation increases the susceptibility of pigs to high-fat diet-induced mitochondrial dysfunction in skeletal muscle. PLoS One 2012; 7:e34835. [PMID: 22523560 PMCID: PMC3327708 DOI: 10.1371/journal.pone.0034835] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/06/2012] [Indexed: 01/07/2023] Open
Abstract
It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR) increases the susceptibility of offspring to high-fat (HF) diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW), and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA), and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD). These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA) contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jingbo Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Ying Yao
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| |
Collapse
|
14
|
Reusens B, Theys N, Dumortier O, Goosse K, Remacle C. Maternal malnutrition programs the endocrine pancreas in progeny. Am J Clin Nutr 2011; 94:1824S-1829S. [PMID: 21562089 DOI: 10.3945/ajcn.110.000729] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Type 2 diabetes arises when the endocrine pancreas fails to secrete sufficient insulin to cope with metabolic demands resulting from β cell secretory dysfunction, decreased β cell mass, or both. Epidemiologic studies have shown strong relations between poor fetal and early postnatal nutrition and susceptibility to diabetes later in life. Animal models have been established, and studies have shown that a reduction in the availability of nutrients during fetal development programs the endocrine pancreas and insulin-sensitive tissues. We investigated several modes of early malnutrition in rats. Regardless of the type of diet investigated, whether there was a deficit in calories or protein in food or even in the presence of a high-fat diet, malnourished pups were born with a defect in their β cell population, with fewer β cells that did not secrete enough insulin and that were more vulnerable to oxidative stress; such populations of β cells will never completely recover. Despite the similar endpoint, the cellular and physiologic mechanisms that contribute to alterations in β cell mass differ depending on the nature of the nutritional insult. Hormones that are operative during fetal life, such as insulin, insulin-like growth factors, and glucocorticoids; specific molecules, such as taurine; and islet vascularization have been implicated as possible factors in amplifying this defect. The molecular mechanisms responsible for intrauterine programming of β cells are still elusive, but among them the programming of mitochondria may be a strong central candidate.
Collapse
Affiliation(s)
- Brigitte Reusens
- Université Catholique de Louvain, Life Sciences Institute, Louvain-la-Neuve, Belgium.
| | | | | | | | | |
Collapse
|
15
|
Reusens B, Theys N, Remacle C. Alteration of mitochondrial function in adult rat offspring of malnourished dams. World J Diabetes 2011; 2:149-57. [PMID: 21954419 PMCID: PMC3180527 DOI: 10.4239/wjd.v2.i9.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/16/2011] [Accepted: 08/21/2011] [Indexed: 02/05/2023] Open
Abstract
Under-nutrition as well as over-nutrition during pregnancy has been associated with the development of adult diseases such as diabetes and obesity. Both epigenetic modifications and programming of the mitochondrial function have been recently proposed to explain how altered intrauterine metabolic environment may produce such a phenotype. This review aims to report data reported in several animal models of fetal malnutrition due to maternal low protein or low calorie diet, high fat diet as well as reduction in placental blood flow. We focus our overview on the β cell. We highlight that, notwithstanding early nutritional events, mitochondrial dysfunctions resulting from different alteration by diet or gender are programmed. This may explain the higher propensity to develop obesity and diabetes in later life.
Collapse
Affiliation(s)
- Brigitte Reusens
- Brigitte Reusens, Nicolas Theys, Claude Remacle, Laboratory of Cell Biology, Institute of Life Science, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
16
|
Abstract
Persistent organic pollutants (POPs) are known to cause mitochondrial dysfunction and this in turn is linked to insulin resistance, a key biochemical abnormality underlying the metabolic syndrome. To establish the cause and effect relationship between exposure to POPs and the development of the metabolic syndrome, Koch's postulates were considered. Problems arising from this approach were discussed and possible solutions were suggested. In particular, the difficulty of establishing a cause and effect relationship due to the vagueness of the metabolic syndrome as a disease entity was discussed. Recently a bioassay, aryl-hydrocarbon receptor (AhR) trans-activation activity using a cell line expressing AhR-luciferase, showed that its activity is linearly related with the parameters of the metabolic syndrome in a population. This finding suggests the possible role of bioassays in the analysis of multiple pollutants of similar kinds in the pathogenesis of several closely related diseases, such as type 2 diabetes and the metabolic syndrome. Understanding the effects of POPs on mitochondrial function will be very useful in understanding the integration of various factors involved in this process, such as genes, fetal malnutrition and environmental toxins and their protectors, as mitochondria act as a unit according to the metabolic scaling law.
Collapse
Affiliation(s)
- Hong Kyu Lee
- Department of Internal Medicine, Eulji University School of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Huang CH, Su SL, Hsieh MC, Cheng WL, Chang CC, Wu HL, Kuo CL, Lin TT, Liu CS. Depleted Leukocyte Mitochondrial DNA Copy Number in Metabolic Syndrome. J Atheroscler Thromb 2011; 18:867-73. [DOI: 10.5551/jat.8698] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
18
|
Lim S, Cho YM, Park KS, Lee HK. Persistent organic pollutants, mitochondrial dysfunction, and metabolic syndrome. Ann N Y Acad Sci 2010; 1201:166-76. [PMID: 20649553 DOI: 10.1111/j.1749-6632.2010.05622.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The number of individuals with metabolic syndrome is increasing worldwide, constituting a major social problem in many countries. Recently, epidemiological and experimental studies have associated insulin resistance or type 2 diabetes with elevated body burdens of persistent organic pollutants (POPs). It has been proposed that mitochondrial dysfunction plays a key role in this association. Mitochondrial DNA abnormalities are known to cause pancreas beta cell damage, insulin resistance, and diabetes mellitus. Recently, much evidence has emerged showing that environmental toxins, including POPs, affect mitochondrial function and subsequently induce insulin resistance. In this review, we present a novel concept in which metabolic syndrome is the result of mitochondrial dysfunction, which in turn is caused by exposure to POPs. The potential mechanism including POPs for mitochondrial dysfunction on metabolic syndrome is also discussed. We propose that the mitochondrial paradigm for the etiology of metabolic syndrome will facilitate the prevention and treatment of this major health problem.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
19
|
Abu-Amero KK, Al-Boudari OM, Mousa A, Gonzalez AM, Larruga JM, Cabrera VM, Dzimiri N. The Mitochondrial DNA Variant 16189T>C Is Associated with Coronary Artery Disease and Myocardial Infarction in Saudi Arabs. Genet Test Mol Biomarkers 2010; 14:43-7. [DOI: 10.1089/gtmb.2009.0095] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Khaled K. Abu-Amero
- Molecular Genetics Laboratory, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Olyan M. Al-Boudari
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ahmed Mousa
- Molecular Genetics Laboratory, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ana M. Gonzalez
- Department of Genetics, Faculty of Biology, University of La Laguna, Tenerife, Canary Islands, Spain
| | - Jose M. Larruga
- Department of Genetics, Faculty of Biology, University of La Laguna, Tenerife, Canary Islands, Spain
| | - Vicente M. Cabrera
- Department of Genetics, Faculty of Biology, University of La Laguna, Tenerife, Canary Islands, Spain
| | - Nduna Dzimiri
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
He Z, Sun Z, Liu S, Zhang Q, Tan Z. Effects of early malnutrition on mental system, metabolic syndrome, immunity and the gastrointestinal tract. J Vet Med Sci 2009; 71:1143-50. [PMID: 19801893 DOI: 10.1292/jvms.71.1143] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The notion of how malnutrition early in life affects ontogenesis has evolved considerably since the mid-1960s. Since then, there have been many studies on the effects of early malnutrition. Nutritional and metabolic exposure during critical periods in early human and animal development may have long-term programming effects in adulthood. This is supported by evidence from epidemiological studies, numerous animal models and clinical intervention trials. In this paper, we review the effects of early malnutrition on cognitive function, metabolic syndrome, immunity and the gastrointestinal tract, as well as possible underlying mechanisms, and consider diarrhoeal disease and poor cognitive function as examples for understanding the interrelation of the harmful effects caused by early malnutrition. Previous studies on early malnutrition have mainly concentrated on humans and rats. Therefore, the main aim of the present review was to give animal scientists a clear understanding of the harmful effects of early malnutrition on animal growth and animal production, and to help identify appropriate feeding techniques to prevent early malnutrition.
Collapse
Affiliation(s)
- Zhixiong He
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Hunan, P.R. China
| | | | | | | | | |
Collapse
|
21
|
Theys N, Bouckenooghe T, Ahn MT, Remacle C, Reusens B. Maternal low-protein diet alters pancreatic islet mitochondrial function in a sex-specific manner in the adult rat. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1516-25. [PMID: 19759337 DOI: 10.1152/ajpregu.00280.2009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction may be a long-term consequence of a poor nutritional environment during early life. Our aim was to investigate whether a maternal low-protein (LP) diet may program mitochondrial dysfunction in islets of adult progeny before glucose intolerance ensues. To address this, pregnant Wistar rats were fed isocaloric diets containing either 20% protein (control) or 8% protein (LP diet) throughout gestation. From birth, offspring received the control diet. The mitochondrial function was analyzed in islets of 3-mo-old offspring. Related to their basal insulin release, cultured islets from both male and female LP offspring presented a lower response to glucose challenge and a blunted ATP production compared with control offspring. The expression of malate dehydrogenase as well as the subunit 6 of the ATP synthase encoded by mitochondrial genome (mtDNA) was lower in these islets, reducing the capacity of ATP production through the Krebs cycle and oxidative phosphorylation. However, mtDNA content was unchanged in LP islets compared with control. Several consequences of protein restriction during fetal life were more marked in male offspring. Only LP males showed an increased reactive oxygen species production associated with a higher expression of mitochondrial subunits of the electron transport chain NADH-ubiquinone oxireductase subunit 4L, an overexpression of peroxisome proliferator-activated receptor-gamma and uncoupling protein-2, and a strongly reduced beta-cell mass. In conclusion, mitochondrial function is clearly altered in islets from LP adult offspring in a sex-specific manner. That may provide a cellular explanation for the earlier development of glucose intolerance in male than in female offspring of dams fed an LP diet.
Collapse
Affiliation(s)
- Nicolas Theys
- Laboratory of Cell Biology, Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
22
|
Reusens B, Sparre T, Kalbe L, Bouckenooghe T, Theys N, Kruhøffer M, Orntoft TF, Nerup J, Remacle C. The intrauterine metabolic environment modulates the gene expression pattern in fetal rat islets: prevention by maternal taurine supplementation. Diabetologia 2008; 51:836-45. [PMID: 18311556 DOI: 10.1007/s00125-008-0956-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 01/11/2008] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS Events during fetal life may in critical time windows programme tissue development leading to organ dysfunction with potentially harmful consequences in adulthood such as diabetes. In rats, the beta cell mass of progeny from dams fed with a low-protein (LP) diet during gestation is decreased at birth and metabolic perturbation lasts through adulthood even though a normal diet is given after birth or after weaning. Maternal and fetal plasma taurine levels are suboptimal. Maternal taurine supplementation prevents these induced abnormalities. In this study, we aimed to reveal changes in gene expression in fetal islets affected by the LP diet and how taurine may prevent these changes. METHODS Pregnant Wistar rats were fed an LP diet (8% [wt/wt] protein) supplemented or not with taurine in the drinking water or a control diet (20% [wt/wt] protein). At 21.5 days of gestation, fetal pancreases were removed, digested and cultured for 7 days. Neoformed islets were collected and transcriptome analysis was performed. RESULTS Maternal LP diet significantly changed the expression of more than 10% of the genes. Tricarboxylic acid cycle and ATP production were highly targeted, but so too were cell proliferation and defence. Maternal taurine supplementation normalised the expression of all altered genes. CONCLUSIONS/INTERPRETATION Development of the beta cells and particularly their respiration is modulated by the intrauterine environment, which may epigenetically modify expression of the genome and programme the beta cell towards a pre-diabetic phenotype. This mis-programming by maternal LP diet was prevented by early taurine intervention.
Collapse
Affiliation(s)
- B Reusens
- Laboratoire de Biologie Cellulaire, Université catholique de Louvain, 5, Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Remacle C, Dumortier O, Bol V, Goosse K, Romanus P, Theys N, Bouckenooghe T, Reusens B. Intrauterine programming of the endocrine pancreas. Diabetes Obes Metab 2007; 9 Suppl 2:196-209. [PMID: 17919194 DOI: 10.1111/j.1463-1326.2007.00790.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epidemiological studies have revealed strong relationships between poor foetal growth and subsequent development of the metabolic syndrome. Persisting effects of early malnutrition become translated into pathology, thereby determine chronic risk for developing glucose intolerance and diabetes. These epidemiological observations identify the phenomena of foetal programming without explaining the underlying mechanisms that establish the causal link. Animal models have been established and studies have demonstrated that reduction in the availability of nutrients during foetal development programs the endocrine pancreas and insulin-sensitive tissues. Whatever the type of foetal malnutrition, whether there are not enough calories or protein in food or after placental deficiency, malnourished pups are born with a defect in their beta-cell population that will never completely recover, and insulin-sensitive tissues will be definitively altered. Despite the similar endpoint, different cellular and physiological mechanisms are proposed. Hormones operative during foetal life like insulin itself, insulin-like growth factors and glucocorticoids, as well as specific molecules like taurine, or islet vascularization were implicated as possible factors amplifying the defect. The molecular mechanisms responsible for intrauterine programming of the beta cells are still elusive, but two hypotheses recently emerged: the first one implies programming of mitochondria and the second, epigenetic regulation.
Collapse
Affiliation(s)
- C Remacle
- Laboratory of Cell Biology, Institute of Life Sciences, Catholic University of Louvain, Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu SM, Zhou X, Zheng F, Li X, Liu F, Zhang HM, Xie Y. Novel mutations found in mitochondrial diabetes in Chinese Han population. Diabetes Res Clin Pract 2007; 76:425-35. [PMID: 17125872 DOI: 10.1016/j.diabres.2006.09.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 09/20/2006] [Indexed: 11/23/2022]
Abstract
Mitochondria provide cells with most of the energy in the form of ATP. Mutations in mitochondrial DNA (mtDNA) are associated with type 2 diabetes mellitus (T2DM) because ATP plays a critical role in the production and the release of insulin. To systematically determine mutant loci and to investigate their association with T2DM in Chinese Han population, 17 commonly reported mutant loci were screened in 236 cases of T2DM and 240 normal controls by PCR-RFLP, allele-specific PCR (AS-PCR) and DNA sequencing methods. Biological softwares were used to analyze the secondary structure of DNA, RNA and the corresponding proteins for missense mutations. Sixteen mutant loci were detected in total, of which five were novel, GenBank accession nos. were DQ092356, DQ473644 and DQ473645; they were mainly in16S rRNA, ND1 and ND4 gene. There was significant difference between the two groups for ND1 and ND4 genes mutation frequencies (ND1: P=0.001, OR=3.944, 95% CI 1.671-9.306; ND4: P=0.010, OR=5.818, 95% CI 1.275-26.537). No significant association was observed between the two groups for 5178A/C polymorphisms (P=0.418). Our study suggested that T3394C and A12026G might be associated with T2DM in Chinese Han population, and T2DM with mtDNA variant should be considered mitochondrial diabetes.
Collapse
Affiliation(s)
- Song-Mei Liu
- Genetic Diagnosis Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, PR China
| | | | | | | | | | | | | |
Collapse
|
25
|
Reusens B, Remacle C. Programming of the endocrine pancreas by the early nutritional environment. Int J Biochem Cell Biol 2005; 38:913-22. [PMID: 16337425 DOI: 10.1016/j.biocel.2005.10.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 10/17/2005] [Accepted: 10/18/2005] [Indexed: 11/16/2022]
Abstract
A substantial body of evidence now suggests that poor intrauterine milieu elicited by maternal nutritional disturbance or placental insufficiency may programme susceptibility in the foetus to later develop chronic degenerative diseases, such as obesity, hypertension, cardiovascular diseases and diabetes. Further data showing the developmental programming of the metabolic syndrome are now available thanks to animal studies in which the foetal environment has been manipulated. This review examines the developmental programming of glucose intolerance by disturbed intrauterine metabolic condition in rats. It focuses on the alteration of the endocrine pancreas at birth. Long-term consequences, deterioration of glucose tolerance and even transgenerational effects are reported. Maternal protein, caloric restriction and diabetes during gestation/lactation lead to altered beta-cell mass. This review also tempts to identify cellular and molecular mechanisms involved in this process.
Collapse
Affiliation(s)
- Brigitte Reusens
- Laboratoire de Biologie Cellulaire, Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
| | | |
Collapse
|