1
|
Grove JI, Lo PC, Shrine N, Barwell J, Wain LV, Tobin MD, Salter AM, Borkar AN, Cuevas-Ocaña S, Bennett N, John C, Ntalla I, Jones GE, Neal CP, Thomas MG, Kuht H, Gupta P, Vemala VM, Grant A, Adewoye AB, Shenoy KT, Balakumaran LK, Hollox EJ, Hannan NR, Aithal GP. Identification and characterisation of a rare MTTP variant underlying hereditary non-alcoholic fatty liver disease. JHEP Rep 2023; 5:100764. [PMID: 37484212 PMCID: PMC10362796 DOI: 10.1016/j.jhepr.2023.100764] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 07/25/2023] Open
Abstract
Background & Aims Non-alcoholic fatty liver disease (NAFLD) is a complex trait with an estimated prevalence of 25% globally. We aimed to identify the genetic variant underlying a four-generation family with progressive NAFLD leading to cirrhosis, decompensation, and development of hepatocellular carcinoma in the absence of common risk factors such as obesity and type 2 diabetes. Methods Exome sequencing and genome comparisons were used to identify the likely causal variant. We extensively characterised the clinical phenotype and post-prandial metabolic responses of family members with the identified novel variant in comparison with healthy non-carriers and wild-type patients with NAFLD. Variant-expressing hepatocyte-like cells (HLCs) were derived from human-induced pluripotent stem cells generated from homozygous donor skin fibroblasts and restored to wild-type using CRISPR-Cas9. The phenotype was assessed using imaging, targeted RNA analysis, and molecular expression arrays. Results We identified a rare causal variant c.1691T>C p.I564T (rs745447480) in MTTP, encoding microsomal triglyceride transfer protein (MTP), associated with progressive NAFLD, unrelated to metabolic syndrome and without characteristic features of abetalipoproteinaemia. HLCs derived from a homozygote donor had significantly lower MTP activity and lower lipoprotein ApoB secretion than wild-type cells, while having similar levels of MTP mRNA and protein. Cytoplasmic triglyceride accumulation in HLCs triggered endoplasmic reticulum stress, secretion of pro-inflammatory mediators, and production of reactive oxygen species. Conclusions We have identified and characterised a rare causal variant in MTTP, and homozygosity for MTTP p.I564T is associated with progressive NAFLD without any other manifestations of abetalipoproteinaemia. Our findings provide insights into mechanisms driving progressive NAFLD. Impact and Implications A rare genetic variant in the gene MTTP has been identified as responsible for the development of severe non-alcoholic fatty liver disease in a four-generation family with no typical disease risk factors. A cell line culture created harbouring this variant gene was characterised to understand how this genetic variation leads to a defect in liver cells, which results in accumulation of fat and processes that promote disease. This is now a useful model for studying the disease pathways and to discover new ways to treat common types of fatty liver disease.
Collapse
Affiliation(s)
- Jane I. Grove
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Peggy C.K. Lo
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Nick Shrine
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Julian Barwell
- Clinical Genetics Department, University Hospitals Leicester NHS Trust, Leicester, UK
| | - Louise V. Wain
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Martin D. Tobin
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | | | - Aditi N. Borkar
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Sara Cuevas-Ocaña
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Neil Bennett
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Catherine John
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Ioanna Ntalla
- Clinical Genetics Department, University Hospitals Leicester NHS Trust, Leicester, UK
| | - Gabriela E. Jones
- Clinical Genetics Department, University Hospitals Leicester NHS Trust, Leicester, UK
| | | | - Mervyn G. Thomas
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Helen Kuht
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Pankaj Gupta
- Department of Chemical Pathology and Metabolic Diseases, University Hospitals of Leicester NHS Trust, Leicester, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Vishwaraj M. Vemala
- Department of Gastroenterology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Allister Grant
- Department of Gastroenterology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Adeolu B. Adewoye
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | | | - Edward J. Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Nicholas R.F. Hannan
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Guruprasad P. Aithal
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Wu X, Wang Y, Jia Y, Liu J, Wang G. Risk Factors for Nonalcoholic Fatty Liver Disease with Different Insulin Resistance in a Nonobese Chinese Population. J Diabetes Res 2022; 2022:9060405. [PMID: 36568964 PMCID: PMC9771661 DOI: 10.1155/2022/9060405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSES The aim of this study is to identify the risk factors of nonobese nonalcoholic fatty liver disease (NAFLD) individuals under different insulin resistance status. METHODS This cross-sectional study was conducted at the Medical Center of Beijing Chaoyang Hospital affiliated with Capital Medical University. NAFLD was diagnosed based upon ultrasonographic findings consistent with fatty liver disease. RESULTS A total of 1257 nonobese adults (625 non-NAFLD and 632 nonobese NAFLD) with body mass index (BMI) 18.5-24.9 kg/m2 were enrolled in the study. And all patients were divided into homeostasis model assessment of insulin resistance (HOMA - IR) > 1 group and HOMA - IR ≤ 1 group. When all the variables were adjusted in both the HOMA - IR > 1 group and HOMA - IR ≤ 1 group, older age (>50 years), higher BMI (23.0-24.9 kg/m2), higher AST (>18 U/L), higher TG (>0.9 mmol/L), higher GLU (>5.25 mmol/L), and higher HbA1C (>5.5%) were associated with higher risks of nonobese NAFLD. In patients with HOMA - IR > 1, lower homeostatic model assessment of β-cell function (HOMA-β) (<47.1%) (OR, 7.460, 95% CI, 3.051-18.238, P < 0.001) was associated with higher risks of nonobese NAFLD. CONCLUSION s. Metabolic profiles (i.e., higher BMI, hyperglycemia, hypertriglyceridemia, and higher glycosylated hemoglobin) are risk factors of nonobese NAFLD, regardless of insulin resistance status. Decreased function of pancreatic β-cells may be the risk factor of nonobese NAFLD with insulin resistance, who should pay attention to further development of pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Xiaojuan Wu
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Ying Wang
- Department of Medical Center, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Yumei Jia
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China
| |
Collapse
|
3
|
Chen LJ, Lin XX, Guo J, Xu Y, Zhang SX, Chen D, Zhao Q, Xiao J, Lian GH, Peng SF, Guo D, Yang H, Shu Y, Zhou HH, Zhang W, Chen Y. Lrp6 Genotype affects Individual Susceptibility to Nonalcoholic Fatty Liver Disease and Silibinin Therapeutic Response via Wnt/β-catenin-Cyp2e1 Signaling. Int J Biol Sci 2021; 17:3936-3953. [PMID: 34671210 PMCID: PMC8495406 DOI: 10.7150/ijbs.63732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) is a serious threat to human health worldwide, with a high genetic susceptibility. Rs2302685, a functional germline variant of LRP6, has been recently found to associate with NAFLD risk. This study was aimed to clarify the underlying mechanism associated with rs2302685 risk and its impact on pharmacotherapy in treatment of NAFLD. Methods: Venous blood samples were collected from NAFLD and non-NAFLD patients for SNP genotyping by using mass spectrometry. The Lrp6-floxdel mouse (Lrp6(+/-)) was generated to model the partial function associated with human rs2302685. The liver injury and therapeutic effects of silibinin were compared between Lrp6(+/-) and Lrp6(+/+) mice received a methionine-choline deficient (MCD) diet or normal diet. The effect of Lrp6 functional alteration on Wnt/β-catenin-Cyp2e1 signaling activities was evaluated by a series of cellular and molecular assays. Results: The T allele of LRP6 rs2302685 was confirmed to associate with a higher risk of NAFLD in human subjects. The carriers of rs2302685 had reduced level of AST and ALT as compared with the noncarriers. The Lrp6(+/-) mice exhibited a less severe liver injury induced by MCD but a reduced response to the treatment of silibinin in comparison to the Lrp6(+/+) mice, suggesting Lrp6 as a target of silibinin. Wnt/β-catenin-Cyp2e1 signaling together with ROS generation could be exacerbated by the overexpression of Lrp6, while decreased in response to Lrp6 siRNA or silibinin treatment under NAFLD modeling. Conclusions: The Lrp6 function affects individual susceptibility to NAFLD and the therapeutic effect of silibinin through the Wnt/β-catenin-Cyp2e1 signaling pathway. The present work has provided an underlying mechanism for human individual susceptibility to NAFLD associated with Lrp6 polymorphisms as well as a rationale for the effective use of silibinin in NAFLD patients.
Collapse
Affiliation(s)
- Li-Jie Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Xiu-Xian Lin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Jing Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Ying Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Song-Xia Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Dan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Guang-Hui Lian
- Department of gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shi-Fang Peng
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dong Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Hong Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| |
Collapse
|
4
|
Tan J, Zhang J, Zhao Z, Zhang J, Dong M, Ma X, Liu S, Xin Y. The association between SNPs rs1800591 and rs3816873 of the MTTP gene and nonalcoholic fatty liver disease: A meta-analysis. Saudi J Gastroenterol 2020; 26:290535. [PMID: 32719241 PMCID: PMC7580732 DOI: 10.4103/sjg.sjg_201_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/20/2020] [Accepted: 06/26/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/AIMS : The role of two polymorphisms rs1800591 and rs3816873 of the microsomal triglyceride transfer protein (MTTP) gene in the development of nonalcoholic fatty liver disease (NAFLD) remains controversial. A meta-analysis was conducted to determine the correlation between these MTTP polymorphisms and NAFLD. MATERIALS AND METHODS : A systematic search was carried out using PubMed, Embase, and Cochrane Library to retrieve English studies that reported the relationship between MTTP polymorphisms (rs1800591 and rs3816873) and NAFLD published before February 18, 2020. Odds ratio (OR) and 95% confidence interval (CI) were used to appraise the risk of MTTP polymorphism in NAFLD. RESULTS : A total of 10 case-control studies, including 1388 cases and 1690 healthy subjects, were included. No significant correlation between the rs1800591 (G vs. T: OR = 1.08, 95% CI = 0.68-1.70, P = 0.76) and rs3816873 (CT + CC vs. TT: OR = 1.23, 95% CI = 0.76-2.01, P = 0.398) polymorphisms of MTTP and NAFLD was found in any of the models. However, when NASH patients confirmed by liver biopsy were extracted alone for rs1800591 polymorphism analysis, it was found that the G allele significantly increased the risk of NASH under the heterozygote model (GT vs. TT: OR = 3.16, 95% CI = 1.13-8.83, P = 0.028) and dominant model (GT + GG vs. TT: OR = 3.03, 95% CI = 1.13-8.09, P = 0.027). CONCLUSION The present meta-analysis revealed that the rs1800591 and rs3816873 polymorphisms of the MTTP gene are uncommon in NAFLD. However, the G allele of rs1800591 was more likely to be correlated to NASH susceptibility.
Collapse
Affiliation(s)
- Jie Tan
- Weifang Medical University, Weifang, China
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
| | - Jian Zhang
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
| | - Zhenzhen Zhao
- Hepatology Laboratory, Qingdao Municipal Hospital, Qingdao, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
| | - Jie Zhang
- Medical College of Qingdao University, Qingdao, China
| | - Mengzhen Dong
- Medical College of Qingdao University, Qingdao, China
| | - Xuefeng Ma
- Medical College of Qingdao University, Qingdao, China
| | - Shousheng Liu
- Hepatology Laboratory, Qingdao Municipal Hospital, Qingdao, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
| | - Yongning Xin
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
- Hepatology Laboratory, Qingdao Municipal Hospital, Qingdao, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
| |
Collapse
|
5
|
Araki N, Takahashi H, Takamori A, Kitajima Y, Hyogo H, Sumida Y, Tanaka S, Anzai K, Aishima S, Chayama K, Fujimoto K, Eguchi Y. Decrease in fasting insulin secretory function correlates with significant liver fibrosis in Japanese non-alcoholic fatty liver disease patients. JGH OPEN 2020; 4:929-936. [PMID: 33102766 PMCID: PMC7578285 DOI: 10.1002/jgh3.12367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 12/28/2022]
Abstract
Background and Aim Non‐alcoholic fatty liver disease (NAFLD) is typically associated with metabolic syndrome and diabetes, and insulin resistance is involved in its pathogenesis. However, the relationship between insulin secretion and NAFLD is unclear. We aimed to characterize the relationship between fasting insulin secretory function (ISF), evaluated using the homeostatic model assessment‐beta cell function (HOMA‐β) and the severity of fibrosis during NAFLD. Methods A‐β was calculated in 188 patients with biopsy‐confirmed NAFLD, and the correlations between Log HOMA‐β and clinical parameters, including hepatic fibrosis, were calculated. Results Log HOMA‐β was significantly lower in NAFLD patients with significant fibrosis (stages 2–4) than in those in the early stages (stages 0–1) (median [interquartile range]) (2.1 [1.9–2.4] vs 2.0 [1.8–2.2], P = 0.04). The prevalence of significant fibrosis decreased with increasing Log HOMA‐β: it was 59.2% in participants with low ISF (Log HOMA‐β < 1.85), 43.6% in those with intermediate ISF (1.85 ≤ Log HOMA‐β < 2.25), and 68.0% in those with high ISF (Log HOMA‐β ≥ 2.25). Patients with lower Log HOMA‐β had lower current body mass index (BMI), BMI at 20 years of age, and peak lifetime BMI than patients with intermediate or high Log HOMA‐β. Conclusions Fasting ISF decreased alongside the development of liver fibrosis in NAFLD, suggesting that an impaired β cell function has a characteristic finding of significant liver fibrosis in relatively nonobese Japanese patients.
Collapse
Affiliation(s)
- Norimasa Araki
- Department of Internal Medicine, Faculty of Medicine Saga University Saga Japan
| | - Hirokazu Takahashi
- Department of Internal Medicine, Faculty of Medicine Saga University Saga Japan
| | - Ayako Takamori
- Clinical Research Center Saga University Hospital Saga Japan
| | - Yoichiro Kitajima
- Department of Internal Medicine, Faculty of Medicine Saga University Saga Japan.,Liver Center Saga University Hospital Saga Japan
| | - Hideyuki Hyogo
- Department of Gastroenterology and Hepatology JA Hiroshima General Hospital Hatsukaichi Japan
| | - Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine Aichi Medical University Aichi Japan
| | - Saiyu Tanaka
- Center for Digestive and Liver Disease Nara City Hospital Nara Japan
| | - Keizo Anzai
- Department of Internal Medicine, Faculty of Medicine Saga University Saga Japan
| | - Shinichi Aishima
- Department of Pathology & Microbiology, Faculty of Medicine Saga University Saga Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism Graduate School of Biomedical and Health Sciences, Hiroshima University Hiroshima Japan
| | - Kazuma Fujimoto
- Faculty of Medicine International University of Health and Welfare Fukuoka Japan
| | | |
Collapse
|
6
|
Sanghera DK, Bejar C, Sharma S, Gupta R, Blackett PR. Obesity genetics and cardiometabolic health: Potential for risk prediction. Diabetes Obes Metab 2019; 21:1088-1100. [PMID: 30667137 PMCID: PMC6530772 DOI: 10.1111/dom.13641] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 02/06/2023]
Abstract
The increasing burden of obesity worldwide and its effect on cardiovascular disease (CVD) risk is an opportunity for evaluation of preventive approaches. Both obesity and CVD have a genetic background and polymorphisms within genes which enhance expression of variant proteins that influence CVD in obesity. Genome-based prediction may therefore be a feasible strategy, but the identification of genetically driven risk factors for CVD manifesting as clinically recognized phenotypes is a major challenge. Clusters of such risk factors include hyperglycaemia, hypertension, ectopic liver fat, and inflammation. All involve multiple genetic pathways having complex interactions with variable environmental influences. The factors that make significant contributions to CVD risk include altered carbohydrate homeostasis, ectopic deposition of fat in muscle and liver, and inflammation, with contributions from the gut microbiome. A futuristic model depends on harnessing the predictive power of plausible genetic variants, phenotype reversibility, and effective therapeutic choices based on genotype-phenotype interactions. Inverting disease phenotypes into ideal cardiovascular health metrics could improve genetic and epigenetic assessment, and form the basis of a future model for risk detection and early intervention.
Collapse
Affiliation(s)
- Dharambir K. Sanghera
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cynthia Bejar
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sonali Sharma
- Department of Biochemistry, College of Medical Sciences, Rajasthan University of Health Sciences, Kumbha Marg, Pratap Nagar, Jaipur 302033, India
| | - Rajeev Gupta
- Academic Research Development Unit, College of Medical Sciences, Rajasthan University of Health Sciences, Kumbha Marg, Pratap Nagar, Jaipur 302033, India
| | - Piers R. Blackett
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
7
|
Fang YL, Chen H, Wang CL, Liang L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model”. World J Gastroenterol 2018; 24:2974-2983. [PMID: 30038464 PMCID: PMC6054950 DOI: 10.3748/wjg.v24.i27.2974] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/26/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the dominant form of chronic liver disease in children and adolescents with the increasing prevalence of obesity worldwide. NAFLD represents a wide spectrum of conditions, ranging from fatty liver - which generally follows a benign, non-progressive clinical course - to non-alcoholic steatohepatitis, a subset of NAFLD that may progress to cirrhosis and end-stage liver disease or liver carcinoma. The underlying pathophysiological mechanism of “pediatric” NAFLD remains unclear, although it is strongly associated with obesity and insulin resistance. In this review we provide a general overview on the current understanding of NAFLD in children and adolescents, which underpins practice, enabling early diagnosis and appropriate therapeutic intervention for this life-threatening liver disease.
Collapse
Affiliation(s)
- Yan-Lan Fang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hong Chen
- College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Chun-Lin Wang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Li Liang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
8
|
Gouda W, Ashour E, Shaker Y, Ezzat W. MTP genetic variants associated with non-alcoholic fatty liver in metabolic syndrome patients. Genes Dis 2017; 4:222-228. [PMID: 30258926 PMCID: PMC6147179 DOI: 10.1016/j.gendis.2017.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/27/2017] [Indexed: 02/08/2023] Open
Abstract
This study was performed for investigation the relationship between variants of MTP gene polymorphism and the development of NAFLD in patients with and without MS. The study was included 174 NAFLD patients (106 with MS and 68 without MS), and 141 healthy control subjects. The 493 G/T polymorphism of MTP gene was evaluated by PCR-RFLP method. The frequency of MTP TT genotype and T allele were significantly higher in NAFLD patients when compared to healthy controls. Moreover, a significant association in MTP gene polymorphism was observed in NAFLD patients with MS compared to NAFLD patients without MS and controls. Our study suggested that MTP 493 G/T gene polymorphism may act as susceptibility biomarker for NAFLD and MS.
Collapse
Affiliation(s)
- Weaam Gouda
- Biochemistry Dept., National Research Center, Dokki, Giza, Egypt
| | - Esmat Ashour
- Biochemistry Dept., National Research Center, Dokki, Giza, Egypt
| | - Yehia Shaker
- Biochemistry Dept., National Research Center, Dokki, Giza, Egypt
| | - Wafaa Ezzat
- Internal Medicine Dept., National Research Center, Dokki, Giza, Egypt
| |
Collapse
|
9
|
Dai D, Wen F, Zhou S, Su Z, Liu G, Wang M, Zhou J, He F. Association of MTTP gene variants with pediatric NAFLD: A candidate-gene-based analysis of single nucleotide variations in obese children. PLoS One 2017; 12:e0185396. [PMID: 28953935 PMCID: PMC5617203 DOI: 10.1371/journal.pone.0185396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022] Open
Abstract
Objective We used targeted next-generation sequencing to investigate whether genetic variants of lipid metabolism-related genes are associated with increased susceptibility to nonalcoholic fatty liver disease (NAFLD) in obese children. Methods A cohort of 100 obese children aged 6 to 18 years were divided into NAFLD and non-NAFLD groups and subjected to hepatic ultrasound, anthropometric, and biochemical analyses. We evaluated the association of genetic variants with NAFLD susceptibility by investigating the single nucleotide polymorphisms in each of 36 lipid-metabolism-related genes. The panel genes were assembled for target region sequencing. Correlations between single nucleotide variations, biochemical markers, and clinical phenotypes were analyzed. Results 97 variants in the 36 target genes per child were uncovered. Twenty-six variants in 16 genes were more prevalent in NAFLD subjects than in in-house controls. The mutation rate of MTTP rs2306986 and SLC6A2 rs3743788 was significantly higher in NAFLD subjects than in non-NAFLD subjects (OR: 3.879; P = 0.004; OR: 6.667, P = 0.005). Logistic regression analysis indicated the MTTP variant rs2306986 was an independent risk factor for NAFLD (OR: 23.468, P = 0.044). Conclusions The results of this study, examining a cohort of obese children, suggest that the genetic variation at MTTP rs2306986 was associated with higher susceptibility to NAFLD. This may contribute to the altered lipid metabolism by disruption of assembly and secretion of lipoprotein, leading to reducing fat export from the involved hepatocytes.
Collapse
Affiliation(s)
- Dongling Dai
- Shenzhen Children's Hospital, Shenzhen, China
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Feiqiu Wen
- Shenzhen Children's Hospital, Shenzhen, China
- * E-mail: (FW); (SZ)
| | - Shaoming Zhou
- Shenzhen Children's Hospital, Shenzhen, China
- * E-mail: (FW); (SZ)
| | - Zhe Su
- Shenzhen Children's Hospital, Shenzhen, China
| | - Guosheng Liu
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mingbang Wang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
- Shenzhen Following Precision Medical Research Institute, Shenzhen, China
| | - Jianli Zhou
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fusheng He
- Shenzhen Following Precision Medical Research Institute, Shenzhen, China
| |
Collapse
|
10
|
Musso G, Cipolla U, Cassader M, Pinach S, Saba F, De Michieli F, Paschetta E, Bongiovanni D, Framarin L, Leone N, Berrutti M, Rosina F, Corvisieri S, Molinaro F, Sircana A, Gambino R. TM6SF2 rs58542926 variant affects postprandial lipoprotein metabolism and glucose homeostasis in NAFLD. J Lipid Res 2017; 58:1221-1229. [PMID: 28242789 DOI: 10.1194/jlr.m075028] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/21/2017] [Indexed: 12/15/2022] Open
Abstract
Mechanisms underlying the opposite effects of transmembrane 6 superfamily member 2 (TM6SF2) rs58542926 C>T polymorphism on liver injury and cardiometabolic risk in nonalcoholic fatty liver disease (NAFLD) are unclear. We assessed the impact of this polymorphism on postprandial lipoprotein metabolism, glucose homeostasis, and nutrient oxidation in NAFLD. Sixty nonobese nondiabetic normolipidemic biopsy-proven NAFLD patients and 60 matched controls genotyped for TM6SF2 C>T polymorphism underwent: indirect calorimetry; an oral fat tolerance test with measurement of plasma lipoprotein subfractions, adipokines, and incretin glucose-dependent insulinotropic polypeptide (GIP); and an oral glucose tolerance test with minimal model analysis of glucose homeostasis. The TM6SF2 T-allele was associated with higher hepatic and adipose insulin resistance, impaired pancreatic β-cell function and incretin effect, and higher muscle insulin sensitivity and whole-body fat oxidation rate. Compared with the TM6SF2 C-allele, the T-allele entailed lower postprandial lipemia and nefaemia, a less atherogenic lipoprotein profile, and a postprandial cholesterol (Chol) redistribution from smaller atherogenic lipoprotein subfractions to larger intestinal and hepatic VLDL1 subfractions. Postprandial plasma VLDL1-Chol response independently predicted the severity of liver histology. In conclusion, the TM6SF2 C>T polymorphism affects nutrient oxidation, glucose homeostasis, and postprandial lipoprotein, adipokine, and GIP responses to fat ingestion independently of fasting values. These differences may contribute to the dual and opposite effect of this polymorphism on liver injury and cardiometabolic risk in NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Antonio Sircana
- Emergency Medicine Department, Sassari Hospital, Sassari, Italy
| | - Roberto Gambino
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Ohmi S, Ono M, Takata H, Hirano S, Funakoshi S, Nishi Y, Yoshimura K, Amano E, Terada Y, Saibara T, Fujimoto S. Analysis of factors influencing glucose tolerance in Japanese patients with non-alcoholic fatty liver disease. Diabetol Metab Syndr 2017; 9:65. [PMID: 28878826 PMCID: PMC5584018 DOI: 10.1186/s13098-017-0264-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND While the association of the prevalence of non-alcoholic fatty liver disease (NAFLD) with impaired glucose metabolism has been reported, the factors influencing glucose tolerance in NAFLD remain to be clarified. METHODS Glucose tolerance of 131 Japanese patients diagnosed as NAFLD by histological findings of liver biopsy specimen was examined using 75 g-OGTT. According to Matteoni's classification, patients were divided to 4 groups [M1 ~ 4, M1, 2: non-alcoholic fatty liver (NAFL); and M3, 4: non-alcoholic steatohepatitis (NASH)]. Based on the OGTT data, insulinogenic index (IGI) and QUICKI were calculated as indices of insulin secretion and insulin sensitivity, respectively. Plasma glucose 120 min after glucose loading (G120) was used as the index for glucose intolerance. RESULTS Stepwise multiple regression analysis using G120 as a dependent variable and loge-IGI, QUICKI, sex, BMI, age, NAFL/NASH as independent variables revealed that loge-IGI (β = -0.595) and QUICKI (β = -0.323) are significant factors predicting glucose intolerance (R2 = 0.403), indicating an important role of insulin secretion in glucose tolerance. These findings accord with glucose intolerance as high as 89.7% in patients with impaired insulin secretion defined by ≤43.2 pmol/mmol (40 μU/mg) IGI. Stepwise multiple regression analysis using QUICKI as a dependent variable and NAFL/NAFLD, sex, BMI, and age as independent variables revealed that BMI (β = -0.469) and NAFL/NAFLD (β = -0.204) are significant factors predicting insulin sensitivity (R2 = 0.248). CONCLUSION Impairment of insulin secretion is the most important factor to predict glucose intolerance in NAFLD; severity of histological findings is associated with insulin sensitivity independent of adiposity in NAFLD.
Collapse
Affiliation(s)
- Satoko Ohmi
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Masafumi Ono
- Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Hiroshi Takata
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Seiki Hirano
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Shogo Funakoshi
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Yuichi Nishi
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Kumiko Yoshimura
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Eri Amano
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Yoshio Terada
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Toshiji Saibara
- Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| | - Shimpei Fujimoto
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505 Japan
| |
Collapse
|
12
|
Cengiz M, Ozenirler S, Kocabiyik M. Serum β-trophin level as a new marker for noninvasive assessment of nonalcoholic fatty liver disease and liver fibrosis. Eur J Gastroenterol Hepatol 2016; 28:57-63. [PMID: 26513612 DOI: 10.1097/meg.0000000000000502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease and evaluation of fibrosis is important. We aimed to investigate the utility of serum β-trophin in NAFLD and its ability to predict liver fibrosis. PATIENTS AND METHODS Serum samples of consecutive patients with biopsy-proven NAFLD and age-matched and sex-matched healthy controls were used to measure β-trophin using ELISA. Correlations between histopathological features of NAFLD and β-trophin were analyzed. Whereas patients with fibrosis scores less than 2 were grouped in the mild fibrosis group, patients with scores of 2 or more were grouped in the significant fibrosis group. Univariate/multivariate logistic regression analyses were carried out to evaluate the independent predicting factors of liver fibrosis. Receiver operating characteristics (ROCs) were assessed to determine the best cut-off values for NAFLD and fibrosis. RESULTS Sixty-nine patients with NAFLD and 69 healthy controls were enrolled in the study. Serum β-trophin levels were lower in NAFLD patients compared with the controls (2.34±0.06 vs. 1.94±0.09 ng/ml, respectively, P<0.001). In NAFLD, serum β-trophin was related to liver fibrosis and inflammation. The mild fibrosis group had higher serum β-trophin levels than the significant fibrosis group (2.11±0.12 vs. 1.72±0.11, respectively, P<0.001). In multivariate analysis, β-trophin remained an independent predictor of significant fibrosis (odds ratio, 0.237; 95% confidence interval, 0.059-0.949; P<0.001). ROC analysis showed that serum β-trophin was statistically significant in the identification of significant fibrosis (area under receiver operating characteristic, 0.844; 95% confidence interval, 0.718-0.970; P<0.001). The best cut-off value was 1.786, with the best sensitivity (71.43%) and specificity (95.65%). CONCLUSION Serum β-trophin may be a potential noninvasive marker for the identification of NAFLD and significant liver fibrosis.
Collapse
Affiliation(s)
- Mustafa Cengiz
- aDepartment of Gastroenterology, Dr. A.Y. Ankara Oncology Training and Research Hospital bDepartment of Gastroenterology cDepartment of Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | | | |
Collapse
|
13
|
Hsiao PJ, Lee MY, Wang YT, Jiang HJ, Lin PC, Yang YHC, Kuo KK. MTTP-297H polymorphism reduced serum cholesterol but increased risk of non-alcoholic fatty liver disease-a cross-sectional study. BMC MEDICAL GENETICS 2015; 16:93. [PMID: 26458397 PMCID: PMC4603340 DOI: 10.1186/s12881-015-0242-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022]
Abstract
Background Microsomal triglyceride transfer protein (MTP) works to lipidate and assemble the apoB-containing lipoproteins in liver. It closely links up the hepatic secretion of lipid to regulate serum lipid and atherosclerosis. Cases of MTTP gene mutation is characterized by abetalipoproteinemia and remarkable hepatic steatosis or cirrhosis. Several MTTP polymorphisms have been reported relating to metabolic syndrome, hyperlipidemia and steatohepatitis. We supposed the regulation of serum lipids and risk of non-alcoholic fatty liver disease (NAFLD) formation may be modified by individual susceptibility related to the MTTP polymorphisms. Methods and results A cross-sectional population of 1193 subjects, 1087 males and 106 females mean aged 45.9 ± 8.9 years, were enrolled without recognized secondary hyperlipidemia. Fasting serum lipid, insulin, and non-esterified fatty acid were assessed and transformed to insulin resistance index, HOMA-IR and Adipo-IR. After ruling out alcohol abuser, non-alcoholic fatty liver disease (NAFLD) was diagnosed by abdominal ultrasound. Five common MTTP polymorphisms (promoter -493G/T, E98D, I128T, N166S, and Q297H) were conducted by TaqMan assay. Multivariate regression analysis was used to estimate their impact on serum lipid and NAFLD risk. Assessment revealed a differential impact on LDL-C and non-HDL-C, which were sequentially determined by the Q297H polymorphism, insulin resistance, body mass index and age. Carriers of homozygous minor allele (297H) had significantly lower LDL-C and non-HDL-C but higher risk for NAFLD. Molecular modeling of the 297H variant demonstrated higher free energy, potentially referring to an unstable structure and functional sequence. Conclusion These results evidenced the MTTP polymorphisms could modulate the lipid homeostasis to determine the serum lipids and risk of NAFLD. The MTTP 297H polymorphism interacted with age, insulin resistance and BMI to decrease serum apoB containing lipoproteins (LDL-C and non-HDL-C) but increase the risk of NAFLD formation. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0242-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pi-Jung Hsiao
- Division of Endocrinology and Metabolism, Department of Internal Medicine; Kaohsiung Municipal Siaogang Hospital, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,School of Medicine, College of Medicine, Kaohsiung Medical University, 100 Tzyou 1st Rd, Kaohsiung, 807, Taiwan.
| | - Mei-Yueh Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine; Kaohsiung Municipal Siaogang Hospital, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Yeng-Tseng Wang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - He-Jiun Jiang
- Division of Endocrinology and Metabolism, Department of Internal Medicine; Kaohsiung Municipal Siaogang Hospital, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Pi-Chen Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine; Kaohsiung Municipal Siaogang Hospital, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Yi-Hsin Connie Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Kung-Kai Kuo
- School of Medicine, College of Medicine, Kaohsiung Medical University, 100 Tzyou 1st Rd, Kaohsiung, 807, Taiwan. .,Division of Hepatobiliopancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Siddiqui MS, Cheang KL, Luketic VA, Boyett S, Idowu MO, Patidar K, Puri P, Matherly S, Stravitz RT, Sterling RK, Sanyal AJ. Nonalcoholic Steatohepatitis (NASH) Is Associated with a Decline in Pancreatic Beta Cell (β-Cell) Function. Dig Dis Sci 2015; 60:2529-37. [PMID: 25784075 PMCID: PMC4900167 DOI: 10.1007/s10620-015-3627-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/03/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) represents a histological spectrum ranging from benign hepatic steatosis (NAFL) to nonalcoholic steatohepatitis (NASH). NAFLD is closely associated with insulin resistance (IR), and although the role of IR in NAFLD has been an area of intense investigation, there are limited data on pancreatic β-cell function. AIM To evaluate the pancreatic β-cell function in NAFLD using the homeostatic model assessment-β (HOMA-β) and β-cell index (BI). METHODS HOMA-β was measured in ninety-nine non-diabetic subjects with histologically confirmed NAFLD and compared to lean (age- and gender-matched) and obese (age-, gender-, and BMI-matched) controls. Using the values from an oral glucose tolerance test, BI was compared in 31 non-diabetic, non-cirrhotic subjects with NASH and gender- and BMI-matched controls. RESULTS The subjects with NAFLD had higher HOMA-β compared to both lean and obese controls (43.1 vs. 9 vs. 22.1 %, respectively, P < 0.05). HOMA-β was directly related to serum alkaline phosphate, total bilirubin, and weight and inversely related to age. There was no difference in HOMA-β between subjects with NAFL and NASH. Subjects with NASH had lower β-cell function as measured by a lower BI (2.09 ± 1.64 vs. 7.74 ± 25.12; P = 0.04). In patients with NASH, BI was inversely associated with fibrosis independent of age, BMI, and serum ALT levels. In contrast, HOMA-β was directly associated with fibrosis stage. CONCLUSION NASH is associated with strained pancreatic β-cell function in non-diabetic subjects. Future studies are necessary to evaluate the temporal relationship between β-cell function and hepatic histology.
Collapse
Affiliation(s)
- Mohamed S. Siddiqui
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Kai L. Cheang
- Division of Endocrinology, Dept. of Internal Medicine, Virginia Commonwealth University
| | - Velimir A. Luketic
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sherry Boyett
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael O. Idowu
- Div. of Surgical Pathology, Dept. of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | | | - Puneet Puri
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Scott Matherly
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Richard T. Stravitz
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Richard K. Sterling
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Arun J. Sanyal
- Div. of Gastroenterology, Hepatology and Nutrition, Dept. of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
15
|
Takeshita Y, Takamura T, Honda M, Kita Y, Zen Y, Kato KI, Misu H, Ota T, Nakamura M, Yamada K, Sunagozaka H, Arai K, Yamashita T, Mizukoshi E, Kaneko S. The effects of ezetimibe on non-alcoholic fatty liver disease and glucose metabolism: a randomised controlled trial. Diabetologia 2014; 57:878-90. [PMID: 24407920 DOI: 10.1007/s00125-013-3149-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/15/2013] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS The cholesterol absorption inhibitor ezetimibe has been shown to ameliorate non-alcoholic fatty liver disease (NAFLD) pathology in a single-armed clinical study and in experimental animal models. In this study, we investigated the efficacy of ezetimibe on NAFLD pathology in an open-label randomised controlled clinical trial. METHODS We had planned to enrol 80 patients in the trial, as we had estimated that, with this sample size, the study would have 90% power. The study intervention and enrolment were discontinued because of the higher proportion of adverse events (significant elevation in HbA(1c)) in the ezetimibe group than in the control group. Thirty-two patients with NAFLD were enrolled and randomised (allocation by computer program). Ezetimibe (10 mg/day) was given to 17 patients with NAFLD for 6 months. The primary endpoint was change in serum aminotransferase level. Secondary outcomes were change in liver histology (12 control and 16 ezetimibe patients), insulin sensitivity including a hyperinsulinaemic-euglycaemic clamp study (ten control and 13 ezetimibe patients) and hepatic fatty acid composition (six control and nine ezetimibe patients). Hepatic gene expression profiling was completed in 15 patients using an Affymetrix gene chip. Patients and the physician in charge knew to which group the patient had been allocated, but people carrying out measurements or examinations were blinded to group. RESULTS Serum total cholesterol was significantly decreased in the ezetimibe group. The fibrosis stage and ballooning score were also significantly improved with ezetimibe treatment. However, ezetimibe treatment significantly increased HbA1c and was associated with a significant increase in hepatic long-chain fatty acids. Hepatic gene expression analysis showed coordinate downregulation of genes involved in skeletal muscle development and cell adhesion molecules in the ezetimibe treatment group, suggesting a suppression of stellate cell development into myofibroblasts. Genes involved in the L-carnitine pathway were coordinately downregulated by ezetimibe treatment and those in the steroid metabolism pathway upregulated, suggestive of impaired oxidation of long-chain fatty acids. CONCLUSIONS/INTERPRETATION Ezetimibe improved hepatic fibrosis but increased hepatic long-chain fatty acids and HbA1c in patients with NAFLD. These findings shed light on previously unrecognised actions of ezetimibe that should be examined further in future studies. TRIAL REGISTRATION University Hospital Medical Information Network (UMIN) Clinical Trials Registry UMIN000005250. FUNDING The study was funded by grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and research grants from MSD.
Collapse
Affiliation(s)
- Yumie Takeshita
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zheng W, Wang L, Su X, Hu XF. MTP -493G>T polymorphism and susceptibility to nonalcoholic fatty liver disease: a meta-analysis. DNA Cell Biol 2014; 33:361-9. [PMID: 24588800 DOI: 10.1089/dna.2013.2238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microsomal transfer protein (MTP), a lipid transfer protein localized in the endoplasmic reticulum of hepatocytes and enterocytes, plays an important role in the development of nonalcoholic fatty liver disease (NAFLD). Many existing studies have demonstrated that a common polymorphism (-493G>T, rs1800591 G>T) in the MTP gene may be implicated in the development and progression of NAFLD, but individually published results are inconclusive. This meta-analysis aimed to investigate whether MTP -493G>T polymorphism may be a potential risk factor for NAFLD. We searched CISCOM, CINAHL, Web of Science, PubMed, Google Scholar, EBSCO, Cochrane Library, and CBM databases from inception through October 1, 2013. Meta-analysis was performed using the STATA 12.0 software. Eleven clinical case-control studies with a total of 636 NAFLD cases and 918 healthy controls met the inclusion criteria. Our meta-analysis results revealed that MTP -493G>T polymorphism was strongly correlated with an increased risk of NAFLD. Subgroup analysis by ethnicity suggested that MTP -493G>T polymorphism might increase individuals' susceptibility to NAFLD among both Caucasian and non-Caucasian populations. No publication bias was observed in this meta-analysis. In short, the present meta-analysis indicates that MTP -493G>T polymorphisms may contribute to individuals' susceptibility to NAFLD. Thus, MTP -493G>T polymorphism may be a valuable and practical biomarker for early detection of NAFLD.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Laboratory Medicine, General Hospital of Shenyang Military Area Command , Shenyang, People's Republic of China
| | | | | | | |
Collapse
|
17
|
Dongiovanni P, Anstee QM, Valenti L. Genetic predisposition in NAFLD and NASH: impact on severity of liver disease and response to treatment. Curr Pharm Des 2014; 19:5219-38. [PMID: 23394097 PMCID: PMC3850262 DOI: 10.2174/13816128113199990381] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/01/2013] [Indexed: 02/07/2023]
Abstract
Liver fat deposition related to systemic insulin resistance defines non-alcoholic fatty liver disease (NAFLD) which, when associated with oxidative hepatocellular damage, inflammation, and activation of fibrogenesis, i.e. non-alcoholic steatohepatitis (NASH), can progress towards cirrhosis and hepatocellular carcinoma. Due to the epidemic of obesity, NAFLD is now the most frequent liver disease and the leading cause of altered liver enzymes in Western countries. Epidemiological, familial, and twin studies provide evidence for an element of heritability of NAFLD. Genetic modifiers of disease severity and progression have been identified through genome-wide association studies. These include the Patatin-like phosholipase domain-containing 3 (PNPLA3) gene variant I148M as a major determinant of inter-individual and ethnicity-related differences in hepatic fat content independent of insulin resistance and serum lipid concentration. Association studies confirm that the I148M polymorphism is also a strong modifier of NASH and progressive hepatic injury. Furthermore, a few large multicentre case-control studies have demonstrated a role for genetic variants implicated in insulin signalling, oxidative stress, and fibrogenesis in the progression of NAFLD towards fibrosing NASH, and confirm that hepatocellular fat accumulation and insulin resistance are key operative mechanisms closely involved in the progression of liver damage. It is now important to explore the molecular mechanisms underlying these associations between gene variants and progressive liver disease, and to evaluate their impact on the response to available therapies. It is hoped that this knowledge will offer further insights into pathogenesis, suggest novel therapeutic targets, and could help guide physicians towards individualised therapy that improves clinical outcome.
Collapse
Affiliation(s)
- Paola Dongiovanni
- Department of Pathophysiology and Transplantation, section Internal Medicine, Università degli Studi Milano, UO Medicina Interna1B, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | |
Collapse
|
18
|
Musso G, Bo S, Cassader M, De Michieli F, Gambino R. Impact of sterol regulatory element-binding factor-1c polymorphism on incidence of nonalcoholic fatty liver disease and on the severity of liver disease and of glucose and lipid dysmetabolism. Am J Clin Nutr 2013; 98:895-906. [PMID: 23985808 DOI: 10.3945/ajcn.113.063792] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Genetic factors that predispose individuals to nonalcoholic fatty liver disease (NAFLD) and associated diabetes and cardiovascular disease are unclear. The transcription factor sterol regulatory element-binding protein-1c (SREBP-1c) modulates lipogenesis and insulin sensitivity and was experimentally connected to NAFLD. OBJECTIVE We assessed the impact of a common SREBF-1c polymorphism on the incidence and severity of NAFLD and on associated glucose and lipoprotein dysmetabolism. DESIGN We followed up 212 randomly selected, nonobese, nondiabetic, insulin-sensitive participants in a population-based study without NAFLD or metabolic syndrome at baseline who were characterized for the common SREBF-1c gene rs11868035 A/G polymorphism, dietary habits, physical activity, adipokine profile, C-reactive protein (CRP), and circulating markers of endothelial dysfunction. A comparable cohort of NAFLD patients underwent a liver biopsy, an oral-glucose-tolerance test with minimal model analysis of glucose homeostasis variables, and an oral-fat-tolerance test with measurement of plasma lipoproteins, adipokines, and cytokeratin-18 fragments. RESULTS SREBF-1c predicted the 7-y incidence of NAFLD (OR: 1.71; 95% CI: 1.15, 2.53) and diabetes and the 7-y elevation in CRP and endothelial dysfunction markers. In biopsy-proven NAFLD patients, the SREBF-1c A allele conferred increased risk of severe steatosis and nonalcoholic steatohepatitis; more-severe hepatic, muscle, and adipose tissue insulin resistance; and pancreatic β cell dysfunction. SREBF-1c A allele carriers also had an impaired oral fat tolerance with a postprandial accumulation of large triglyceride-rich lipoproteins and oxidized LDLs, lower HDL cholesterol and adiponectin concentrations, and cytokeratin-18 fragment elevation. CONCLUSION SREBF-1c polymorphism is associated with increased risk of developing NAFLD with more severe liver histology and derangement in glucose and lipoprotein metabolism, which contribute to the presentation and natural history of NAFLD.
Collapse
Affiliation(s)
- Giovanni Musso
- Gradenigo Hospital, Turin, Italy, and the Department of Internal Medicine, University of Turin, Turin, Italy
| | | | | | | | | |
Collapse
|
19
|
Musso G, Cassader M, Bo S, De Michieli F, Gambino R. Sterol regulatory element-binding factor 2 (SREBF-2) predicts 7-year NAFLD incidence and severity of liver disease and lipoprotein and glucose dysmetabolism. Diabetes 2013; 62:1109-20. [PMID: 23274901 PMCID: PMC3609558 DOI: 10.2337/db12-0858] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We prospectively assessed the impact of a sterol regulatory element-binding factor-2 (SREBF-2) polymorphism on the risk of developing nonalcoholic fatty liver disease (NAFLD) and on liver histology and lipoprotein and glucose metabolism in biopsy-proven NAFLD. In a population-based study, we followed 175 nonobese, nondiabetic participants without NAFLD or metabolic syndrome at baseline, characterized for the SREBF-2 rs133291 C/T polymorphism, dietary habits, physical activity, adipokines, C-reactive protein (CRP), and endothelial adhesion molecules. A comparable cohort of NAFLD patients underwent liver biopsy, an oral glucose tolerance test with minimal model analysis to yield glucose homeostasis parameters, and an oral fat tolerance test with measurement of plasma lipoproteins, adipokines, and cytokeratin-18 fragments. After 7 years, 27% of subjects developed NAFLD and 5% developed diabetes. SREBF-2 predicted incident NAFLD and diabetes and CRP and endothelial adhesion molecule changes. In biopsy-proven NAFLD patients, SREBF-2 predicted nonalcoholic steatohepatitis (odds ratio 2.92 [95% CI 2.08-4.18], P = 0.002) and the severity of tissue insulin resistance, β-cell dysfunction, and oral fat intolerance (characterized by higher postprandial lipemia, cholesterol enrichment of triglyceride-rich lipoproteins and oxidized LDLs, HDL cholesterol fall, adipokine imbalance, and postprandial apoptosis activation). An SREBF-2 polymorphism predisposes individuals to NAFLD and associated cardiometabolic abnormalities and affects liver histology and glucose and lipid metabolism in biopsy-proven NAFLD.
Collapse
|
20
|
Williams KH, Shackel NA, Gorrell MD, McLennan SV, Twigg SM. Diabetes and nonalcoholic Fatty liver disease: a pathogenic duo. Endocr Rev 2013; 34:84-129. [PMID: 23238855 DOI: 10.1210/er.2012-1009] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent data increasingly support a complex interplay between the metabolic condition diabetes mellitus and the pathologically defined nonalcoholic fatty liver disease (NAFLD). NAFLD predicts the development of type 2 diabetes and vice versa, and each condition may serve as a progression factor for the other. Although the association of diabetes and NAFLD is likely to be partly the result of a "common soil," it is also probable that diabetes interacts with NAFLD through specific pathogenic mechanisms. In particular, through interrelated metabolic pathways currently only partly understood, diabetes appears to accelerate the progression of NAFLD to nonalcoholic steatohepatitis, defined by the presence of necroinflammation, with varying degrees of liver fibrosis. In the research setting, obstacles that have made the identification of clinically significant NAFLD, and particularly nonalcoholic steatohepatitis, difficult are being addressed with the use of new imaging techniques combined with risk algorithms derived from peripheral blood profiling. These techniques are likely to be used in the diabetes population in the near future. This review examines the pathogenic links between NAFLD and diabetes by exploring the epidemiological evidence in humans and also through newer animal models. Emerging technology to help screen noninvasively for differing pathological forms of NAFLD and the potential role of preventive and therapeutic approaches for NAFLD in the setting of diabetes are also examined.
Collapse
Affiliation(s)
- K H Williams
- Sydney Medical School and the Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
21
|
Blackett PR, Sanghera DK. Genetic determinants of cardiometabolic risk: a proposed model for phenotype association and interaction. J Clin Lipidol 2013; 7:65-81. [PMID: 23351585 PMCID: PMC3559023 DOI: 10.1016/j.jacl.2012.04.079] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/16/2012] [Accepted: 04/16/2012] [Indexed: 12/15/2022]
Abstract
This review provides a translational and unifying summary of metabolic syndrome genetics and highlights evidence that genetic studies are starting to unravel and untangle origins of the complex and challenging cluster of disease phenotypes. The associated genes effectively express in the brain, liver, kidney, arterial endothelium, adipocytes, myocytes, and β cells. Progression of syndrome traits has been associated with ectopic lipid accumulation in the arterial wall, visceral adipocytes, myocytes, and liver. Thus, it follows that the genetics of dyslipidemia, obesity, and nonalcoholic fatty liver disease are central in triggering progression of the syndrome to overt expression of disease traits and have become a key focus of interest for early detection and for designing prevention and treatments. To support the "birds' eye view" approach, we provide a road-map depicting commonality and interrelationships between the traits and their genetic and environmental determinants based on known risk factors, metabolic pathways, pharmacologic targets, treatment responses, gene networks, pleiotropy, and association with circadian rhythm. Although only a small portion of the known heritability is accounted for and there is insufficient support for clinical application of gene-based prediction models, there is direction and encouraging progress in a rapidly moving field that is beginning to show clinical relevance.
Collapse
Affiliation(s)
- Piers R Blackett
- Department of Pediatrics, 940 NE 13St., University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Dharambir K Sanghera
- Department of Pediatrics, 940 NE 13St., University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
22
|
Musso G, Cassader M, De Michieli F, Rosina F, Orlandi F, Gambino R. Nonalcoholic steatohepatitis versus steatosis: adipose tissue insulin resistance and dysfunctional response to fat ingestion predict liver injury and altered glucose and lipoprotein metabolism. Hepatology 2012; 56:933-42. [PMID: 22684858 DOI: 10.1002/hep.25739] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 03/19/2012] [Indexed: 02/06/2023]
Abstract
UNLABELLED Nonalcoholic fatty liver disease (NAFLD) ranges from simple steatosis (SS) to nonalcoholic steatohepatitis (NASH). Though liver-related risk seems confined to NASH, it is currently unclear whether NASH has a higher risk of cardiovascular disease (CVD) and diabetes than SS as a result of the coexistence of obesity and other cardiometabolic confounders. Adipose tissue is an emerging modulator of liver disease in NAFLD and of cardiometabolic disease in the general population. We evaluated in SS and NASH (1) glucose homeostasis and cardiovascular risk profile and (2) the effect of adipose tissue dysfunction, assessed in fasting conditions and postprandially, on liver injury, glucose and lipoprotein metabolism, and markers of early atherosclerosis. Forty nonobese, nondiabetic, normolipidemic biopsy-proven NAFLD patients (20 with SS and 20 with NASH) and 40 healthy subjects, matched for overall/abdominal adiposity and metabolic syndrome, underwent an oral fat load test, with measurement of plasma triglyceride-rich lipoproteins, oxidized low-density lipoproteins, adipokines, and cytokeratin-18 fragments, and an oral glucose tolerance test with minimal model analysis to yield glucose homeostasis parameters. Circulating endothelial adhesion molecules were measured, and adipose tissue insulin resistance (adipose IR) index and visceral adiposity index were calculated. Despite similar fasting values, compared to SS, NASH showed a more atherogenic postprandial lipoprotein profile, an altered adipokine response (i.e., higher resistin increase and an adiponectin fall), and hepatocyte apoptosis activation after fat ingestion. Adipose IR index, endothelial adhesion molecules, and hepatic insulin resistance progressively increased across NAFLD stages. NASH, but not SS, showed an impaired pancreatic β-cell function. On multiple regression analysis, adipose IR index and postprandial adiponectin independently predicted liver histology and altered cardiometabolic parameters. CONCLUSION Adipose tissue dysfunction, including a maladaptive adipokine response to fat ingestion, modulates liver injury and cardiometabolic risk in NAFLD.
Collapse
|
23
|
Hernaez R. Genetic factors associated with the presence and progression of nonalcoholic fatty liver disease: a narrative review. GASTROENTEROLOGIA Y HEPATOLOGIA 2011; 35:32-41. [PMID: 22093607 DOI: 10.1016/j.gastrohep.2011.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/04/2011] [Indexed: 12/25/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world. Whereas insulin resistance and obesity are considered major risk factors for the development and progression of NAFLD, the genetic underpinnings are unclear. Before 2008, candidate gene studies based on prior knowledge of pathophysiology of fatty liver yielded conflicting results. In 2008, Romeo et al. published the first genome wide association study and reported the strongest genetic signal for the presence of fatty liver (PNPLA3, patatin-like phospholipase domain containing 3; rs738409). Since then, two additional genome wide scans were published and identified 9 additional genetic variants. Whereas these results shed light into the understanding of the genetics of NAFLD, most of associations have not been replicated in independent samples and, therefore, remain undetermined the significance of these findings. This review aims to summarize the understanding of genetic epidemiology of NAFLD and highlights the gaps in knowledge.
Collapse
Affiliation(s)
- Ruben Hernaez
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
24
|
|
25
|
Musso G, Cassader M, De Michieli F, Saba F, Bo S, Gambino R. Effect of lectin-like oxidized LDL receptor-1 polymorphism on liver disease, glucose homeostasis, and postprandial lipoprotein metabolism in nonalcoholic steatohepatitis. Am J Clin Nutr 2011; 94:1033-42. [PMID: 21865331 DOI: 10.3945/ajcn.111.015610] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) affects 3-5% of the general adult population and predisposes to cirrhosis, cardiovascular disease (CVD), and diabetes through unclear mechanisms. Lectin-like oxidized LDL receptor-1 (LOX-1) has been connected to CVD risk in the general population and to insulin resistance and hepatic fibrogenesis in experimental models. OBJECTIVE The objective was to assess the effect of the common functional LOX-1 IVS4-14 A→G polymorphism on liver disease, adipokines, oxidative stress, lipoprotein metabolism, and glucose homeostasis in NASH. DESIGN Forty nonobese, nondiabetic, normolipidemic biopsy-proven NASH patients and 40 age-, sex-, BMI-, and LOX-1 IVS4-14 A→G polymorphism--matched healthy control subjects underwent an oral-fat-load test (OFT), with measurement of plasma triglyceride-rich lipoprotein (TRLP) subfractions, oxidized LDL, total antioxidant status (TAS), adipokines (resistin and adiponectin), and cytokeratin-18 fragments (marker of hepatocyte apoptosis). The subjects also underwent an oral-glucose-tolerance test (OGTT), with minimal model analysis to yield variables of glucose homeostasis. RESULTS The LOX-1 polymorphism was independently associated with liver histology (G allele carriers had more severe liver disease); during the OFT, the G allele was associated with small TRLP accumulation, lower TAS, adipokine imbalance (higher resistin and lower adiponectin), and increased cytokeratin-18 fragments. The G allele was also independently associated with insulin resistance, impaired pancreatic β cell function, and incretin effect during the OGTT. CONCLUSION In NASH, the LOX-1 polymorphism is associated with liver disease severity and may predispose to CVD through modulation of postprandial small TRLPs and adipokine balance and to diabetes by affecting both insulin secretion and insulin sensitivity.
Collapse
|
26
|
Di Rosa M, Malaguarnera L. Genetic variants in candidate genes influencing NAFLD progression. J Mol Med (Berl) 2011; 90:105-18. [PMID: 21894552 DOI: 10.1007/s00109-011-0803-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a metabolic disorder including simple steatosis and nonalcoholic steatohepatitis (NASH). Advanced stages of NASH result ultimately in fibrosis, cirrhosis, and hepatocarcinoma. A diagnosis of NASH entails an increased risk of both liver-related and cardiovascular mortality as worsening of the metabolic syndrome. Because of its escalation, many investigations have been performed to elucidate the pathophysiologic origins of the disease progression. Human epidemiologic studies describing polymorphisms in a number of genes involved in metabolic dysfunctions have contributed to clarify the causes leading to the disease evolution. In this review, we attempt to outline critically the most recently identified genetic variants in NAFLD patients to identify possible risk factors promoting the progression of the disease. The evaluation of altered genotypes together with other clinical variables may facilitate the clinical management of these patients.
Collapse
Affiliation(s)
- Michelino Di Rosa
- Department of Biomedical Sciences, University of Catania, Via Androne, 83, 95124 Catania, Italy
| | | |
Collapse
|
27
|
Current world literature. Curr Opin Lipidol 2011; 22:308-10. [PMID: 21743305 DOI: 10.1097/mol.0b013e3283499d3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Pereira IVA, Stefano JT, Oliveira CPMS. Microsomal triglyceride transfer protein and nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2011; 5:245-251. [PMID: 21476919 DOI: 10.1586/egh.11.22] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease is currently one of the most common forms of liver disease, covering cases from simple steatosis without inflammation, to cases of steatohepatitis and fibrosis, and may lead to liver cirrhosis and hepatocellular carcinoma. The pathophysiology of nonalcoholic fatty liver disease is based on multiple events; changes in the secretion of lipoproteins can lead to steatosis. Liver lipid secretion is mediated by apoB100 and microsomal triglyceride transfer protein (MTP). The pharmacological suppression of MTP is suggested as a possible treatment for hyperlipidemia, although the upregulation of this protein can be a treatment for nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Isabel V A Pereira
- Department of Gastroenterology, University of Sao Paulo School of Medicine, Av. Dr. Enéas de Carvalho Aguiar n° 255, Instituto Central, # 9159, 05403-000 Sao Paulo, Brazil
| | | | | |
Collapse
|
29
|
Hooper AJ, Adams LA, Burnett JR. Genetic determinants of hepatic steatosis in man. J Lipid Res 2011; 52:593-617. [PMID: 21245030 DOI: 10.1194/jlr.r008896] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic steatosis is one of the most common liver disorders in the general population. The main cause of hepatic steatosis is nonalcoholic fatty liver disease (NAFLD), representing the hepatic component of the metabolic syndrome, which is characterized by type 2 diabetes, obesity, and dyslipidemia. Insulin resistance and excess adiposity are considered to play key roles in the pathogenesis of NAFLD. Although the risk factors for NAFLD are well established, the genetic basis of hepatic steatosis is largely unknown. Here we review recent progress on genomic variants and their association with hepatic steatosis and discuss the potential impact of these genetic studies on clinical practice. Identifying the genetic determinants of hepatic steatosis will lead to a better understanding of the pathogenesis and progression of NAFLD.
Collapse
Affiliation(s)
- Amanda J Hooper
- Department of Core Clinical Pathology and Biochemistry, Royal Perth Hospital, Perth, Australia
| | | | | |
Collapse
|