1
|
Saavedra LPJ, Raposo SR, Assakawa ALM, Lucredi NC, Peres MNC, Piovan S, Gonçalves GD, Moreira VM, Barbosa LF, Sousa D, Farias Dos Santos FC, Amaro A, Ferreira-Junior MD, Graceli JB, Matafome P, Comar JF, Gomes RM, Jiménez-Chillarón JC, Almeida DL, Mathias PCDF. Fenofibrate treatment during lactation prevents liver and adipose tissue associated metabolic dysfunction in a rat model of childhood obesity. Biomed Pharmacother 2025; 188:118166. [PMID: 40393278 DOI: 10.1016/j.biopha.2025.118166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
Childhood obesity and associated comorbidities in adulthood are of great concern worldwide. Evidence highlights the importance of lactation in later disease development. In this sense, obese children are at great risk of developing adult obesity, insulin resistance, type 2 diabetes, and cardiovascular disease at adulthood. PPARα activation during lactation promotes the expression of key enzymes involved in lipid oxidation, and it was associated with reduced adiposity in children. Therefore, we hypothesized that an animal model of childhood obesity, small litter (SL), would lead to the development of obesity and metabolic dysfunction in adulthood, which could be prevented by postnatal PPARα agonism. Wistar dams had their litter reduced, leading to postnatal overfeeding and obesity early in life. SL male pups were treated with fenofibrate, an PPARα agonist, during lactation, from postnatal day (PND) 1 until weaning (PND21), to verify whether PPARα activation prevents the developmental programming at adulthood (PND120). Childhood obesity induced by postnatal overfeeding leads to decreased markers for oxidative metabolism during infancy, leading to increased visceral adiposity and oxidative stress, insulin resistance, hepatic microvesicular steatosis, and increased fibroblast growth factor 21 (Fgf21) expression, followed by decreased brown adipose tissue (BAT) sympathetic nerve activity and decreased Fgfr1 hypothalamic expression in adulthood. Agonist-induced PPARα activation during lactation mitigated the development of aforementioned alterations in adulthood. Postnatal fenofibrate treatment prevents the developmental programming of visceral obesity, liver-associated metabolic dysfunction and BAT autonomic sympathetic hypoactivity in an animal model of childhood obesity.
Collapse
Affiliation(s)
| | - Scarlett Rodrigues Raposo
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | - Ana Letícia Manso Assakawa
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | | | | | - Silvano Piovan
- Department of Biochemistry, State University of West Paraná, Cascavel, PR, Brazil
| | - Gessica Dutra Gonçalves
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | - Veridiana Mota Moreira
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | - Letícia Ferreira Barbosa
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | - Diana Sousa
- Institute of Physiology and Institute of Clinical and Biomedical Research, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal Coimbra Health School, ESTeSC, Instituto Politécnico de Coimbra, Coimbra, Portugal Clinical Academic Center of Coimbra, Coimbra, Portugal; Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal; CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra. Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine. Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | | | - Andreia Amaro
- Institute of Physiology and Institute of Clinical and Biomedical Research, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal Coimbra Health School, ESTeSC, Instituto Politécnico de Coimbra, Coimbra, Portugal Clinical Academic Center of Coimbra, Coimbra, Portugal; Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal; CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra. Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine. Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | | | - Jones Bernardes Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil; Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Paulo Matafome
- Institute of Physiology and Institute of Clinical and Biomedical Research, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal Coimbra Health School, ESTeSC, Instituto Politécnico de Coimbra, Coimbra, Portugal Clinical Academic Center of Coimbra, Coimbra, Portugal
| | | | - Rodrigo Mello Gomes
- Laboratory of Endocrine Physiology and MetabolismDepartment of Physiological Sciences, Federal University of Goiás, Goiânia, GO, Brazil; Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil; Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Josep C Jiménez-Chillarón
- Institut de Recerca Sant Joan de Déu (IRSJD), Endocrinology, Esplugues, Spain; Universitat de Barcelona-Facultat Medicina-Bellvitge, L'Hospitalet, Spain
| | | | | |
Collapse
|
2
|
Tain YL, Lin YJ, Hsu CN. Breastfeeding and Future Cardiovascular, Kidney, and Metabolic Health-A Narrative Review. Nutrients 2025; 17:995. [PMID: 40290039 PMCID: PMC11944316 DOI: 10.3390/nu17060995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/10/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
The benefits of breastfeeding for both mother and infant are generally recognized; however, the connections between breast milk, lactation, and long-term offspring health and disease remain incompletely understood. Cardiovascular-kidney-metabolic syndrome (CKMS) has become a major global public health challenge. Insufficient breast milk supply, combined with various early-life environmental factors, markedly increases the future risk of CKMS, as highlighted by the developmental origins of health and disease (DOHaD) concept. Given its richness in nutrients and bioactive components essential for infant health, this review focuses on reprogramming strategies involving breast milk to improve offspring's cardiovascular, kidney, and metabolic health. It also highlights recent experimental advances in understanding the mechanisms driving CKMS programming. Cumulatively, the evidence suggests that lactational impairment heightens the risk of CKMS development. In contrast, early interventions during the lactation period focused on animal models that leverage breast milk components in response to early-life cues show potential in improving cardiovascular, kidney, and metabolic outcomes-an area warranting further investigation and clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Ying-Jui Lin
- Division of Critical Care, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Division of Cardiology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Early Childhood Care and Education, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Costa de Almeida T, Sabino YNV, Brasiel PGDA, Rocha BMDO, de Cássia Ávila Alpino G, Rocha VN, Dias VC, Diniz CG, Paiva AD, Silva VLD, Dutra Medeiros J, Potente Dutra Luquetti SC, Barbosa Ferreira Machado A. Maternal kefir intake during lactation impacts the breast milk and gut microbiota of the Wistar rat's offspring. Int J Food Sci Nutr 2025; 76:179-193. [PMID: 39895284 DOI: 10.1080/09637486.2025.2461142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Environmental factors can play fundamental role in health in childhood and adulthood during critical developmental periods like lactation. The maternal intake of probiotics like kefir during lactation could benefit newborns' intestinal health. This study aimed to evaluate the effects of maternal kefir intake during lactation on bacterial breast milk composition and the gut microbiota of offspring Wistar male rats at weaning. Lactating Wistar rats and their pups were divided into four groups based on litter size and maternal kefir intake. Sequencing of the 16S rRNA gene in breast milk revealed the predominance of the Proteobacteria, Firmicutes, and Actinobacteriota phyla. Offspring gut microbiota exhibited clustering tendencies in kefir groups with varying genus abundance. Additionally, maternal kefir intake led to increased levels of butyrate acid in offspring faeces (> +30%, p > 0.05). These findings show that the lactation period could be a window of opportunity to program intestinal health through microbiota modulation.
Collapse
Affiliation(s)
- Thaís Costa de Almeida
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Yasmin Neves Vieira Sabino
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | - Beatriz Macedo de Oliveira Rocha
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | - Vinícius Novaes Rocha
- Department of Veterinary Medicine, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Vanessa Cordeiro Dias
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Cláudio Galuppo Diniz
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Aline Dias Paiva
- Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Vânia Lúcia da Silva
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
4
|
Tain YL, Lin YJ, Hsu CN. Animal Models for Studying Developmental Origins of Cardiovascular-Kidney-Metabolic Syndrome. Biomedicines 2025; 13:452. [PMID: 40002865 PMCID: PMC11853432 DOI: 10.3390/biomedicines13020452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiovascular-kidney-metabolic syndrome (CKMS) has become a significant global health challenge. Since CKMS often originates early in life, as outlined by the developmental origins of health and disease (DOHaD) concept, prevention is a more effective strategy than treatment. Various animal models, classified by environmental exposures or mechanisms, are used to explore the developmental origins of CKMS. However, no single model can fully replicate all aspects of CKMS or its clinical stages, limiting the advancement of preventive and therapeutic strategies. This review aims to assist researchers by comparing the strengths and limitations of common animal models used in CKMS programming studies and highlighting key considerations for selecting suitable models.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Ying-Jui Lin
- Division of Critical Care, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Division of Cardiology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Early Childhood Care and Education, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Depatrtment of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| |
Collapse
|
5
|
Vieira AKG, Bernardo AF, Neves FA, Soares VM, Guedes RM, Soares PN, Lisboa PC, Cortez E, Moura EG, da Silva BG, Garcia-Souza EP, Moura AS. Impact of early postnatal overnutrition on cardiac mitochondrial dysfunction in adult mice with ischemia/reperfusion. Nutr Metab Cardiovasc Dis 2025; 35:103737. [PMID: 39433457 DOI: 10.1016/j.numecd.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND AND AIMS Nutritional imbalance at the beginning of life, a critical window period, leads to the development of obesity, overweight, dyslipidemia, diabetes, and cardiovascular disease in adulthood. In this study, the effects and associations of overnutrition during lactation on energy metabolism and oxidative stress in cardiomyocytes of adult male Swiss mice were examined. METHODS AND RESULTS Animals were divided into two groups (control and overfed) subjected to baseline and ischemia/reperfusion conditions, forming four groups: control baseline (CBL), control ischemia/reperfusion (CIR), overfed baseline (OBL), and overfed ischemia/reperfusion (OIR). The hearts were analyzed for hemodynamics using the Langendorff technique, mitochondrial energy metabolism using the Oroboros apparatus, ATP production, oxidative stress, and SIRT1, pSTAT3 and STAT3 protein content by Western blotting. Hemodynamic abnormalities in the cardiovascular system were associated with mitochondrial dysfunction, as demonstrated by impaired carbohydrate and fatty acid oxidation capacity, decreased mitochondrial coupling in the OG, and reduced ATP production in the OIR group. Alteration in pSTAT3 and SIRT1 proteins expression in overfed mice reinforce energy metabolism impairment. Lipid and/or protein degradation is altered in the heart of OG, suggesting increased oxidative stress. CONCLUSION Overnutrition during lactation associated with heart ischemia leads to molecular cardiac alterations in STAT3 and SIRT1 proteins, compromising energy metabolism via reduced mitochondrial oxidation capacity, ATP production and increased lipid peroxidation.
Collapse
Affiliation(s)
- Anatalia K G Vieira
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Amélia F Bernardo
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana A Neves
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian M Soares
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberta M Guedes
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia N Soares
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia C Lisboa
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erika Cortez
- Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto G Moura
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna G da Silva
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erica P Garcia-Souza
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anibal S Moura
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Nikitchenko YV, Klochkov VK, Kavok NS, Karpenko NA, Yefimova SL, Semynozhenko VP, Nikitchenko IV, Bozhkov AI. Geroprotective effects of GdVO 4:Eu 3 + nanoparticles, metformin and calorie restriction in male rats with accelerated aging induced by overnutrition in early postnatal ontogenesis. Biogerontology 2024; 26:14. [PMID: 39585394 DOI: 10.1007/s10522-024-10156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024]
Abstract
GdVO4:Eu3+ nanoparticles (OVNPs) have previously been shown to exhibit anti-aging effects in old rats.The accelerated aging model (overnutrition in early postnatal ontogenesis (POF)) was used to confirm the effect of OVNPs as a potential geroprotector. A comparative study of the effect of OVNPs, calorierestriction (CR) and CR-mimetic-metformin was carried out using a number of criteria: survival, prooxidant-antioxidant balance in the liver and blood, physiological parameters of male Wistar rats with accelerated aging. It was found that the survival of rats with POF was lower than that of control animals.It was found that the rate of superoxide radical formation and the content of lipid hydroperoxides in the mitochondria and microsomes of the liver and blood serum of rats with POF were higher, and the activities of glutathione peroxidases and the GSH content were significantly lower than in the control animals.It was also found that POF leads to perturbation of physiological parameters (body weight, liver weight, liver mass coefficient, body temperature and blood thyroxine concentration) characterizing the quality of life. Long-term use of OVNPs, CR or metformin in rats with accelerated aging normalized the imbalance of the prooxidant-antioxidant system, improved the physiological parameters, and increased the survival of these experimental animals. Moreover, the increase in survival was most pronounced with the use of CR and OVNPs. Considering our results andthe inadmissibility of long-term use of CR, it should be concluded that GdVO4:Eu3+ nanoparticles are promising for the development of agents that slow down the accelerated aging of an organism.
Collapse
Affiliation(s)
- Yuri V Nikitchenko
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
| | - Vladimir K Klochkov
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
| | - Nataliya S Kavok
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine.
| | - Nina A Karpenko
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
| | - Svetlana L Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
| | - Vladimir P Semynozhenko
- SSI, Institute for Single Crystal, National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
| | - Irina V Nikitchenko
- Karazin Kharkiv National University, Svobody Square, 4, Kharkiv, 61022, Ukraine
| | - Anatoly I Bozhkov
- Karazin Kharkiv National University, Svobody Square, 4, Kharkiv, 61022, Ukraine
| |
Collapse
|
7
|
Guimarães AC, de Moura EG, Silva SG, Lopes BP, Bertasso IM, Pietrobon CB, Quitete FT, de Oliveira Malafaia T, Souza ÉPG, Lisboa PC, de Oliveira E. Citrus aurantium L. and synephrine improve brown adipose tissue function in adolescent mice programmed by early postnatal overfeeding. Front Nutr 2024; 10:1278121. [PMID: 38274208 PMCID: PMC10809993 DOI: 10.3389/fnut.2023.1278121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction and aims Obesity is a multifactorial condition with high health risk, associated with important chronic disorders such as diabetes, dyslipidemia, and cardiovascular dysfunction. Citrus aurantium L. (C. aurantium) is a medicinal plant, and its active component, synephrine, a β-3 adrenergic agonist, can be used for weight loss. We investigated the effects of C. aurantium and synephrine in obese adolescent mice programmed by early postnatal overfeeding. Methods Three days after birth, male Swiss mice were divided into a small litter (SL) group (3 pups) and a normal litter (NL) group (9 pups). At 30 days old, SL and NL mice were treated with C. aurantium standardized to 6% synephrine, C. aurantium with 30% synephrine, isolated synephrine, or vehicle for 19 days. Results The SL group had a higher body weight than the NL group. Heart rate and blood pressure were not elevated. The SL group had hyperleptinemia and central obesity that were normalized by C. aurantium and synephrine. In brown adipose tissue, the SL group showed a higher lipid droplet sectional area, less nuclei, a reduction in thermogenesis markers related to thermogenesis (UCP-1, PRDM16, PGC-1α and PPARg), and mitochondrial disfunction. C. aurantium and synephrine treatment normalized these parameters. Conclusion Our data indicates that the treatment with C. aurantium and synephrine could be a promising alternative for the control of some obesity dysfunction, such as improvement of brown adipose tissue dysfunction and leptinemia.
Collapse
Affiliation(s)
- Andressa Cardoso Guimarães
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephanie Giannini Silva
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Pereira Lopes
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Bruna Pietrobon
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Torres Quitete
- Laboratory for Studies of Interactions Between Nutrition and Genetics, Department of Basic and Experimental Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tayanne de Oliveira Malafaia
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Érica Patrícia Garcia Souza
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elaine de Oliveira
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
de Souza CF, Stopa LRS, Martins AB, Wunderlich ALM, Lopes GM, de Fatima Silva F, Komino ACM, Zaia DAM, Zaia CTBV, Lima FB, Uchoa ET. Glucocorticoids contribute to metabolic and liver impairments induced by lactation overnutrition in male adult rats. Front Physiol 2023; 14:1161582. [PMID: 37234421 PMCID: PMC10206267 DOI: 10.3389/fphys.2023.1161582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction: Lactation overnutrition is a programming agent of energy metabolism, and litter size reduction leads to the early development of obesity, which persists until adulthood. Liver metabolism is disrupted by obesity, and increased levels of circulating glucocorticoids are pointed as a possible mediator for the obesity development, since bilateral adrenalectomy (ADX) can reduce obesity in different models of obesity. Methods: This study aimed to evaluate the effects of glucocorticoids on metabolic changes and liver lipogenesis and insulin pathway induced by lactation overnutrition. For this, on the postnatal day 3 (PND), 3 pups (small litter-SL) or 10 pups (normal litter-NL) were kept with each dam. On PND 60, male Wistar rats underwent bilateral adrenalectomy (ADX) or fictitious surgery (sham), and half of ADX animals received corticosterone (CORT- 25 mg/L) diluted in the drinking fluid. On PND 74, the animals were euthanized by decapitation for trunk blood collection, and liver dissection and storage. Results and Discussion: SL rats presented increased corticosterone, free fatty acids, total and LDL-cholesterol plasma levels, without changes in triglycerides (TG) and HDL-cholesterol. The SL group also showed increased content of liver TG, and expression of fatty acid synthase (FASN), but decreased expression of PI3Kp110 in the liver, compared to NL rats. In the SL group, the ADX decreased plasma levels of corticosterone, FFA, TG and HDL cholesterol, liver TG, and liver expression of FASN, and IRS2, compared to sham animals. In SL animals, CORT treatment increased plasma levels of TG and HDL cholesterol, liver TG, and expression of FASN, IRS1, and IRS2, compared with the ADX group. In summary, the ADX attenuated plasma and liver changes observed after lactation overnutrition, and CORT treatment could reverse most ADX-induced effects. Thus, increased circulating glucocorticoids are likely to play a pivotal role in liver and plasma impairments induced by lactation overnutrition in male rats.
Collapse
Affiliation(s)
- Camila F. de Souza
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Larissa Rugila S. Stopa
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Andressa B. Martins
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Ana Luiza M. Wunderlich
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
| | | | | | | | - Dimas A. M. Zaia
- Department of Chemistry, State University of Londrina, Londrina, Brazil
| | - Cassia Thaïs B. V. Zaia
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Fabio Bessa Lima
- Department of Physiology and Biophysics, University of Sao Paulo, Sao Paulo, Brazil
| | - Ernane Torres Uchoa
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
9
|
Gregg B, Ellsworth L, Pavela G, Shah K, Berger PK, Isganaitis E, VanOmen S, Demerath EW, Fields DA. Bioactive compounds in mothers milk affecting offspring outcomes: A narrative review. Pediatr Obes 2022; 17:e12892. [PMID: 35060344 PMCID: PMC9177518 DOI: 10.1111/ijpo.12892] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/07/2021] [Accepted: 01/03/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Compared to the exhaustive study of transgenerational programming of obesity and diabetes through exposures in the prenatal period, postnatal programming mechanisms are understudied, including the potential role of breast milk composition linking maternal metabolic status (body mass index and diabetes) and offspring growth, metabolic health and future disease risk. METHODS This narrative review will principally focus on four emergent bioactive compounds [microRNA's (miRNA), lipokines/signalling lipids, small molecules/metabolites and fructose] that, until recently were not known to exist in breast milk. The objective of this narrative review is to integrate evidence across multiple fields of study that demonstrate the importance of these compositional elements of breast milk during lactation and the subsequent effect of breast milk components on the health of the infant. RESULTS Current knowledge on the presence of miRNA's, lipokines/signalling lipids, small molecules/metabolites and fructose in breast milk and their associations with infant outcomes is compelling, but far from resolved. Two themes emerge: (1) maternal metabolic phenotypes are associated with these bioactives and (2) though existing in milk at low concentrations, they are also associated with offspring growth and body composition. CONCLUSION Breast milk research is gaining momentum though we must remain focused on understanding how non-nutritive bioactive components are affected by the maternal phenotype, how they subsequently impact infant outcomes. Though early, there is evidence to suggest fructose is associated with fat mass in the 1st months of life whereas 12,13 diHOME (brown fat activator) and betaine are negatively associated with early adiposity and growth.
Collapse
Affiliation(s)
- Brigid Gregg
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Michigan, Ann Arbor, MI, USA
| | - Lindsay Ellsworth
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Gregory Pavela
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kruti Shah
- Department of Pediatrics, Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Paige K. Berger
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Elvira Isganaitis
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA (USA)
| | - Sheri VanOmen
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ellen W. Demerath
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - David A. Fields
- Department of Pediatrics, Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Correspondence to: Address: University of Oklahoma Health Sciences Center, 1200 Children's Avenue Suite 4500, Oklahoma City, OK73104, USA
| |
Collapse
|
10
|
de Souza CF, Stopa LRS, Martins AB, Wunderlich ALM, Lopes GM, Zaia DAM, Zaia CTBV, de Andrade FG, Leite CM, Uchoa ET. Lactation overnutrition-induced obesity impairs effects of exogenous corticosterone on energy homeostasis and hypothalamic-pituitary-adrenal axis in male rats. Life Sci 2022; 304:120721. [PMID: 35716735 DOI: 10.1016/j.lfs.2022.120721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
AIMS Litter size reduction on the first days of life results in increased body weight and adiposity, with higher levels of circulating glucocorticoids. Obese rodents are more sensitive to the anabolic effects of glucocorticoids and less responsive to glucocorticoids feedback on hypothalamic-pituitary-adrenal (HPA) axis. This study aimed to evaluate effects of the treatment with corticosterone on metabolic responses and HPA axis in adult male rats reared in small litters. MAIN METHODS From postnatal day (PND) 60 to 88, adult male rats of normal (NL- 10 pups/dam) and small (SL- 3 pups/dam) litters received oral treatment with Corticosterone (CORT-15 mg/L) in the drinking water or no treatment, composing the four experimental groups (NL-water; NL-CORT; SL-water and SL-CORT), for the evaluation of energy homeostasis and HPA axis. KEY FINDINGS Male rats of SL-water group presented on PND88: glucose intolerance, higher adiposity, plasma triglycerides, free fatty acids, total and low-density lipoprotein (LDL) cholesterol and corticosterone. SL-water animals showed increased mRNA of corticotrophin-releasing hormone (CRH) in the hypothalamic paraventricular nucleus (PVN) and proopiomelanocortin (POMC) in the pituitary, with decreased mRNA expression of PVN mineralocorticoid receptor. NL-CORT animals presented glucose intolerance, increased body weight, food intake, total and LDL cholesterol. Glucocorticoid treatment reduced corticosterone levels and adrenal cortex thickness in NL group, associated with increased mRNA of PVN CRH and pituitary POMC, without effects on SL animals. SIGNIFICANCE Lactation overnutrition promotes hyperreactivity of HPA axis and reduces the responsiveness to glucocorticoids effects on energy balance and negative feedback of HPA axis in adult male rats.
Collapse
Affiliation(s)
- Camila F de Souza
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Larissa Rugila S Stopa
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Andressa B Martins
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Ana Luiza M Wunderlich
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Dimas A M Zaia
- Department of Chemistry, State University of Londrina, Londrina, PR, Brazil
| | - Cassia Thaïs B V Zaia
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | | | - Ernane Torres Uchoa
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
11
|
Litter Size Reduction as a Model of Overfeeding during Lactation and Its Consequences for the Development of Metabolic Diseases in the Offspring. Nutrients 2022; 14:nu14102045. [PMID: 35631188 PMCID: PMC9145223 DOI: 10.3390/nu14102045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Overfeeding during lactation has a deleterious impact on the baby’s health throughout life. In humans, early overnutrition has been associated with higher susceptibility to obesity and metabolic disorders in childhood and adulthood. In rodents, using a rodent litter size reduction model (small litter) to mimic early overfeeding, the same metabolic profile has been described. Therefore, the rodent small litter model is an efficient tool to investigate the adaptive mechanisms involved in obesogenesis. Besides central and metabolic dysfunctions, studies have pointed to the contribution of the endocrine system to the small litter phenotype. Hormones, especially leptin, insulin, and adrenal hormones, have been associated with satiety, glucose homeostasis, and adipogenesis, while hypothyroidism impairs energy metabolism, favoring obesity. Behavioral modifications, hepatic metabolism changes, and reproductive dysfunctions have also been reported. In this review, we update these findings, highlighting the interaction of early nutrition and the adaptive features of the endocrine system. We also report the sex-related differences and epigenetic mechanisms. This model highlights the intense plasticity during lactation triggering many adaptive responses, which are the basis of the developmental origins of health and disease (DOHaD) concept. Our review demonstrates the complexity of the adaptive mechanisms involved in the obesity phenotype promoted by early overnutrition, reinforcing the necessity of adequate nutritional habits during lactation.
Collapse
|
12
|
Guiomar de Almeida Brasiel P, Cristina Potente Dutra Luquetti S, Dutra Medeiros J, Otavio do Amaral Corrêa J, Barbosa Ferreira Machado A, Paula Boroni Moreira A, Novaes Rocha V, Teodoro de Souza C, do Carmo Gouveia Peluzio M. Kefir modulates gut microbiota and reduces DMH-associated colorectal cancer via regulation of intestinal inflammation in adulthood offsprings programmed by neonatal overfeeding. Food Res Int 2022; 152:110708. [PMID: 35181109 DOI: 10.1016/j.foodres.2021.110708] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022]
Abstract
Obesity is associated with chronic inflammation, intestinal dysbiosis, and colorectal cancer risk. The anti-cancer effects of kefir are highlighted. Here, lactating Wistar rats were divided into: Normal litter (NL); Kefir normal litter (KNL); Small litter (SL); Kefir small litter (KSL). The NL and SL groups received 1 mL of water/day; KNL and KSL received kefir milk daily (108 CFU/mL) during lactation. After weaning, the pups continued to receive the same treatments until 60 days. At 67 days old, colorectal carcinogenesis was induced through intraperitoneal injection of 1,2-dimethylhydrazine. At 240 days, visceral adipose tissue was higher in SL compared to NL, KNL, and KSL. Kefir intake was found to suppress the number of tumors in both KNL and KSL groups (-100% and -71.43%; p < 0.01, respectively). IL-1β, IL-6, TNF-α, and NO levels in the colon were higher in the NL and SL compared to the KNL and KSL. The gut microbiota in cecal samples of SL was enriched with Alloprevotella, Acinetobacter, and Bacteroides. In contrast, the cecal contents of KSL and KNL were higher Romboutsia. Thus, neonatal overfeeding leads to greater adiposity, inflammation and number of colon tumors in adulthood. Early-life nutrition based on kefir reverted these alterations.
Collapse
Affiliation(s)
| | | | - Julliane Dutra Medeiros
- Faculty of Biological and Agricultural Sciences, Mato Grosso State University, Alta Floresta, Brazil
| | | | | | | | - Vinícius Novaes Rocha
- Department of Veterinary Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Claudio Teodoro de Souza
- Department of Clinical Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | |
Collapse
|
13
|
Oliveira Neto J, Boechat SK, Romão JS, Kuhnert LB, Pazos-Moura C, Oliveira KJ. Cinnamaldehyde treatment during adolescence improves white and brown adipose tissue metabolism in a male rat model of early obesity. Food Funct 2022; 13:3405-3418. [DOI: 10.1039/d1fo03871k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Early obesity is a serious health problem and nutritional therapeutic strategies during young age may improve health outcomes throughout life. Cinnamaldehyde, major component of cinnamon, exhibits several beneficial metabolic effects....
Collapse
|
14
|
Hafner H, Mulcahy MC, Carlson Z, Hartley P, Sun H, Westerhoff M, Qi N, Bridges D, Gregg B. Lactational High Fat Diet in Mice Causes Insulin Resistance and NAFLD in Male Offspring Which Is Partially Rescued by Maternal Metformin Treatment. Front Nutr 2021; 8:759690. [PMID: 34977118 PMCID: PMC8714922 DOI: 10.3389/fnut.2021.759690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023] Open
Abstract
Maternal metabolic disease and diet during pregnancy and lactation have important implications for the programming of offspring metabolic disease. In addition, high-fat diets during pregnancy and lactation can predispose the offspring to non-alcoholic fatty liver disease (NAFLD), a rising health threat in the U.S. We developed a model of maternal high-fat feeding exclusively during the lactation period. We previously showed that offspring from dams, given lactational high-fat diet (HFD), are predisposed to obesity, glucose intolerance, and inflammation. In separate experiments, we also showed that lactational metformin treatment can decrease offspring metabolic risk. The purpose of these studies was to understand the programming implications of lactational HFD on offspring metabolic liver disease risk. Dams were fed a 60% lard-based HFD from the day of delivery through the 21-day lactation period. A subset of dams was also given metformin as a co-treatment. Starting at weaning, the offspring were fed normal fat diet until 3 months of age; at which point, a subset was challenged with an additional HFD stressor. Lactational HFD led male offspring to develop hepatic insulin resistance. The post-weaning HFD challenge led male offspring to progress to NAFLD with more severe outcomes in the lactational HFD-challenged offspring. Co-administration of metformin to lactating dams on HFD partially rescued the offspring liver metabolic defects in males. Lactational HFD or post-weaning HFD had no impact on female offspring who maintained a normal insulin sensitivity and liver phenotype. These findings indicate that HFD, during the lactation period, programs the adult offspring to NAFLD risk in a sexually dimorphic manner. In addition, early life intervention with metformin via maternal exposure may prevent some of the liver programming caused by maternal HFD.
Collapse
Affiliation(s)
- Hannah Hafner
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, United States
| | - Molly C. Mulcahy
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Zach Carlson
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, United States
| | - Phillip Hartley
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Haijing Sun
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, United States
| | - Maria Westerhoff
- Department of Pathology, Michigan Medicine, Ann Arbor, MI, United States
| | - Nathan Qi
- Department of Molecular and Integrative Physiology, Michigan Medicine, Ann Arbor, MI, United States
| | - Dave Bridges
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Brigid Gregg
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, United States
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Lisboa PC, Miranda RA, Souza LL, Moura EG. Can breastfeeding affect the rest of our life? Neuropharmacology 2021; 200:108821. [PMID: 34610290 DOI: 10.1016/j.neuropharm.2021.108821] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
The breastfeeding period is one of the most important critical windows in our development, since milk, our first food after birth, contains several compounds, such as macronutrients, micronutrients, antibodies, growth factors and hormones that benefit human health. Indeed, nutritional, and environmental alterations during lactation, change the composition of breast milk and induce alterations in the child's development, such as obesity, leading to the metabolic dysfunctions, cardiovascular diseases and neurobehavioral disorders. This review is based on experimental animal models, most of them in rodents, and summarizes the impact of an adequate breast milk supply in view of the developmental origins of health and disease (DOHaD) concept, which has been proposed by researchers in the areas of epidemiology and basic science from around the world. Here, experimental advances in understanding the programming during breastfeeding were compiled with the purpose of generating knowledge about the genesis of chronic noncommunicable diseases and to guide the development of public policies to deal with and prevent the problems arising from this phenomenon. This review article is part of the special issue on "Cross talk between periphery and brain".
Collapse
Affiliation(s)
- Patricia C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luana L Souza
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Egberto G Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
Radzki RP, Bienko M, Wolski D, Ostapiuk M, Polak P, Manastyrska M, Kimicka A, Wolska J. Programming Effect of the Parental Obesity on the Skeletal System of Offspring at Weaning Day. Animals (Basel) 2021; 11:ani11020424. [PMID: 33562167 PMCID: PMC7914703 DOI: 10.3390/ani11020424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Overweight and obesity can cause many diseases, and several studies indicate a close relationship between the obesity of parents and the health of their offspring. Our aim was to investigate whether there is a programming influence of parental obesity on the skeletal system in weaned female and male offspring rats. In undertaking this, analysis of bone material was carried out using isolated tibia, and densitometry (DXA), peripheral (pQCT) and micro (µCT) computed tomography were performed. Mechanical tests and blood serum biochemistry were also carried out. Our work showed a significant programming influence of parental obesity on neonatal skeletal development. The tibiae isolated from offspring originating from obese parents were characterized by more intense mineralization and higher fracture resistance. However, numerous studies demonstrate the destructive effect of obesity on the skeletal system. Our research and the available literature suggest the existence of a “fat threshold”, the exceeding of which changes of the osteotropic effect of adipose tissue to become unfavorable. Therefore, there is a need for further research to determine the time-dependent metabolic relationship between adipose tissue and bone in both animals and humans. Abstract Our study aimed to verify the hypothesis of the existence of a programming effect of parental obesity on the growth, development and mineralization of the skeletal system in female and male rat offspring on the day of weaning. The study began with the induction of obesity in female and male rats of the parental generation, using a high-energy diet (group F). Females and males of the control group received the standard diet (group S). After 90 days of dietary-induced obesity, the diet in group F was changed into the standard. Rats from groups F and S were mated to obtain offspring which stayed with their mothers until 21 days of age. Tibia was tested using dual-energy X-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT), micro-computed tomography (µCT) and mechanical strength using the three-point bending test. Biochemical analysis of blood serum bone metabolism markers was performed. DXA analysis showed higher tibia bone mineral content (BMC) and area. pQCT measurements of cortical and trabecular tissue documented the increase of the volumetric bone mineral density and BMC of both bone compartments in offspring from the F group, while µCT of the trabecular tissue showed an increase in trabecular thickness and a decrease of its separation. Parental obesity, hence, exerts a programming influence on the development of the skeletal system of the offspring on the day of the weaning, which was reflected in the intensification of mineralization and increased bone strength.
Collapse
Affiliation(s)
- Radoslaw Piotr Radzki
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (D.W.); (M.M.); (A.K.)
- Correspondence: (R.P.R.); (M.B.); Tel.: +48-81-445-60-69 (R.P.R.); +48-81-445-69-30 (M.B.)
| | - Marek Bienko
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (D.W.); (M.M.); (A.K.)
- Correspondence: (R.P.R.); (M.B.); Tel.: +48-81-445-60-69 (R.P.R.); +48-81-445-69-30 (M.B.)
| | - Dariusz Wolski
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (D.W.); (M.M.); (A.K.)
| | - Monika Ostapiuk
- Department of Materials Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
| | - Pawel Polak
- St Johns’ Oncology Center in Lublin (COZL) Trauma, Orthopaedic Surgery Department, ul. Jaczewskiego 7, 20-090 Lublin, Poland;
| | - Malgorzata Manastyrska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (D.W.); (M.M.); (A.K.)
| | - Aleksandra Kimicka
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland; (D.W.); (M.M.); (A.K.)
| | - Joanna Wolska
- Department of Oncology, Chair of Oncology and Environmental Health, Faculty of Health Sciences, Medical University of Lublin, 20-090 Lublin, Poland;
| |
Collapse
|
17
|
Ribas-Aulinas F, Ribo S, Parra-Vargas M, Fernández-Pérez A, Cebrià J, Guardiola-Perello M, Ramon-Krauel M, Lerin C, Diaz R, Kalko SG, Vallejo M, Díez-Noguera A, Cambras T, Jimenez-Chillaron JC. Neonatal overfeeding during lactation rapidly and permanently misaligns the hepatic circadian rhythm and programmes adult NAFLD. Mol Metab 2021; 45:101162. [PMID: 33422644 PMCID: PMC7851182 DOI: 10.1016/j.molmet.2021.101162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 01/20/2023] Open
Abstract
Childhood obesity is a strong risk factor for adult obesity, type 2 diabetes, and cardiovascular disease. The mechanisms that link early adiposity with late-onset chronic diseases are poorly characterised. We developed a mouse model of early adiposity through litter size reduction. Mice reared in small litters (SLs) developed obesity, insulin resistance, and hepatic steatosis during adulthood. The liver played a major role in the development of the disease. OBJECTIVE To gain insight into the molecular mechanisms that link early development and childhood obesity with adult hepatic steatosis and insulin resistance. METHODS We analysed the hepatic transcriptome (Affymetrix) of control and SL mice to uncover potential pathways involved in the long-term programming of disease in our model. RESULTS The circadian rhythm was the most significantly deregulated Gene Ontology term in the liver of adult SL mice. Several core clock genes, such as period 1-3 and cryptochrome 1-2, were altered in two-week-old SL mice and remained altered throughout their life course until they reached 4-6 months of age. Defective circadian rhythm was restricted to the periphery since the expression of clock genes in the hypothalamus, the central pacemaker, was normal. The period-cryptochrome genes were primarily entrained by dietary signals. Hence, restricting food availability during the light cycle only uncoupled the central rhythm from the peripheral and completely normalised hepatic triglyceride content in adult SL mice. This effect was accompanied by better re-alignment of the hepatic period genes, suggesting that they might have played a causal role in mediating hepatic steatosis in the adult SL mice. Functional downregulation of Per2 in hepatocytes in vitro confirmed that the period genes regulated lipid-related genes in part through peroxisome proliferator-activated receptor alpha (Ppara). CONCLUSIONS The hepatic circadian rhythm matures during early development, from birth to postnatal day 30. Hence, nutritional challenges during early life may misalign the hepatic circadian rhythm and secondarily lead to metabolic derangements. Specific time-restricted feeding interventions improve metabolic health in the context of childhood obesity by partially re-aligning the peripheral circadian rhythm.
Collapse
Affiliation(s)
- Francesc Ribas-Aulinas
- Institut de Recerca Sant Joan de Déu (Saint John of God Children's Hospital Barcelona), Endocrinology, Esplugues, Barcelona, Spain
| | - Silvia Ribo
- Institut de Recerca Sant Joan de Déu (Saint John of God Children's Hospital Barcelona), Endocrinology, Esplugues, Barcelona, Spain
| | - Marcela Parra-Vargas
- Institut de Recerca Sant Joan de Déu (Saint John of God Children's Hospital Barcelona), Endocrinology, Esplugues, Barcelona, Spain
| | - Antonio Fernández-Pérez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid y Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Judith Cebrià
- Institut de Recerca Sant Joan de Déu (Saint John of God Children's Hospital Barcelona), Endocrinology, Esplugues, Barcelona, Spain
| | - Maria Guardiola-Perello
- Institut de Recerca Sant Joan de Déu (Saint John of God Children's Hospital Barcelona), Endocrinology, Esplugues, Barcelona, Spain
| | - Marta Ramon-Krauel
- Institut de Recerca Sant Joan de Déu (Saint John of God Children's Hospital Barcelona), Endocrinology, Esplugues, Barcelona, Spain; Departament de Medicina, Facultat de Medicina, Universitat de Barcelona, Spain
| | - Carles Lerin
- Institut de Recerca Sant Joan de Déu (Saint John of God Children's Hospital Barcelona), Endocrinology, Esplugues, Barcelona, Spain
| | - Ruben Diaz
- Institut de Recerca Sant Joan de Déu (Saint John of God Children's Hospital Barcelona), Endocrinology, Esplugues, Barcelona, Spain; Departament de Medicina, Facultat de Medicina, Universitat de Barcelona, Spain
| | | | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid y Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Antoni Díez-Noguera
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Spain
| | - Trinitat Cambras
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Spain
| | - Josep C Jimenez-Chillaron
- Institut de Recerca Sant Joan de Déu (Saint John of God Children's Hospital Barcelona), Endocrinology, Esplugues, Barcelona, Spain.
| |
Collapse
|
18
|
Huang F, Zhu P, Wang J, Chen J, Lin W. Postnatal overfeeding induces hepatic microRNA-221 expression and impairs the PI3K/AKT pathway in adult male rats. Pediatr Res 2021; 89:143-149. [PMID: 32305038 DOI: 10.1038/s41390-020-0877-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Increasing evidence suggests that postnatal overfeeding induces childhood obesity, which is strongly associated with metabolic syndrome. Insulin resistance is a risk factor for metabolic syndrome. MicroRNA-221 (miR-221) is involved in the development of obesity and has been reported to negatively regulate insulin sensitivity. However, the underlying mechanism remains unclear. METHODS Rats raised in small litters (SLs, three pups/dam, n = 10) and normal litters (NLs, 10 pups/dam, n = 10) were used to model early postnatal overfeeding and act as controls, respectively. miR-221 and proteins related to the phosphoinositide 3-kinases (PI3K)/protein kinase B (AKT) pathway were assessed in the liver. RESULTS Early postnatal overfeeding significantly increased body weight, visceral fat index, blood glucose, serum triglycerides, and the homeostasis model assessment of insulin resistance at 9 weeks. Real-time polymerase chain reaction (PCR) and western blot analysis revealed that postnatal overfeeding induced insulin receptor and insulin receptor substrate 2 expression, but decreased PI3K and AKT phosphorylation in the liver. Quantitative real-time PCR showed that hepatic miR-221 was significantly overexpressed in the SL group. CONCLUSIONS These results indicate that postnatal overfeeding induces hepatic miR-221 overexpression and impairs the PI3K/AKT signal pathway, which may cause insulin resistance. IMPACT We first report postnatal overfeeding induces hepatic miR-221 expression. Postnatal overfeeding impairs PI3K/AKT pathway in the liver of adult rats. Postnatal overfeeding induces obesity and high blood glucose. Avoidance of overfeeding during early postnatal life may prevent obesity and T2DM.
Collapse
Affiliation(s)
- Fang Huang
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| | - Pingping Zhu
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Jingwen Wang
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Jie Chen
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenting Lin
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
19
|
Programming of Cardiovascular Dysfunction by Postnatal Overfeeding in Rodents. Int J Mol Sci 2020; 21:ijms21249427. [PMID: 33322275 PMCID: PMC7763005 DOI: 10.3390/ijms21249427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Nutritional environment in the perinatal period has a great influence on health and diseases in adulthood. In rodents, litter size reduction reproduces the effects of postnatal overnutrition in infants and reveals that postnatal overfeeding (PNOF) not only permanently increases body weight but also affects the cardiovascular function in the short- and long-term. In addition to increased adiposity, the metabolic status of PNOF rodents is altered, with increased plasma insulin and leptin levels, associated with resistance to these hormones, changed profiles and levels of circulating lipids. PNOF animals present elevated arterial blood pressure with altered vascular responsiveness to vasoactive substances. The hearts of overfed rodents exhibit hypertrophy and elevated collagen content. PNOF also induces a disturbance of cardiac mitochondrial respiration and produces an imbalance between oxidants and antioxidants. A modification of the expression of crucial genes and epigenetic alterations is reported in hearts of PNOF animals. In vivo, a decreased ventricular contractile function is observed during adulthood in PNOF hearts. All these alterations ultimately lead to an increased sensitivity to cardiac pathologic challenges such as ischemia-reperfusion injury. Nevertheless, caloric restriction and physical exercise were shown to improve PNOF-induced cardiac dysfunction and metabolic abnormalities, drawing a path to the potential therapeutic correction of early nutritional programming.
Collapse
|
20
|
Rodrigues GC, Rocha NN, Maia LDA, Melo I, Simões AC, Antunes MA, Bloise FF, Woyames J, da Silva WS, Capelozzi VL, Abela GP, Ball L, Pelosi P, Rocco PRM, Silva PL. Impact of experimental obesity on diaphragm structure, function, and bioenergetics. J Appl Physiol (1985) 2020; 129:1062-1074. [PMID: 32909923 DOI: 10.1152/japplphysiol.00262.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Obesity is associated with bioenergetic dysfunction of peripheral muscles; however, little is known regarding the impact of obesity on the diaphragm. We hypothesized that obesity would be associated with diaphragm dysfunction attributable to mitochondrial oxygen consumption and structural and ultrastructural changes. Wistar rat litters were culled to 3 pups to induce early postnatal overfeeding and consequent obesity. Control animals were obtained from unculled litters. From postnatal day 150, diaphragm ultrasound, computed tomography, high-resolution respirometry, immunohistochemical, biomolecular, and ultrastructural histological analyses were performed. The diaphragms of obese animals, compared with those of controls, presented changes in morphology as increased thickening fraction, diaphragm excursion, and diaphragm dome height, as well as increased mitochondrial respiratory capacity coupled to ATP synthesis and maximal respiratory capacity. Fatty acid synthase gene expression was also higher in obese animals, suggesting a source of energy for the respiratory chain. Myosin heavy chain-IIA was increased, indicating shift from glycolytic toward oxidative muscle fiber profile. Diaphragm tissue also exhibited ultrastructural changes, such as compact, round, and swollen mitochondria with fainter cristae and more lysosomal bodies. Dynamin-1 expression in the diaphragm was reduced in obese rats, suggesting decreased mitochondrial fission. Furthermore, gene expressions of peroxisome γ proliferator-activated receptor coactivator-1α and superoxide dismutase-2 were lower in obese animals than in controls, which may indicate a predisposition to oxidative injury. In conclusion, in the obesity model used herein, muscle fiber phenotype was altered in a manner likely associated with increased mitochondrial respiratory capability, suggesting respiratory adaptation to increased metabolic demand.NEW & NOTEWORTHY Obesity has been associated with peripheral muscle dysfunction; however, little is known about its impact on the diaphragm. In the current study, we found high oxygen consumption in diaphragm tissue and changes in muscle fiber phenotypes toward a more oxidative profile in experimental obesity.
Collapse
Affiliation(s)
- Gisele C Rodrigues
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nazareth N Rocha
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Fluminense Federal University, Niteroi, Brazil
| | - Ligia de A Maia
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabella Melo
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Simões
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana A Antunes
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia F Bloise
- Laboratory of Translational Endocrinology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Woyames
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Rio de Janeiro, Brazil
| | - Wagner S da Silva
- Laboratory of Metabolic Adaptations, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera L Capelozzi
- Laboratory of Pulmonary Genomics, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Glenn Paul Abela
- Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Lorenzo Ball
- Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Parra-Vargas M, Ramon-Krauel M, Lerin C, Jimenez-Chillaron JC. Size Does Matter: Litter Size Strongly Determines Adult Metabolism in Rodents. Cell Metab 2020; 32:334-340. [PMID: 32814016 DOI: 10.1016/j.cmet.2020.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/16/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022]
Abstract
In this essay, we highlight how litter size in rodents is a strong determinant of neonatal growth and long-term metabolic health. Based on these effects, we strongly advise that scientific articles that utilize rodent models for obesity and metabolic research should include information on the litter sizes in the study to increase the data transparency of such reports.
Collapse
Affiliation(s)
- Marcela Parra-Vargas
- Institut de Recerca Sant Joan de Déu, Endocrinology, c/ Santa Rosa 39-57, 4ª planta, Esplugues, 08950 Barcelona, Spain
| | - Marta Ramon-Krauel
- Institut de Recerca Sant Joan de Déu, Endocrinology, c/ Santa Rosa 39-57, 4ª planta, Esplugues, 08950 Barcelona, Spain
| | - Carles Lerin
- Institut de Recerca Sant Joan de Déu, Endocrinology, c/ Santa Rosa 39-57, 4ª planta, Esplugues, 08950 Barcelona, Spain
| | - Josep C Jimenez-Chillaron
- Institut de Recerca Sant Joan de Déu, Endocrinology, c/ Santa Rosa 39-57, 4ª planta, Esplugues, 08950 Barcelona, Spain.
| |
Collapse
|
22
|
Neto JGO, Boechat SK, Romão JS, Pazos-Moura CC, Oliveira KJ. Treatment with cinnamaldehyde reduces the visceral adiposity and regulates lipid metabolism, autophagy and endoplasmic reticulum stress in the liver of a rat model of early obesity. J Nutr Biochem 2019; 77:108321. [PMID: 31869758 DOI: 10.1016/j.jnutbio.2019.108321] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Nutrition at early stages of life contributes to the alarming incidence of childhood obesity, insulin resistance and hepatoesteatosis. Cinnamaldehyde, major component of cinnamon, increases insulin sensitivity and modulates adiposity and lipid metabolism. The aim of this study was to analyze the impact of cinnamaldehyde treatment during adolescence in a rat model of early obesity. Litter size reduction was used to induce overfeeding and early obesity. At postnatal day 30 (adolescence), the male Wistar rats received cinnamaldehyde by gavage (40 mg/kg of body weight/day) for 29 days and were studied at the end of treatment at 60 days old or 4 months thereafter (180 days old). At 60 days of age, the treatment with cinnamaldehyde promoted reduced visceral adiposity, serum triacylglycerol, and attenuation of energy efficiency and insulin resistance. In the liver, it reduced lipid synthesis, stimulated autophagy and reduced ER stress. At 180 days of age, animals treated with cinnamaldehyde during the adolescence exhibited normalization of visceral adiposity and energy efficiency, and attenuation of hyperphagia, serum hypertriglyceridemia and hepatic triacylglycerol content, with molecular markers indicative of reduced hepatic synthesis. However, the beneficial effect observed at 60 days of age on glucose homeostasis, autophagy and ER stress was lost. Therefore, the cinnamaldehyde supplementation during the adolescence has short- and long-term metabolic beneficial effects, highlighting its potential as an adjuvant in the treatment of early obesity.
Collapse
Affiliation(s)
- Jessika Geisebel Oliveira Neto
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Rua Hernani Pires de Melo, 101, São domingos, Niterói, 24210-130, RJ, Brazil
| | - Silvia Karl Boechat
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Rua Hernani Pires de Melo, 101, São domingos, Niterói, 24210-130, RJ, Brazil
| | - Juliana Santos Romão
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Rua Hernani Pires de Melo, 101, São domingos, Niterói, 24210-130, RJ, Brazil
| | - Carmen Cabanelas Pazos-Moura
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Ilha do Fundão, Rio de Janeiro,21949-900, RJ, Brazil
| | - Karen Jesus Oliveira
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Rua Hernani Pires de Melo, 101, São domingos, Niterói, 24210-130, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Ilha do Fundão, Rio de Janeiro,21949-900, RJ, Brazil.
| |
Collapse
|
23
|
Junior MDF, Cavalcante KVN, Ferreira LA, Lopes PR, Pontes CNR, Bessa ADSMD, Neves ÂR, Francisco FA, Pedrino GR, Xavier CH, Mathias PCDF, Castro CHD, Gomes RM. Postnatal early overfeeding induces cardiovascular dysfunction by oxidative stress in adult male Wistar rats. Life Sci 2019; 226:173-184. [DOI: 10.1016/j.lfs.2019.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/29/2019] [Accepted: 04/06/2019] [Indexed: 11/17/2022]
|
24
|
Neonatal overfeeding impairs differentiation potential of mice subcutaneous adipose mesenchymal stem cells. Stem Cell Rev Rep 2018; 14:535-545. [PMID: 29667027 DOI: 10.1007/s12015-018-9812-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nutritional changes in the development (intrauterine life and postnatal period) may trigger long-term pathophysiological complications such as obesity and cardiovascular disease. Metabolic programming leads to organs and tissues modifications, including adipose tissue, with increased lipogenesis, production of inflammatory cytokines, and decreased glucose uptake. However, stem cells participation in adipose tissue dysfunctions triggered by overfeeding during lactation has not been elucidated. Therefore, this study was the first to evaluate the effect of metabolic programming on adipose mesenchymal stem cells (ASC) from mice submitted to overfeeding during lactation, using the litter reduction model. Cells were evaluated for proliferation capacity, viability, immunophenotyping, and reactive oxygen species (ROS) production. The content of UCP-2 and PGC1-α was determined by Western Blot. ASC differentiation potential in adipogenic and osteogenic environments was also evaluated, as well the markers of adipogenic differentiation (PPAR-γ and FAB4) and osteogenic differentiation (osteocalcin) by RT-qPCR. Results indicated that neonatal overfeeding does not affect ASC proliferation, ROS production, and viability. However, differentiation potential and proteins related to metabolism were altered. ASC from overfed group presented increased adipogenic differentiation, decreased osteogenic differentiation, and also showed increased PGC1-α protein content and reduced UCP-2 expression. Thus, ASC may be involved with the increased adiposity observed in neonatal overfeeding, and its therapeutic potential may be affected.
Collapse
|
25
|
Enes-Marques S, Giusti-Paiva A. Litter size reduction accentuates maternal care and alters behavioral and physiological phenotypes in rat adult offspring. J Physiol Sci 2018; 68:789-798. [PMID: 29380149 PMCID: PMC10717135 DOI: 10.1007/s12576-018-0594-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/18/2018] [Indexed: 01/12/2023]
Abstract
Maternal behavior has a substantial impact on the behavioral, endocrine, and neural development of the pups. This study investigated the effect of altering the neonatal nutritional environment by modifying the litter size on maternal care and anxiety- and fear-like behaviors in rats during adulthood. On postnatal day (PND) 2, litters were adjusted to a small litter (SL) size of three pups per dam or normal litter (NL) size of 12 pups per dam. Maternal behaviors were scored daily during lactation (PND2-21). The weight gain, food intake, adiposity, and biochemical landmarks of offspring rats were evaluated. On PND60, performances in the open field, elevated plus-maze (EPM), and fear conditioning test were measured. The reduction of the litter size enhanced maternal care in lactating rats, increasing the arched-back posture and licking pups. SL offspring exhibited accelerated weight gain, hyperphagia, increased visceral fat mass, dyslipidemia, and hyperleptinemia in adulthood. The SL offspring of both sexes showed an increase in the anti-thigmotactic effect in the open field, an intact anxious-phenotype in the EPM, and a decrease in the time spent freezing during the fear-conditioning test, compared to NL. The neonatal environment as determined by litter size plays a crucial role in programming the adult metabolic phenotype as well as behavioral responses to stressful stimuli, with an impact on anxiety-like and fear behaviors. These behavioral changes in offspring may be, at least in part, a result of increased maternal care.
Collapse
Affiliation(s)
- Silvia Enes-Marques
- Laboratório de Fisiologia Translacional, Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas-MG, Campus Santa Clara, Av Jovino Fernandes Sales 2600, Prédio E Sala 300, Alfenas, MG, 37130-000, Brazil
| | - Alexandre Giusti-Paiva
- Laboratório de Fisiologia Translacional, Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas-MG, Campus Santa Clara, Av Jovino Fernandes Sales 2600, Prédio E Sala 300, Alfenas, MG, 37130-000, Brazil.
| |
Collapse
|
26
|
Ellsworth L, Harman E, Padmanabhan V, Gregg B. Lactational programming of glucose homeostasis: a window of opportunity. Reproduction 2018; 156:R23-R42. [PMID: 29752297 PMCID: PMC6668618 DOI: 10.1530/rep-17-0780] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
The window of lactation is a critical period during which nutritional and environmental exposures impact lifelong metabolic disease risk. Significant organ and tissue development, organ expansion and maturation of cellular functions occur during the lactation period, making this a vulnerable time during which transient insults can have lasting effects. This review will cover current literature on factors influencing lactational programming such as milk composition, maternal health status and environmental endocrine disruptors. The underlying mechanisms that have the potential to contribute to lactational programming of glucose homeostasis will also be addressed, as well as potential interventions to reduce offspring metabolic disease risk.
Collapse
Affiliation(s)
- Lindsay Ellsworth
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Emma Harman
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| | | | - Brigid Gregg
- Department of PediatricsUniversity of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Gomes RM, Bueno FG, Schamber CR, de Mello JCP, de Oliveira JC, Francisco FA, Moreira VM, Junior MDF, Pedrino GR, de Freitas Mathias PC, Miranda RA, de Moraes SMF, Natali MRM. Maternal diet-induced obesity during suckling period programs offspring obese phenotype and hypothalamic leptin/insulin resistance. J Nutr Biochem 2018; 61:24-32. [PMID: 30179726 DOI: 10.1016/j.jnutbio.2018.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/21/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022]
Abstract
During the early post-natal period, offspring are vulnerable to environmental insults, such as nutritional and hormonal changes, which increase risk to develop metabolic diseases later in life. Our aim was to understand whether maternal obesity during lactation programs offspring to metabolic syndrome and obese phenotype, in addition we aimed to assess the peripheral glucose metabolism and hypothalamic leptin/insulin signaling pathways. At delivery, female Wistar rats were randomly divided in two groups: Control group (CO), mothers fed a standard rodent chow (Nuvilab); and Diet-induced obesity group (DIO), mothers who had free access to a diet performed with 33% ground standard rodent chow, 33% sweetened condensed milk (Nestlé), 7% sucrose and 27% water. Maternal treatment was performed throughout suckling period. All offspring received standard rodent chow from weaning until 91-day-old. DIO dams presented increased total body fat and insulin resistance. Consequently, the breast milk from obese dams had altered composition. At 91-day-old, DIO offspring had overweight, hyperphagia and higher adiposity. Furthermore, DIO animals had hyperinsulinemia and insulin resistance, they also showed pancreatic islet hypertrophy and increased pancreatic β-cell proliferation. Finally, DIO offspring showed low ObRb, JAK2, STAT-3, IRβ, PI3K and Akt levels, suggesting leptin and insulin hypothalamic resistance, associated with increased of hypothalamic NPY level and decreased of POMC. Maternal obesity during lactation malprograms rat offspring to develop obesity that is associated with impairment of melanocortin system. Indeed, rat offspring displayed glucose dyshomeostasis and both peripheral and central insulin resistance.
Collapse
Affiliation(s)
- Rodrigo Mello Gomes
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Peterson CS, Huang S, Lee SA, Ferguson AV, Fry WM. The transcriptome of the rat subfornical organ is altered in response to early postnatal overnutrition. IBRO Rep 2018; 5:17-23. [PMID: 30135952 PMCID: PMC6095096 DOI: 10.1016/j.ibror.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/12/2018] [Indexed: 01/18/2023] Open
Abstract
Early postnatal overnutrition in humans is associated with long-term negative outcomes including obesity, increased risk of type-II diabetes, and cardiovascular disease. Hypothalamic neurons from rodents exposed to early postnatal overnutrition show altered expression of satiety signals and receptors, and exhibit altered responses to many satiety signals, suggesting a hypothalamic link between early overnutrition and development of these sequelae. Importantly, several hypothalamic nuclei receive information regarding circulating hormones (such as insulin, leptin and ghrelin) from the subfornical organ (SFO), a forebrain sensory circumventricular organ which lacks a blood brain barrier. Previous transcriptomic studies indicate that challenges to energy balance and hydration status stimulate changes in gene expression within the SFO, including genes encoding ion channels and receptors. In order to determine if early postnatal overnutrition also causes changes in SFO gene expression which may be associated with homeostatic dysregulation, we performed whole transcriptome sequencing on SFO tissue from rats raised in small (4 pups), or control (large, 12 pups) litters. Illumina RNA sequencing was performed on SFO tissue from rats raised from small and large litters, and read sequences were aligned to the Rat Rnor_6.0 genome. Control data were further compared to previously published microarray data set for validation. We found statistically significant (p < 0.05) changes in expression of 12 transcripts, three of which have likely roles in neuronal excitability, neurite outgrowth and differentiation, and food intake (Manf, Slc24a4, Cracr2b). Additionally, gene ontology analysis identified a trend among significantly altered transcripts in roles for oxidative stress response. We conclude that the SFO transcriptome is subtly altered by early postnatal overnutrition, and recommend further investigation of the effect of early postnatal overnutrition on SFO physiology and morphology.
Collapse
Affiliation(s)
- Colleen S Peterson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Shuo Huang
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Samantha A Lee
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - A V Ferguson
- Centre for Neuroscience, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - W Mark Fry
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
29
|
Ramon-Krauel M, Pentinat T, Bloks VW, Cebrià J, Ribo S, Pérez-Wienese R, Vilà M, Palacios-Marin I, Fernández-Pérez A, Vallejo M, Téllez N, Rodríguez MÀ, Yanes O, Lerin C, Díaz R, Plosch T, Tietge UJF, Jimenez-Chillaron JC. Epigenetic programming at the Mogat1 locus may link neonatal overnutrition with long-term hepatic steatosis and insulin resistance. FASEB J 2018; 32:fj201700717RR. [PMID: 29812971 DOI: 10.1096/fj.201700717rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Postnatal overfeeding increases the risk of chronic diseases later in life, including obesity, insulin resistance, hepatic steatosis, and type 2 diabetes. Epigenetic mechanisms might underlie the long-lasting effects associated with early nutrition. Here we aimed to explore the molecular pathways involved in early development of insulin resistance and hepatic steatosis, and we examined the potential contribution of DNA methylation and histone modifications to long-term programming of metabolic disease. We used a well-characterized mouse model of neonatal overfeeding and early adiposity by litter size reduction. Neonatal overfeeding led to hepatic insulin resistance very early in life that persisted throughout adulthood despite normalizing food intake. Up-regulation of monoacylglycerol O-acyltransferase ( Mogat) 1 conceivably mediates hepatic steatosis and insulin resistance through increasing intracellular diacylglycerol content. Early and sustained deregulation of Mogat1 was associated with a combination of histone modifications that might favor Mogat1 expression. In sum, postnatal overfeeding causes extremely rapid derangements of hepatic insulin sensitivity that remain relatively stable until adulthood. Epigenetic mechanisms, particularly histone modifications, could contribute to such long-lasting effects. Our data suggest that targeting hepatic monoacylglycerol acyltransferase activity during early life might provide a novel strategy to improve hepatic insulin sensitivity and prevent late-onset insulin resistance and fatty liver disease.-Ramon-Krauel, M., Pentinat, T., Bloks, V. W., Cebrià, J., Ribo, S., Pérez-Wienese, R., Vilà, M., Palacios-Marin, I., Fernández-Pérez, A., Vallejo, M., Téllez, N., Rodríguez, M. À., Yanes, O., Lerin, C., Díaz, R., Plosch, T., Tietge, U. J. F., Jimenez-Chillaron, J. C. Epigenetic programming at the Mogat1 locus may link neonatal overnutrition with long-term hepatic steatosis and insulin resistance.
Collapse
Affiliation(s)
- Marta Ramon-Krauel
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Thais Pentinat
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Vincent W Bloks
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Judith Cebrià
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Silvia Ribo
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Ricky Pérez-Wienese
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Maria Vilà
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Ivonne Palacios-Marin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Antonio Fernández-Pérez
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Mario Vallejo
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Noèlia Téllez
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet, Barcelona, Spain
| | - Miguel Àngel Rodríguez
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Oscar Yanes
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Carles Lerin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Rubén Díaz
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Torsten Plosch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
30
|
de Oliveira E, Lima NS, Conceição EPS, Peixoto-Silva N, Moura EG, Lisboa PC. Treatment with Ilex paraguariensis (yerba mate) aqueous solution prevents hepatic redox imbalance, elevated triglycerides, and microsteatosis in overweight adult rats that were precociously weaned. ACTA ACUST UNITED AC 2018; 51:e7342. [PMID: 29791596 PMCID: PMC6002129 DOI: 10.1590/1414-431x20187342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/01/2018] [Indexed: 12/30/2022]
Abstract
Early weaning (EW) leads to overweight, visceral obesity, hyperleptinemia, and insulin resistance in adulthood. Treatment with Ilex paraguariensis (yerba mate) improves obesity and insulin resistance in these animals. Here, we evaluated the effects of chronic treatment with yerba mate on the redox balance and liver morphology of overweight early-weaned rats. To induce EW, we wrapped the dams with bandages to interrupt milk access during the last 3 days of lactation. Control pups (C) had free access to maternal milk for the full 21 days of lactation. On postnatal day (PN) 150, EW offspring were subdivided into the EW+YM group, which received the aqueous extract of yerba mate (1 g/kg bw by gavage once a day for 30 days) and the EW group, which received water by gavage for the same period. All rats were euthanized on PN180. The EW group showed higher bound carbonyl (a marker of total protein oxidation), higher TBARS levels (a marker of lipid peroxidation), and lower superoxide dismutase (SOD) activity in liver tissue than the C group, as well as higher triglyceride content and microsteatosis. In plasma, the EW offspring showed higher TBARS levels. One month of yerba mate treatment normalized these parameters. Thus, we have shown evidence that yerba mate improved antioxidant defenses and mitigated liver dysfunction in overweight adult rats that were weaned prematurely.
Collapse
Affiliation(s)
- E de Oliveira
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - N S Lima
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - E P S Conceição
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - N Peixoto-Silva
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - E G Moura
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - P C Lisboa
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
31
|
Silva P, Ribeiro TA, Tófolo LP, Prates KV, Francisco FA, Silveira SDS, Malta A, Lopes DA, Miranda RA, Palma-Rigo K, Torrezan R, Mathias PCDF. Treatment with soy isoflavones during early adulthood improves metabolism in early postnatally overfed rats. Nutr Neurosci 2018; 21:25-32. [PMID: 27462961 DOI: 10.1080/1028415x.2016.1213007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The incidences of obesity and related diseases have reached epidemic proportions, and new therapeutic approaches are needed. Soy isoflavones have been identified as an important dietary factor for preventing and treating metabolic dysfunction. This study examined the effects of high doses of isoflavone on glucose and fat metabolism in a model of programmed obesity and evaluated its effects on the autonomic nervous system. METHODS Litters of Wistar rats were standardized at nine pups per dam in normal litters (NL) or reduced to three pups per dam at the third day of life (P3) in small litters (SL) to induce postnatal overfeeding. Gavage with a soy bean isoflavone mixture (1 g/day) diluted in water was started at P60 and continued for 30 days. The control animals received vehicle gavage. At P90, biometric and metabolic parameters as well as direct autonomic nerve activity were measured. RESULTS Increases in glycaemia and insulinaemia observed in SL rats were reduced by isoflavone treatment, which also caused lower glucose-induced insulin secretion by pancreatic islets. Sympathetic activity in the major splanchnic nerve was increased, while vagus nerve activity was reduced by isoflavone treatment. The dyslipidaemia induced by overfeeding in SL rats was restored by isoflavone treatment. CONCLUSION The present study shows that treatment with isoflavone reduces adiposity and improves glucose and lipid metabolism. Collectively, these effects may depend on autonomic changes.
Collapse
Affiliation(s)
- Pamelli Silva
- a Department of Biotechnology, Genetics and Cell Biology, Laboratory of Secretion Cell Biology , State University of Maringá , PR , Brazil
| | - Tatiane Aparecida Ribeiro
- a Department of Biotechnology, Genetics and Cell Biology, Laboratory of Secretion Cell Biology , State University of Maringá , PR , Brazil
| | - Laize Peron Tófolo
- a Department of Biotechnology, Genetics and Cell Biology, Laboratory of Secretion Cell Biology , State University of Maringá , PR , Brazil
| | - Kelly Valério Prates
- a Department of Biotechnology, Genetics and Cell Biology, Laboratory of Secretion Cell Biology , State University of Maringá , PR , Brazil
| | - Flávio Andrade Francisco
- a Department of Biotechnology, Genetics and Cell Biology, Laboratory of Secretion Cell Biology , State University of Maringá , PR , Brazil
| | - Sandra da Silva Silveira
- a Department of Biotechnology, Genetics and Cell Biology, Laboratory of Secretion Cell Biology , State University of Maringá , PR , Brazil
| | - Ananda Malta
- a Department of Biotechnology, Genetics and Cell Biology, Laboratory of Secretion Cell Biology , State University of Maringá , PR , Brazil
| | - Denise Alves Lopes
- a Department of Biotechnology, Genetics and Cell Biology, Laboratory of Secretion Cell Biology , State University of Maringá , PR , Brazil
| | - Rosiane Aparecida Miranda
- a Department of Biotechnology, Genetics and Cell Biology, Laboratory of Secretion Cell Biology , State University of Maringá , PR , Brazil
| | - Kesia Palma-Rigo
- a Department of Biotechnology, Genetics and Cell Biology, Laboratory of Secretion Cell Biology , State University of Maringá , PR , Brazil
| | - Rosana Torrezan
- a Department of Biotechnology, Genetics and Cell Biology, Laboratory of Secretion Cell Biology , State University of Maringá , PR , Brazil
| | - Paulo Cezar de Freitas Mathias
- a Department of Biotechnology, Genetics and Cell Biology, Laboratory of Secretion Cell Biology , State University of Maringá , PR , Brazil
| |
Collapse
|
32
|
Branquinho NTD, Cruz GHP, Borrasca CL, Alves LDPS, de Godoy Gomes CR, Ferreira de Godoi VA, Pedrosa MMD. Early-onset obesity and food restriction alter hepatocyte metabolism in adult Wistar rats. Arch Physiol Biochem 2017; 123:297-305. [PMID: 28502193 DOI: 10.1080/13813455.2017.1326942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Caloric restriction (CR) is suggested for overweight control. OBJECTIVE Systemic and liver glucose metabolism in the reduced-litter (RL) rat model under 30% CR was investigated. MATERIALS AND METHODS Newborn litters were organised in control (G9); RL with free diet (G3L); and RL with CR (G3R). Assessments were made at the age of 90 d. RESULTS Higher liver glycogen content and changes in systemic glucose handling were found in the RL groups. Hepatocyte glucose metabolism was similar in groups G9 and G3L, but basal glucose production and glycogenolysis were higher, while gluconeogenesis and basal glycolysis were lower in the G3R. Urea production was lower in the RL groups. DISCUSSION The altered glucose handling of the RL adult rats was not reversed by moderate (30%) CR. Hepatocyte glucose and nitrogen metabolism were changed by both early overfeeding and current feeding conditions. CONCLUSIONS RL and CR alter systemic and liver glucose metabolism.
Collapse
Affiliation(s)
- Nayra Thais D Branquinho
- a Program of Graduate Studies in Biological Sciences , State University of Maringá , Maringa, Brazil
| | | | - Cristian L Borrasca
- b Department of Biological Sciences , State University of Maringá , Maringa, Brazil
| | | | | | | | | |
Collapse
|
33
|
Yzydorczyk C, Li N, Chehade H, Mosig D, Bidho M, Keshavjee B, Armengaud JB, Nardou K, Siddeek B, Benahmed M, Vergely C, Simeoni U. Transient postnatal overfeeding causes liver stress-induced premature senescence in adult mice. Sci Rep 2017; 7:12911. [PMID: 29018245 PMCID: PMC5635041 DOI: 10.1038/s41598-017-11756-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 08/25/2017] [Indexed: 02/08/2023] Open
Abstract
Unbalanced nutrition early in life is increasingly recognized as an important factor in the development of chronic, non-communicable diseases at adulthood, including metabolic diseases. We aimed to determine whether transient postnatal overfeeding (OF) leads to liver stress-induced premature senescence (SIPS) of hepatocytes in association with liver structure and hepatic function alterations. Litters sizes of male C57BL/6 mice were adjusted to 9 pups (normal feeding, NF) or reduced to 3 pups during the lactation period to induce transient postnatal OF. Compared to the NF group, seven-month-old adult mice transiently overfed during the postnatal period were overweight and developed glucose intolerance and insulin resistance. Their livers showed microsteatosis and fibrosis, while hepatic insulin signaling and glucose transporter protein expressions were altered. Increased hepatic oxidative stress (OS) was observed, with increased superoxide anion production, glucose-6-phosphate dehydrogenase protein expression, oxidative DNA damage and decreased levels of antioxidant defense markers, such as superoxide dismutase and catalase proteins. Hepatocyte senescence was characterized by increased p21WAF, p53, Acp53, p16INK4a and decreased pRb/Rb and Sirtuin-1 (SIRT-1) protein expression levels. Transient postnatal OF induces liver OS at adulthood, associated with hepatocyte SIPS and alterations in liver structure and hepatic functions, which could be mediated by a SIRT-1 deficiency.
Collapse
Affiliation(s)
- Catherine Yzydorczyk
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| | - Na Li
- Equipe: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (AE 7460, PEC2), UFR Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon, France
| | - Hassib Chehade
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Dolores Mosig
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mickael Bidho
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Basile Keshavjee
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Jean Baptiste Armengaud
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Katya Nardou
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Benazir Siddeek
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mohamed Benahmed
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Catherine Vergely
- Equipe: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (AE 7460, PEC2), UFR Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon, France
| | - Umberto Simeoni
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Cranberry (Vaccinium macrocarpon) extract treatment improves triglyceridemia, liver cholesterol, liver steatosis, oxidative damage and corticosteronemia in rats rendered obese by high fat diet. Eur J Nutr 2017; 57:1829-1844. [DOI: 10.1007/s00394-017-1467-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 05/07/2017] [Indexed: 10/19/2022]
|
35
|
Singer K, Lumeng CN. The initiation of metabolic inflammation in childhood obesity. J Clin Invest 2017; 127:65-73. [PMID: 28045405 DOI: 10.1172/jci88882] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
An understanding of the events that initiate metabolic inflammation (metainflammation) can support the identification of targets for preventing metabolic disease and its negative effects on health. There is ample evidence demonstrating that the initiating events in obesity-induced inflammation start early in childhood. This has significant implications on our understanding of how early life events in childhood influence adult disease. In this Review we frame the initiating events of metainflammation in the context of child development and discuss what this reveals about the mechanisms by which this unique form of chronic inflammation is initiated and sustained into adulthood.
Collapse
|
36
|
Conceição EPS, Moura EG, Oliveira E, Guarda DS, Figueiredo MS, Quitete FT, Calvino C, Miranda RA, Mathias PCF, Manhães AC, Lisboa PC. Dietary calcium supplementation in adult rats reverts brown adipose tissue dysfunction programmed by postnatal early overfeeding. J Nutr Biochem 2017; 39:117-125. [DOI: 10.1016/j.jnutbio.2016.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 07/05/2016] [Accepted: 09/02/2016] [Indexed: 11/28/2022]
|
37
|
Effects ofIlex paraguariensis(yerba mate) on the hypothalamic signalling of insulin and leptin and liver dysfunction in adult rats overfed during lactation. J Dev Orig Health Dis 2016; 8:123-132. [DOI: 10.1017/s2040174416000519] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ilex paraguariensis(yerba mate) has a beneficial effect in the management of obesity. Here, we studied the effects of yerba mate on hypothalamic changes in leptin and insulin signalling, oxidative stress and liver morphology and metabolism in postnatal early overfeeding (EO) Wistar rats. To induce EO, the litter size was reduced to three pups per dam, and litters with 10 pups per dam were used as a control (10 litters each). On postnatal day (PN) 150, EO offspring were subdivided into EO and EO+mate groups (10 animals each), which were treated with water or mate tea [1 g/kg body weight (BW)/day, by gavage], respectively, for 30 days. The C offspring received water. On PN180, yerba mate treatment prevented BW gain and reduced total body fat, visceral fat and food intake in comparison with the EO group. Leptin and insulin signalling in the hypothalamus measured by Western blotting was reduced only in the EO group. Yerba mate treatment had a greater impact on insulin signalling normalization. In the liver, yerba mate treatment normalized antioxidant enzyme activities and, consequently, decreased lipid peroxidation, determined by malondialdehyde content. In addition, the steatosis level and the liver triglyceride content were also restored. Thus, for the first time, yerba mate was demonstrated to increase antioxidant defences and improve liver metabolism in adult rats that were overfed during lactation, possibly through improvements in the hypothalamic action of insulin. These findings may be important for the treatment of obesity-related disorders.
Collapse
|
38
|
Conceição EPS, Moura EG, Carvalho JC, Oliveira E, Lisboa PC. Early redox imbalance is associated with liver dysfunction at weaning in overfed rats. J Physiol 2016; 593:4799-811. [PMID: 26332355 DOI: 10.1113/jp271189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/12/2015] [Indexed: 12/30/2022] Open
Abstract
Neonatal overfeeding induced by litter size reduction leads to further obesity and other metabolic disorders, such as liver oxidative stress and microsteatosis at adulthood. We hypothesized that overfeeding causes an early redox imbalance at weaning, which could programme the animals to future liver dysfunction. Thus, we studied lipogenesis, adipogenesis, catecholamine status and oxidative balance in weaned overfed pups. To induce early overfeeding, litters were adjusted to three pups at the 3rd day of lactation (SL group). The control group contained 10 pups per litter until weaning (NL group). Peripheral autonomic nerve function was determined in vivo at 21 days old. Thereafter, pups were killed for further analysis. Differences were considered significant when P < 0.05. The SL pups presented with a higher visceral adipocyte area, higher content of lipogenic enzymes (ACC, FAS) and with a lower content of adipogenic factors (CEBP, PPARγ) in visceral adipose tissue (VAT). Although autonomic nerve activity and adrenal catecholamine production were not significantly altered, catecholamine receptor (β3ADR) content was lower in VAT. The SL pups also presented with higher triglyceride, PPARγ, PPARα and PGC1α contents in liver. In plasma and liver, the SL pups showed an oxidative imbalance, with higher lipid peroxidation and protein oxidation. The SL group presented with a higher serum alanine aminotransferase (ALT). The early increase in lipogenesis in adipose tissue and liver in weaned overfed rats suggests that the higher oxidative stress and lower catecholamine content in VAT are associated with the early development of liver dysfunction and adipocyte hypertrophy.
Collapse
Affiliation(s)
- E P S Conceição
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - E G Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - J C Carvalho
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - E Oliveira
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - P C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| |
Collapse
|
39
|
Conceição EPS, Moura EG, Manhães AC, Carvalho JC, Nobre JL, Oliveira E, Lisboa PC. Calcium reduces vitamin D and glucocorticoid receptors in the visceral fat of obese male rats. J Endocrinol 2016; 230:263-74. [PMID: 27325245 DOI: 10.1530/joe-16-0041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/20/2016] [Indexed: 01/04/2023]
Abstract
Rats overfed during lactation show higher visceral adipose tissue (VAT) mass and metabolic dysfunctions at adulthood. As both vitamin D and glucocorticoids change adipogenesis, parameters related to metabolism and action of these hormones in the adipocyte can be altered in rats raised in small litters (SL). We also studied the antiobesity effects of high calcium diet since it decreases visceral fat in obesity models. On postnatal day (PN) 3, litter size was adjusted to 3pups/dam (SL) to induce overfeeding. Control litters (NL) remained with 10pups/dam until weaning. From PN120 to PN180, half of the SL rats were fed standard chow (SL) and the other half was fed a calcium-supplemented chow (SL-Ca, 10g CaCO3/kg). Both SL groups were heavier and hyperphagic when compared with the NL group; however, SL-Ca rats ate less than SL. SL-Ca rats had decreased VAT mass and adipocyte size, associated with lower hypothalamic NPY content, VAT fat acid synthase content and leptinemia. At PN120, SL rats had increased plasma 25(OH)D3, Cyp27b1 mRNA and glucocorticoid receptor (GR-α) in the VAT, but lower vitamin D receptor (Vdr) mRNA. At PN180, Cyp27b1 and GR-α remained higher, while Vdr normalized in SL rats. SL-Ca rats had normal VAT Cyp27b1 and GR-α, but lower Vdr Thus, higher body mass and glucocorticoid receptors in the VAT of SL rats are normalized by calcium-enriched diet, and Vdr expression in this tissue is reduced, suggesting a possible role of glucocorticoids and vitamin D in calcium action in the adipocyte.
Collapse
Affiliation(s)
- E P S Conceição
- Laboratory of Endocrine PhysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - E G Moura
- Laboratory of Endocrine PhysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A C Manhães
- Laboratory of NeurophysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J C Carvalho
- Laboratory of Endocrine PhysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J L Nobre
- Laboratory of Endocrine PhysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - E Oliveira
- Laboratory of Endocrine PhysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P C Lisboa
- Laboratory of Endocrine PhysiologyDepartment of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Wang J, Tang H, Wang X, Zhang X, Zhang C, Zhang M, Zhao Y, Zhao L, Shen J. The structural alteration of gut microbiota in low-birth-weight mice undergoing accelerated postnatal growth. Sci Rep 2016; 6:27780. [PMID: 27277748 PMCID: PMC4899793 DOI: 10.1038/srep27780] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022] Open
Abstract
The transient disruption of gut microbiota in infancy by antibiotics causes adult adiposity in mice. Accelerated postnatal growth (A) leads to a higher risk of adult metabolic syndrome in low birth-weight (LB) humans than in normal birth-weight (NB) individuals, but the underlying mechanism remains unclear. Here, we set up an experiment using LB + A mice, NB + A mice, and control mice with NB and normal postnatal growth. At 24 weeks of age (adulthood), while NB + A animals had a normal body fat content and glucose tolerance compared with controls, LB + A mice exhibited excessive adiposity and glucose intolerance. In infancy, more fecal bacteria implicated in obesity were increased in LB + A pups than in NB + A pups, including Desulfovibrionaceae, Enterorhabdus, and Barnesiella. One bacterium from the Lactobacillus genus, which has been implicated in prevention of adult adiposity, was enhanced only in NB + A pups. Besides, LB + A pups, but not NB + A pups, showed disrupted gut microbiota fermentation activity. After weaning, the fecal microbiota composition of LB + A mice, but not that of NB + A animals, became similar to that of controls by 24 weeks. In infancy, LB + A mice have a more dysbiotic gut microbiome compared to NB + A mice, which might increase their risk of adult metabolic syndrome.
Collapse
Affiliation(s)
- Jingjing Wang
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, PR China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Huang Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiaoxin Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xu Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yufeng Zhao
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Liping Zhao
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, PR China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jian Shen
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
41
|
Conceição E, Moura E, Soares P, Ai X, Figueiredo M, Oliveira E, Lisboa P. High calcium diet improves the liver oxidative stress and microsteatosis in adult obese rats that were overfed during lactation. Food Chem Toxicol 2016; 92:245-55. [DOI: 10.1016/j.fct.2016.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/24/2016] [Accepted: 04/17/2016] [Indexed: 02/07/2023]
|
42
|
Davis K, Chamseddine D, Harper JM. Nutritional limitation in early postnatal life and its effect on aging and longevity in rodents. Exp Gerontol 2016; 86:84-89. [PMID: 27167581 DOI: 10.1016/j.exger.2016.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 11/17/2022]
Abstract
Nutrient limitation in the form of chronic dietary restriction (DR), or more specifically a life-long reduction of total daily nutritional intake, was first shown to extend longevity in rats more than eight decades ago and is one of the most robust anti-aging interventions known. More recently, it has become apparent that dietary restriction limited to only the first few weeks of life in rodents is also capable of significantly impacting aging and longevity. The imposition of nutrient limitation is often achieved via the manipulation of litter size or the modulation of maternal nutrient intake during the lactational period. Not surprisingly, nutrient limited pups are smaller at weaning, and remain so throughout their life, while exhibiting signs of slowed aging. In this review, we discuss potential mechanisms that account for the anti-aging effects of postnatal undernutrition with an emphasis on those pathways that parallel changes seen with chronic DR.
Collapse
Affiliation(s)
- Kallie Davis
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77340, USA
| | - Douja Chamseddine
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77340, USA
| | - James M Harper
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77340, USA.
| |
Collapse
|
43
|
Tanaka R, Miyamoto H, Inoue SI, Shigeta K, Kondo M, Ito T, Kodama H, Miyamoto H, Matsushita T. Thermophile-fermented compost as a fish feed additive modulates lipid peroxidation and free amino acid contents in the muscle of the carp, Cyprinus carpio. J Biosci Bioeng 2016; 121:530-5. [DOI: 10.1016/j.jbiosc.2015.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/08/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|
44
|
Reid DT, Eller LK, Nettleton JE, Reimer RA. Postnatal prebiotic fibre intake mitigates some detrimental metabolic outcomes of early overnutrition in rats. Eur J Nutr 2015; 55:2399-2409. [PMID: 26407845 DOI: 10.1007/s00394-015-1047-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/14/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE Overnutrition during early development has been linked to metabolic disease and obesity in adulthood. Interventions to ameliorate this metabolic malprogramming are needed. Our objective was to determine whether prebiotic fibre would reduce weight gain and improve satiety hormone profiles in rats overnourished during the suckling period. METHODS Male Sprague-Dawley rats reared in small litter (SL 3 pups) or normal litter (NL 12 pups) were randomized at weaning to AIN-93 (control) or a 10 % oligofructose (OFS) diet for 16 weeks. Body composition, an oral glucose tolerance test for glucose and gut hormones, and gut microbiota were assessed. RESULTS At weaning, body weight was higher in SL than in NL rats (P < 0.03). At 19 weeks, body weight was lower with OFS than control (P < 0.04). There was a diet × litter size interaction wherein OFS in SL rats reduced body fat (%) to levels seen in NL rats (P < 0.05). OFS attenuated the glucose response in SL but not in NL rats (P < 0.015). Independent of litter size, OFS decreased total AUC for glucose-dependent insulinotropic polypeptide (P < 0.002) and increased total AUC for peptide YY (P < 0.01) and glucagon-like peptide-1 (P < 0.04) when compared to control. OFS, not litter size, played the predominant role in altering gut microbiota which included increased bifidobacteria and Akkermansia muciniphila with OFS. CONCLUSIONS Postnatal consumption of OFS by rats raised in SL was able to attenuate body fat and glycaemia to levels seen in NL rats. OFS appears to influence satiety hormone and gut microbiota response similarly in overnourished and control rats.
Collapse
Affiliation(s)
- Danielle T Reid
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Lindsay K Eller
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jodi E Nettleton
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada. .,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
45
|
Bei F, Jia J, Jia YQ, Sun JH, Liang F, Yu ZY, Cai W. Long-term effect of early postnatal overnutrition on insulin resistance and serum fatty acid profiles in male rats. Lipids Health Dis 2015; 14:96. [PMID: 26302954 PMCID: PMC4549095 DOI: 10.1186/s12944-015-0094-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/14/2015] [Indexed: 01/09/2023] Open
Abstract
Background Increasing evidence suggests that overnutrition during the early postnatal period, a critical window of development, increases the risk of adult-onset obesity and insulin resistance. In this study, we investigated the impact of overnutrition during the suckling period on body weight, serum biochemistry and serum fatty acid metabolomics in male rats. Methods Rats raised in small litters (SL, 3 pups/dam) and normal litters (NL, 10 pups/dam) were used to model early postnatal overnutrition and control, respectively. Serum glucose, triglyceride, high-density lipoprotein-cholesterol, free fatty acid, insulin and leptin concentrations were assayed using standard biochemical techniques. Serum fatty acids were identified and quantified using a gas chromatography–mass spectrometry-based metabolomic approach. mRNA and protein levels of key components of the insulin receptor signaling pathway were measured in epididymal fat and gastrocnemius muscle by quantitative PCR and western blotting. Results SL rats were 37.3 % and 15.1 % heavier than NL rats at weaning and 16-weeks-old, respectively. They had increased visceral fat mass, adult-onset insulin resistance and glucose intolerance as well as elevated serum levels of free fatty acids and triglycerides. All detectable fatty acids were elevated in the serum of SL pups at weaning compared to NL controls, and significant increases in the levels of four fatty acids (palmitic acid, palmitoleic acid, oleic acid and arachidonic acid) persisted into adulthood. Moreover, a significantly positive correlation was identified between an insulin resistance index (HOMA-IR) and concentrations of myristic, palmitic, palmitoleic and oleic acid in serum at postnatal 16 weeks. Early postnatal overnutrition also resulted in a significant downregulation of insulin receptor substrate-1 (Irs-1), protein kinase B (Akt2) and glucose transporter 4 (Glut4) at the protein level in epididymal fat of SL rats at 16 weeks, accompanied by decreased mRNA levels for Irs-1 and Glut4. In gastrocnemius muscle, Akt2 and Glut4 mRNA and Glut4 protein levels were significantly decreased in SL rats. Conclusions This study demonstrates that early postnatal overnutrition can have long-lasting effects on body weight and serum fatty acid profiles and can lead to impaired insulin signaling pathway in visceral white adipose tissue and skeletal muscle, which may play a major role in IR.
Collapse
Affiliation(s)
- Fei Bei
- Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China. .,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, China. .,Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Jia Jia
- Shanghai Center for Bioformation Technology, 1278 Keyuan Road, Shanghai, 201203, China.
| | - Yi-Qun Jia
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Jian-Hua Sun
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
| | - Fei Liang
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
| | - Zhong-Yi Yu
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin, 4, Ireland.
| | - Wei Cai
- Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China. .,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, China. .,Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
46
|
Kabaran S, Besler HT. Do fatty acids affect fetal programming? JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2015; 33:14. [PMID: 26825664 PMCID: PMC5025983 DOI: 10.1186/s41043-015-0018-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/26/2015] [Indexed: 05/29/2023]
Abstract
BACKGROUND In this study discussed the primary and regulatory roles of fatty acids, and investigated the affects of fatty acids on metabolic programming. METHODS Review of the literature was carried out on three electronic databases to assess the roles of fatty acids in metabolic programming. All abstracts and full-text articles were examined, and the most relevant articles were selected for screening and inclusion in this review. RESULTS The mother's nutritional environment during fetal period has important effects on long term health. Fatty acids play a primary role in growth and development. Alterations in fatty acid intake in the fetal period may increase the risk of obesity and metabolic disorders in later life. Maternal fatty acid intakes during pregnancy and lactation are passed to the fetus and the newborn via the placenta and breast milk, respectively. Imbalances in fatty acid intake during the fetal period change the fatty acid composition of membrane phospholipids, which can cause structural and functional problems in cells. Additionally, the metabolic and neuroendocrine environments of the fetus and the newborn play key roles in the regulation of energy balance. CONCLUSIONS Imbalances in fatty acid intake during pregnancy and lactation may result in permanent changes in appetite control, neuroendocrine function and energy metabolism in the fetus, leading to metabolic programming. Further studies are needed to determine the role of fatty acid intake in metabolic programming.
Collapse
Affiliation(s)
- Seray Kabaran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, T.R. North Cyprus via Mersin 10, Turkey.
| | - H Tanju Besler
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Samanpazarı/Ankara, Turkey
| |
Collapse
|
47
|
Conceição E, Peixoto-Silva N, Pinheiro C, Oliveira E, Moura E, Lisboa P. Maternal nicotine exposure leads to higher liver oxidative stress and steatosis in adult rat offspring. Food Chem Toxicol 2015; 78:52-9. [DOI: 10.1016/j.fct.2015.01.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/27/2014] [Accepted: 01/24/2015] [Indexed: 12/26/2022]
|
48
|
Accumulation of Hydroxyl Lipids and 4-Hydroxy-2-Hexenal in Live Fish Infected with Fish Diseases. Lipids 2014; 49:385-96. [DOI: 10.1007/s11745-013-3875-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 12/17/2013] [Indexed: 02/08/2023]
|
49
|
Peixoto-Silva N, Conceição EP, Carvalho JC, Lima NS, Nogueira-Neto JF, de Oliveira E, Moura EG, Lisboa PC. Does bromocriptine play a role in decreasing oxidative stress for early weaned programmed obesity? Life Sci 2014; 95:14-21. [DOI: 10.1016/j.lfs.2013.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/09/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
|
50
|
Habbout A, Li N, Rochette L, Vergely C. Postnatal overfeeding in rodents by litter size reduction induces major short- and long-term pathophysiological consequences. J Nutr 2013; 143:553-62. [PMID: 23446961 DOI: 10.3945/jn.112.172825] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Numerous studies have demonstrated that the early postnatal environment can influence body weight and energy homeostasis into adulthood. Rodents raised in small litters have been shown to be a useful experimental model to study the short- and long-term consequences of early overnutrition, which can lead to modifications not only in body weight but also of several metabolic features. Postnatal overfeeding (PNOF) induces early malprogramming of the hypothalamic system, inducing acquired persisting central leptin and insulin resistance and an increase in orexigenic signals. Visceral white adipose tissue, lipogenic activity, and inflammatory status are increased in PNOF rodents, while brown adipose tissue shows reduced thermogenic activity. Pancreatic and hepatic glucose responsiveness is persistently reduced in PNOF rodents, which also frequently present disturbances in plasma lipids. PNOF rodents present increased circulating concentrations of leptin, elevated corticosterone secretion, and significant changes in glucocorticoid sensitivity. PNOF also influences nephrogenesis and renal maturation. Increased oxidative stress is also described in circulating blood and in some tissues, such as the heart or liver. At the cardiovascular level, a moderate increase in arterial blood pressure is sometimes observed and rapid cardiac hypertrophy is observed at weaning; however, during maturation, impaired contractility and fibrosis are observed. Myocardial genome expression is rapidly modified in overfed mice. Moreover, hearts of PNOF rodents are more sensitive to ischemia-reperfusion injury. Together, these results suggest that the nutritional state in the immediate postnatal period should be taken into account, because it may have an impact on cardiometabolic risk in adulthood.
Collapse
Affiliation(s)
- Ahmed Habbout
- Inserm UMR866, LPPCM, Faculties of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | | | | | | |
Collapse
|