1
|
Cerebral Ischemia/Reperfusion Injury and Pharmacologic Preconditioning as a Means to Reduce Stroke-induced Inflammation and Damage. Neurochem Res 2022; 47:3598-3614. [DOI: 10.1007/s11064-022-03789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
2
|
Abdullah AR, Hapidin H, Abdullah H. The Role of Semipurified Fractions Isolated from Quercus infectoria on Bone Metabolism by Using hFOB 1.19 Human Fetal Osteoblast Cell Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:5319528. [PMID: 29861772 PMCID: PMC5971332 DOI: 10.1155/2018/5319528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/27/2018] [Accepted: 03/18/2018] [Indexed: 01/03/2023]
Abstract
Background. Quercus infectoria (QI) is a plant used in traditional medicines in Asia. The plant was reported to contain various active phytochemical compounds that have potential to stimulate bone formation. However, the precise mechanism of the stimulation effect of QI on osteoblast has not been elucidated. The present study was carried out to isolate QI semipurified fractions from aqueous QI extract and to delineate the molecular mechanism of QI semipurified fraction that enhanced bone formation by using hFOB1.19 human fetal osteoblast cell model. Methods. Isolation of QI semipurified fractions was established by means of column chromatography and thin layer chromatography. Established QI semipurified fractions were identified using Liquid Chromatography-Mass Spectrometry (LC-MS). Cells were treated with derived QI semipurified fractions and investigated for mineralization deposition and protein expression level of BMP-2, Runx2, and OPN by ELISA followed gene expression analysis of BMP-2 and Runx2 by RT-PCR. Results. Column chromatography isolation and purification yield Fractions A, B, and C. LC-MS analysis reveals the presence of polyphenols in each fraction. Results show that QI semipurified fractions increased the activity and upregulated the gene expression of BMP-2 and Runx2 at day 1, day 3, and day 7. OPN activity increased in cells treated with QI semipurified fractions at day 1 and day 3. Meanwhile, at day 7, expression of OPN decreased in activity. Furthermore, the study showed that combination of Fractions A, B, and C with osteoporotic drug (pamidronate) further increased the activity and upregulated the gene expression of BMP-2 and Runx2. Conclusions. These findings demonstrated that polyphenols from semipurified fractions of QI enhanced bone formation through expression of the investigated bone-related marker that is its potential role when combined with readily available osteoporotic drug.
Collapse
Affiliation(s)
- Amira Raudhah Abdullah
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hermizi Hapidin
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hasmah Abdullah
- Environmental and Occupational Health Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
3
|
Chuang DY, Cui J, Simonyi A, Engel VA, Chen S, Fritsche KL, Thomas AL, Applequist WL, Folk WR, Lubahn DB, Sun AY, Sun GY, Gu Z. Dietary Sutherlandia and elderberry mitigate cerebral ischemia-induced neuronal damage and attenuate p47phox and phospho-ERK1/2 expression in microglial cells. ASN Neuro 2014; 6:6/6/1759091414554946. [PMID: 25324465 PMCID: PMC4271764 DOI: 10.1177/1759091414554946] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sutherlandia (Sutherlandia frutescens) and elderberry
(Sambucus spp.) are used to promote health and for treatment of a
number of ailments. Although studies with cultured cells have demonstrated antioxidative
and anti-inflammatory properties of these botanicals, little is known about their ability
to mitigate brain injury. In this study, C57BL/6 J male mice were fed AIN93G diets without
or with Sutherlandia or American elderberry for 2 months prior to a 30-min global cerebral
ischemia induced by occlusion of the bilateral common carotid arteries (BCCAs), followed
by reperfusion for 3 days. Accelerating rotarod assessment at 24 h after BCCA occlusion
showed amelioration of sensorimotor impairment in the mice fed the supplemented diets as
compared with the ischemic mice fed the control diet. Quantitative digital pathology
assessment of brain slides stained with cresyl violet at 3 days after ischemia/reperfusion
(I/R) revealed significant reduction in neuronal cell death in both dietary groups.
Immunohistochemical staining for ionized calcium-binding adapter molecule-1 demonstrated
pronounced activation of microglia in the hippocampus and striatum in the ischemic brains
3 days after I/R, and microglial activation was significantly reduced in animals fed
supplemented diets. Mitigation of microglial activation by the supplements was further
supported by the decrease in expression of p47phox, a cytosolic subunit of NADPH oxidase,
and phospho-ERK1/2, a mitogen-activated protein kinase known to mediate a number of
cytoplasmic processes including oxidative stress and neuroinflammatory responses. These
results demonstrate neuroprotective effect of Sutherlandia and American elderberry
botanicals against oxidative and inflammatory responses to cerebral I/R.
Collapse
Affiliation(s)
- Dennis Y Chuang
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA
| | - Jiankun Cui
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Agnes Simonyi
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Victoria A Engel
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - Shanyan Chen
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - Kevin L Fritsche
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Andrew L Thomas
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA Southwest Research Center, University of Missouri, Mt. Vernon, MO, USA
| | - Wendy L Applequist
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA Missouri Botanical Garden, St. Louis, MO, USA
| | - William R Folk
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Dennis B Lubahn
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA Department of Biochemistry, University of Missouri, Columbia, MO, USA Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Albert Y Sun
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - Grace Y Sun
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Zezong Gu
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| |
Collapse
|
4
|
Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2014; 2:702-14. [PMID: 24944913 PMCID: PMC4060303 DOI: 10.1016/j.redox.2014.05.006] [Citation(s) in RCA: 532] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 02/06/2023] Open
Abstract
Reductions in the blood supply produce considerable injury if the duration of ischemia is prolonged. Paradoxically, restoration of perfusion to ischemic organs can exacerbate tissue damage and extend the size of an evolving infarct. Being highly metabolic organs, the heart and brain are particularly vulnerable to the deleterious effects of ischemia/reperfusion (I/R). While the pathogenetic mechanisms contributing to I/R-induced tissue injury and infarction are multifactorial, the relative importance of each contributing factor remains unclear. However, an emerging body of evidence indicates that the generation of reactive oxygen species (ROS) by mitochondria plays a critical role in damaging cellular components and initiating cell death. In this review, we summarize our current understanding of the mechanisms whereby mitochondrial ROS generation occurs in I/R and contributes to myocardial infarction and stroke. In addition, mitochondrial ROS have been shown to participate in preconditioning by several pharmacologic agents that target potassium channels (e.g., ATP-sensitive potassium (mKATP) channels or large conductance, calcium-activated potassium (mBKCa) channels) to activate cell survival programs that render tissues and organs more resistant to the deleterious effects of I/R. Finally, we review novel therapeutic approaches that selectively target mROS production to reduce postischemic tissue injury, which may prove efficacious in limiting myocardial dysfunction and infarction and abrogating neurocognitive deficits and neuronal cell death in stroke.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, School of Medicine, Dalton Cardiovascular Research Center, University of Missouri, 1 Hospital Drive, Columbia, MO 65212-0001, United States of America
| | - Yimin Bao
- Department of Medical Pharmacology and Physiology, School of Medicine, Dalton Cardiovascular Research Center, University of Missouri, 1 Hospital Drive, Columbia, MO 65212-0001, United States of America
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, School of Medicine, Dalton Cardiovascular Research Center, University of Missouri, 1 Hospital Drive, Columbia, MO 65212-0001, United States of America
| |
Collapse
|
5
|
Sun YX, Liu T, Dai XL, Li YB, Li YY, Zhang H, An LZ. Neuroprotective Activity of Water Soluble Extract from Chorispora bungeanaagainst Focal Cerebral Ischemic/Reperfusion Injury in Mice. J CHEM-NY 2014; 2014:1-9. [DOI: 10.1155/2014/373872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The purpose of the present study was to clarify whether the water extract ofChorispora bungeanawas an antioxidant agent against cerebral ischemia/reperfusion (I/R). Our results showed that water extract ofChorispora bungeanatreatment significantly reduced neurological deficit scores, infarct size, MDA and carbonyl contents, and GSH/GSSG ratio compared with the model control group. After being treated byChorispora bungeana, SOD, CAT, and GSH-Px activities remarkably increased.Chorispora bungeanatreatment also improved 8-OHdG expression and cell apoptosis. Our findings indicated that the water extract ofChorispora bungeanapossesses neuroprotective effect which is most likely achieved by antioxidant and antiapoptotic activities.
Collapse
Affiliation(s)
- Ya-Xuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
- Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ting Liu
- School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Xue-Ling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Ya-Bo Li
- Key Laboratory of Arid and Grassland Agroecology (Ministry Education), School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yu-Yao Li
- Key Laboratory of Arid and Grassland Agroecology (Ministry Education), School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hua Zhang
- Key Laboratory of Arid and Grassland Agroecology (Ministry Education), School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Li-Zhe An
- Key Laboratory of Arid and Grassland Agroecology (Ministry Education), School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Yin B, Liang H, Chen Y, Chu K, Huang L, Fang L, Matro E, Jiang W, Luo B. EGB1212 Post-treatment Ameliorates Hippocampal CA1 Neuronal Death and Memory Impairment Induced by Transient Global Cerebral Ischemia/Reperfusion. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:1329-41. [PMID: 24228604 DOI: 10.1142/s0192415x13500894] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extracts of Ginkgo biloba have been used in traditional medicines for centuries, and have potential for clinical applications in cerebral ischemia/reperfusion injury. However, standardized extracts have proven protective only as pre-treatments, and the major mechanisms of action remain unclear. We explored the potential of the novel extract EGB1212, which meets the United States Pharmacopeia (USP) 31 standardization criteria for pharmaceutical use, as a post-treatment after global cerebral ischemia/reperfusion (GCI/R) injury in a rat model. The pre-treated group was administered EGB1212 for 7 d prior to common carotid artery occlusion (i.e., ischemia, for 20 min). Post-treated rats received the same but starting 2 h after ischemia and continuing for 7 d. Seven days after GCI/R, brains of each group were processed for H&E staining of hippocampal CA1 neurons. Remaining rats underwent the Morris water maze and Y-maze tests of spatial learning and memory, beginning eight days after reperfusion. To assess hippocampal autophagy, light chain (LC)-3-I/LC3-II and Akt/pAkt were determined via a Western blot of rat hippocampi harvested 12, 24, or 72 h after reperfusion. EGB1212 pre- and post-treatments both improved neuronal survival and spatial learning and memory functions. Pre-treatment effectively reduced LC3-II levels and post-treatment resulted in significantly elevated pAkt levels. We conclude that EGB1212 exerted significant neuroprotection in GCI/R in both preventative and post-treatment settings. This extract shows great potential for clinical applications.
Collapse
Affiliation(s)
- Bo Yin
- Brain Medical Center, Hangzhou, Zhejiang 310003, China
- Department of Neurology, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Hui Liang
- Brain Medical Center, Hangzhou, Zhejiang 310003, China
- Department of Neurology, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yigang Chen
- Brain Medical Center, Hangzhou, Zhejiang 310003, China
- Department of Neurology, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ketan Chu
- Brain Medical Center, Hangzhou, Zhejiang 310003, China
- Department of Neurology, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Li Huang
- Zhejiang Key Laboratory of Traditional Chinese Medicine, Pharmaceutical Technology, Hangzhou, Zhejiang 310052, China
| | - Ling Fang
- Zhejiang Key Laboratory of Traditional Chinese Medicine, Pharmaceutical Technology, Hangzhou, Zhejiang 310052, China
| | - Erik Matro
- Brain Medical Center, Hangzhou, Zhejiang 310003, China
- Department of Neurology, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Weijian Jiang
- Department of Neurology, Chinese People's Liberation Army, Second Artillery General Hospital, Beijing 100088, China
| | - Benyan Luo
- Brain Medical Center, Hangzhou, Zhejiang 310003, China
- Department of Neurology, First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
7
|
Estrela JM, Ortega A, Mena S, Rodriguez ML, Asensi M. Pterostilbene: Biomedical applications. Crit Rev Clin Lab Sci 2013; 50:65-78. [DOI: 10.3109/10408363.2013.805182] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Lee WC, Wong HY, Chai YY, Shi CW, Amino N, Kikuchi S, Huang SH. Lipid peroxidation dysregulation in ischemic stroke: plasma 4-HNE as a potential biomarker? Biochem Biophys Res Commun 2012; 425:842-7. [PMID: 22898049 DOI: 10.1016/j.bbrc.2012.08.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 08/01/2012] [Indexed: 01/06/2023]
Abstract
4-hydroxynonenal (4-HNE) is a major aldehyde produced during the lipid peroxidation of ω-6 polyunsaturated fatty acids. Recently, 4-HNE has been reported to contribute to the pathogenesis of neuronal diseases such as Alzheimer's disease. However, the role of 4-HNE in ischemic stroke is unclear yet. In this study, we found that plasma 4-HNE concentrations were higher in the genetic stroke-prone rats (stroke-prone spontaneously hypertensive rats) and experimental stroke rats with middle cerebral artery occlusion (MCAO). Moreover, administration of 4-HNE via intravenous injection before MCAO surgery not only enlarged cerebral ischemia-induced infarct area, but also increased oxidative stress in brain tissue, which was evidenced by the enhanced ROS/MPA levels, and the reduced GSH/GSSG ratio and MnSOD levels. Overexpression of aldehyde dehydrogenasesbcl-2 (ALDH2), an enzyme catalyses 4-HNE, rescued neuronal survival against 4-HNE treatment in PC12 cells. The plasma 4-HNE concentrations in patients with ischemic stroke were higher than those in control subjects. In a small sample population (N=60), the plasma 4-HNE concentration was positively correlated with the plasma homocysteine concentration, a risk factor for ischemic stroke. Taken together, our study suggests that the plasma 4-HNE level is a potential biomarker for ischemic stroke.
Collapse
Affiliation(s)
- Wan-Chi Lee
- Department of Neurology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | |
Collapse
|
9
|
Chu K, Yin B, Wang J, Peng G, Liang H, Xu Z, Du Y, Fang M, Xia Q, Luo B. Inhibition of P2X7 receptor ameliorates transient global cerebral ischemia/reperfusion injury via modulating inflammatory responses in the rat hippocampus. J Neuroinflammation 2012; 9:69. [PMID: 22513224 PMCID: PMC3418181 DOI: 10.1186/1742-2094-9-69] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 04/18/2012] [Indexed: 01/05/2023] Open
Abstract
Background Neuroinflammation plays an important role in cerebral ischemia/reperfusion (I/R) injury. The P2X7 receptor (P2X7R) has been reported to be involved in the inflammatory response of many central nervous system diseases. However, the role of P2X7Rs in transient global cerebral I/R injury remains unclear. The purpose of this study is to determine the effects of inhibiting the P2X7R in a rat model of transient global cerebral I/R injury, and then to explore the association between the P2X7R and neuroinflammation after transient global cerebral I/R injury. Methods Immediately after infusion with the P2X7R antagonists Brilliant blue G (BBG), adenosine 5′-triphosphate-2′,3′-dialdehyde (OxATP) or A-438079, 20 minutes of transient global cerebral I/R was induced using the four-vessel occlusion (4-VO) method in rats. Survival rate was calculated, neuronal death in the hippocampal CA1 region was observed using H & E staining, and DNA cleavage was observed by deoxynucleotidyl transferase-mediated UTP nick end labeling TUNEL). In addition, behavioral deficits were measured using the Morris water maze, and RT-PCR and immunohistochemical staining were performed to measure the expression of IL-1β, TNF-α and IL-6, and to identify activated microglia and astrocytes. Results The P2X7R antagonists protected against transient global cerebral I/R injury in a dosage-dependent manner. A high dosage of BBG (10 μg) and A-0438079 (3 μg), and a low dosage of OxATP (1 μg) significantly increased survival rates, reduced I/R-induced learning memory deficit, and reduced I/R-induced neuronal death, DNA cleavage, and glial activation and inflammatory cytokine overexpression in the hippocampus. Conclusions Our study indicates that inhibiting P2X7Rs protects against transient global cerebral I/R injury by reducing the I/R-induced inflammatory response, which suggests inhibition of P2X7Rs may be a promising therapeutic strategy for clinical treatment of transient global cerebral I/R injury.
Collapse
Affiliation(s)
- Ketan Chu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, 76 Qingchun Road, Hangzhou 310003, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Song L, Mei A, Hu Y, Zhang J, Chai X. Response surface optimized extraction of carbohydrate compound from Folium Ginkgo and its bioactivity. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.11.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Krenz M, Korthuis RJ. Moderate ethanol ingestion and cardiovascular protection: from epidemiologic associations to cellular mechanisms. J Mol Cell Cardiol 2012; 52:93-104. [PMID: 22041278 PMCID: PMC3246046 DOI: 10.1016/j.yjmcc.2011.10.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/11/2011] [Accepted: 10/15/2011] [Indexed: 12/13/2022]
Abstract
While ethanol intake at high levels (3-4 or more drinks), either in acute (occasional binge drinking) or chronic (daily) settings, increases the risk for myocardial infarction and stroke, an inverse relationship between regular consumption of alcoholic beverages at light to moderate levels (1-2 drinks per day) and cardiovascular risk has been consistently noted in a large number of epidemiologic studies. Although initially attributed to polyphenolic antioxidants in red wine, subsequent work has established that the ethanol component contributes to the beneficial effects associated with moderate intake of alcoholic beverages regardless of type (red versus white wine, beer, spirits). Concerns have been raised with regard to interpretation of epidemiologic evidence for this association including heterogeneity of the reference groups examined in many studies, different lifestyles of moderate drinkers versus abstainers, and favorable risk profiles in moderate drinkers. However, better controlled epidemiologic studies and especially work conducted in animal models and cell culture systems have substantiated this association and clearly established a cause and effect relationship between alcohol consumption and reductions in tissue injury induced by ischemia/reperfusion (I/R), respectively. The aims of this review are to summarize the epidemiologic evidence supporting the effectiveness of ethanol ingestion in reducing the likelihood of adverse cardiovascular events such as myocardial infarction and ischemic stroke, even in patients with co-existing risk factors, to discuss the ideal quantities, drinking patterns, and types of alcoholic beverages that confer protective effects in the cardiovascular system, and to review the findings of recent experimental studies directed at uncovering the mechanisms that underlie the cardiovascular protective effects of antecedent ethanol ingestion. Mechanistic interrogation of the signaling pathways invoked by antecedent ethanol ingestion may point the way towards development of new therapeutic approaches that mimic the powerful protective effects of socially relevant alcohol intake to limit I/R injury, but minimize the negative psychosocial impact and pathologic outcomes that also accompany consumption of ethanol.
Collapse
Affiliation(s)
- Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | | |
Collapse
|
12
|
Abib RT, Peres KC, Barbosa AM, Peres TV, Bernardes A, Zimmermann LM, Quincozes-Santos A, Fiedler HD, Leal RB, Farina M, Gottfried C. Epigallocatechin-3-gallate protects rat brain mitochondria against cadmium-induced damage. Food Chem Toxicol 2011; 49:2618-23. [DOI: 10.1016/j.fct.2011.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 06/18/2011] [Accepted: 07/07/2011] [Indexed: 11/27/2022]
|
13
|
Briones TL, Rogozinska M, Woods J. Modulation of ischemia-induced NMDAR1 activation by environmental enrichment decreases oxidative damage. J Neurotrauma 2011; 28:2485-92. [PMID: 21612313 DOI: 10.1089/neu.2011.1842] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we examined whether enriched environment (EE) housing has direct neuroprotective effects on oxidative damage following transient global cerebral ischemia. Fifty-two adult male Wistar rats were included in the study and received either ischemia or sham surgery. Once fully awake, rats in each group were randomly assigned to either: EE housing or socially paired housing (CON). Animals remained in their assigned environment for 7 days, and then were killed. Our data showed that glutamate receptor expression was significantly higher in the hippocampus of the ischemia CON group than in the ischemia EE group. Furthermore, the oxidative DNA damage, protein oxidation, and neurodegeneration in the hippocampus of the ischemia CON group were significantly increased compared to the ischemia EE group. These results suggest that EE housing possibly modulated the ischemia-induced glutamate excitotoxicity, which then attenuated the oxidative damage and neurodegeneration in the ischemia EE rats.
Collapse
Affiliation(s)
- Teresita L Briones
- Department of Adult Health, Wayne State University, Detroit, Michigan 48202, USA.
| | | | | |
Collapse
|
14
|
Ahn SH, Kim HJ, Jeong I, Hong YJ, Kim MJ, Rhie DJ, Jo YH, Hahn SJ, Yoon SH. Grape seed proanthocyanidin extract inhibits glutamate-induced cell death through inhibition of calcium signals and nitric oxide formation in cultured rat hippocampal neurons. BMC Neurosci 2011; 12:78. [PMID: 21810275 PMCID: PMC3160962 DOI: 10.1186/1471-2202-12-78] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/03/2011] [Indexed: 11/30/2022] Open
Abstract
Background Proanthocyanidin is a polyphenolic bioflavonoid with known antioxidant activity. Some flavonoids have a modulatory effect on [Ca2+]i. Although proanthocyanidin extract from blueberries reportedly affects Ca2+ buffering capacity, there are no reports on the effects of proanthocyanidin on glutamate-induced [Ca2+]i or cell death. In the present study, the effects of grape seed proanthocyanidin extract (GSPE) on glutamate-induced excitotoxicity was investigated through calcium signals and nitric oxide (NO) in cultured rat hippocampal neurons. Results Pretreatment with GSPE (0.3-10 μg/ml) for 5 min inhibited the [Ca2+]i increase normally induced by treatment with glutamate (100 μM) for 1 min, in a concentration-dependent manner. Pretreatment with GSPE (6 μg/ml) for 5 min significantly decreased the [Ca2+]i increase normally induced by two ionotropic glutamate receptor agonists, N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). GSPE further decreased AMPA-induced response in the presence of 1 μM nimodipine. However, GSPE did not affect the 50 mM K+-induced increase in [Ca2+]i. GSPE significantly decreased the metabotropic glutamate receptor agonist (RS)-3,5-Dihydroxyphenylglycine-induced increase in [Ca2+]i, but it did not affect caffeine-induced response. GSPE (0.3-6 μg/ml) significantly inhibited synaptically induced [Ca2+]i spikes by 0.1 mM [Mg2+]o. In addition, pretreatment with GSPE (6 μg/ml) for 5 min inhibited 0.1 mM [Mg2+]o- and glutamate-induced formation of NO. Treatment with GSPE (6 μg/ml) significantly inhibited 0.1 mM [Mg2+]o- and oxygen glucose deprivation-induced neuronal cell death. Conclusions All these data suggest that GSPE inhibits 0.1 mM [Mg2+]o- and oxygen glucose deprivation-induced neurotoxicity through inhibition of calcium signals and NO formation in cultured rat hippocampal neurons.
Collapse
Affiliation(s)
- Seo-Hee Ahn
- Department of Physiology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sun YX, Tang Y, Wu AL, Liu T, Dai XL, Zheng QS, Wang ZB. Neuroprotective effect of liquiritin against focal cerebral ischemia/reperfusion in mice via its antioxidant and antiapoptosis properties. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2010; 12:1051-60. [PMID: 21128146 DOI: 10.1080/10286020.2010.535520] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Our present study was conducted to investigate whether liquiritin (7-hydroxy-2-[4-[3,4,5-trihydroxy-6-(hydroxymethyl) oxan-2-yl] oxyphenyl]-chroman-4-one, 1), an active component of Glycyrrhiza uralensis Fisch., exerts a neuroprotective effect against focal cerebral ischemia/reperfusion (I/R) in male Institute of Cancer Research (ICR) mice. On the establishment of mice with middle cerebral artery occlusion (MCAO) for 2 h and reperfusion for 22 h, liquiritin at the doses of 40, 20, and 10 mg/kg was administered before MCAO once a day intragastrically for a subsequent 3 days. Neurological deficits and infarct volume were measured, respectively. The levels of malondialdehyde (MDA) and carbonyl, activities of superoxide anion (SOD), catalase (CAT) and glutathion peroxidase (GSH-Px) and reduced glutathione/oxidized disulfide (GSH/GSSG) ratio in brain were estimated spectrophotometrically. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and terminal deoxynucleotidyl transferase-mediated DuTP-biotin nick end labeling (TUNEL)-positive cells were detected by immunohistochemical analysis. Our results showed that the neurological deficits, infarct volume, and the levels of MDA and carbonyl decreased, the ratio of GSH/GSSG and the activities of SOD, CAT, and GSH-Px were compensatorily up-regulated, and 8-OHdG and TUNEL-positive cells decreased after 22 h of reperfusion in liquiritin-treated groups. These findings suggest that liquiritin might be a potential agent against cerebral I/R injury in mice by its antioxidant and antiapoptosis properties.
Collapse
Affiliation(s)
- Ya-Xuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Wang Q, Kalogeris TJ, Wang M, Jones AW, Korthuis RJ. Antecedent ethanol attenuates cerebral ischemia/reperfusion-induced leukocyte-endothelial adhesive interactions and delayed neuronal death: role of large conductance, Ca2+-activated K+ channels. Microcirculation 2010; 17:427-38. [PMID: 20690981 PMCID: PMC2919824 DOI: 10.1111/j.1549-8719.2010.00041.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
EtOH-PC reduces postischemic neuronal injury in response to cerebral (I/R). We examined the mechanism underlying this protective effect by determining (i) whether it was associated with a decrease in I/R-induced leukocyte-endothelial adhesive interactions in postcapillary venules, and (ii) whether the protective effects were mediated by activation of large conductance, calcium-activated potassium (BK(Ca)) channels. Mice were administered ethanol by gavage or treated with the BK(Ca) channel opener, NS1619, 24 hours prior to I/R with or without prior treatment with the BK(Ca) channel blocker, PX. Both CCA were occluded for 20 minutes followed by two and three hours of reperfusion, and rolling (LR) and adherent (LA) leukocytes were quantified in pial venules using intravital microscopy. The extent of DND, apoptosis and glial activation in hippocampus were assessed four days after I/R. Compared with sham, I/R elicited increases in LR and LA in pial venules and DND and apoptosis as well as glial activation in the hippocampus. These effects were attenuated by EtOH-PC or antecedent NS1619 administration, and this protection was reversed by prior treatment with PX. Our results support a role for BK(Ca) channel activation in the neuroprotective effects of EtOH-PC in cerebral I/R.
Collapse
Affiliation(s)
- Qun Wang
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Meifang Wang
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Allan W. Jones
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
17
|
Sun AY, Wang Q, Simonyi A, Sun GY. Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol 2010; 41:375-83. [PMID: 20306310 PMCID: PMC3076208 DOI: 10.1007/s12035-010-8111-y] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 02/17/2010] [Indexed: 12/20/2022]
Abstract
Excess production of reactive oxygen species in the brain has been implicated as a common underlying risk factor for the pathogenesis of a number of neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. In recent years, there is considerable interest concerning investigation of antioxidative and anti-inflammatory effects of phenolic compounds from different botanical sources. In this review, we first describe oxidative mechanisms associated with stroke, AD, and PD, and subsequently, we place emphasis on recent studies implicating neuroprotective effects of resveratrol, a polyphenolic compound derived from grapes and red wine. These studies show that the beneficial effects of resveratrol are not only limited to its antioxidant and anti-inflammatory action but also include activation of sirtuin 1 (SIRT1) and vitagenes, which can prevent the deleterious effects triggered by oxidative stress. In fact, SIRT1 activation by resveratrol is gaining importance in the development of innovative treatment strategies for stroke and other neurodegenerative disorders. The goal here is to provide a better understanding of the mode of action of resveratrol and its possible use as a potential therapeutic agent to ameliorate stroke damage as well as other age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Albert Y Sun
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
A transient, ischemia-resistant phenotype known as "ischemic tolerance" can be established in brain in a rapid or delayed fashion by a preceding noninjurious "preconditioning" stimulus. Initial preclinical studies of this phenomenon relied primarily on brief periods of ischemia or hypoxia as preconditioning stimuli, but it was later realized that many other stressors, including pharmacologic ones, are also effective. This review highlights the surprisingly wide variety of drugs now known to promote ischemic tolerance, documented and to some extent mechanistically characterized in preclinical animal models of stroke. Although considerably more experimentation is needed to thoroughly validate the ability of any currently identified preconditioning agent to protect ischemic brain, the fact that some of these drugs are already clinically approved for other indications implies that the growing enthusiasm for translational success in the field of pharmacologic preconditioning may be well justified.
Collapse
|
19
|
Fujishita K, Ozawa T, Shibata K, Tanabe S, Sato Y, Hisamoto M, Okuda T, Koizumi S. Grape seed extract acting on astrocytes reveals neuronal protection against oxidative stress via interleukin-6-mediated mechanisms. Cell Mol Neurobiol 2009; 29:1121-1129. [PMID: 19381798 PMCID: PMC11506280 DOI: 10.1007/s10571-009-9403-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 03/31/2009] [Indexed: 02/07/2023]
Abstract
Grape polyphenols are known to protect neurons against oxidative stress. We used grape seed extract (GSE) from "Koshu" grapes (Vitis vinifera) containing a variety of polyphenols, and performed transcriptome analysis to determine the effects of GSE on primary cultures of astrocytes in the hippocampus. GSE upregulated various mRNAs for cytokines, among which interleukin-6 (IL-6) showed the biggest increase after treatment with GSE. The GSE-evoked increase in IL-6 mRNAs was confirmed by quantitative RT-PCR. We also detected IL-6 proteins by ELISA in the supernatant of GSE-treated astrocytes. We made an oxidative stress-induced neuronal cell death model in vitro using a neuron rich culture of the hippocampus. Treatment of the neurons with H(2)O(2) caused neuronal cell death in a time- and concentration-dependent manner. Exogenously applied IL-6 protected against the H(2)O(2)-induced neuronal cell death, which was mimicked by endogenous IL-6 produced by GSE-treated astrocytes. Taken together, GSE acting on astrocytes increased IL-6 production, which functions as a neuroprotective paracrine, could protect neuronal cells from death by oxidative stress.
Collapse
Affiliation(s)
- Kayoko Fujishita
- Department of Pharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, 409-3898 Japan
| | - Tetsuro Ozawa
- Department of Pharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, 409-3898 Japan
| | - Keisuke Shibata
- Department of Pharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, 409-3898 Japan
| | - Shihori Tanabe
- Division of Cellular and Gene Therapy Products, National Institute of Health Sciences, Tokyo, 158-8501 Japan
| | - Yoji Sato
- Division of Cellular and Gene Therapy Products, National Institute of Health Sciences, Tokyo, 158-8501 Japan
| | - Masashi Hisamoto
- The Institute of Enology and Viticulture, University of Yamanashi, Yamanashi, 400-0005 Japan
| | - Tohru Okuda
- The Institute of Enology and Viticulture, University of Yamanashi, Yamanashi, 400-0005 Japan
| | - Schuichi Koizumi
- Department of Pharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, 409-3898 Japan
| |
Collapse
|