1
|
Yaeger MJ, Leuenberger L, Shaikh SR, Gowdy KM. Omega-3 Fatty Acids and Chronic Lung Diseases: A Narrative Review of Impacts from Womb to Tomb. J Nutr 2025; 155:453-464. [PMID: 39424068 PMCID: PMC12002217 DOI: 10.1016/j.tjnut.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/16/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
The lungs are a mucosal organ constantly exposed to potentially harmful compounds and pathogens. Beyond their role in gas exchange, they must perform a well-orchestrated protective response against foreign invaders. The lungs identify these foreign compounds, respond to them by eliciting an inflammatory response, and restore tissue homeostasis after inflammation to ensure the lungs continue to function. In addition, lung function can be affected by genetics, environmental exposures, and age, leading to pulmonary diseases that infringe on quality of life. Recent studies indicate that diet can influence pulmonary health including the incidence and/or severity of lung diseases. Specifically, long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) have gained attention because of their potential to reduce inflammation and promote resolution of inflammation. Docosahexaenoic acid and eicosapentaenoic acid are 2 potentially beneficial n-3 PUFAs primarily acquired through dietary intake. Here we review current literature examining the role of n-3 PUFAs and the biological mechanisms by which these fatty acids alter the incidence and pathologies of chronic lung diseases including asthma, chronic obstructive pulmonary disease, and interstitial lung disease. We also highlight the role of n-3 PUFAs in vulnerable populations such as pre/postnatal children, those with obesity, and the elderly. Lastly, we review the impact of n-3 PUFA intake and supplementation to evaluate if increasing consumption can mitigate mechanisms driving chronic lung diseases.
Collapse
Affiliation(s)
- Michael J Yaeger
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States.
| | - Laura Leuenberger
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
2
|
Virk R, Cook K, Cavazos A, Wassall SR, Gowdy KM, Shaikh SR. How Membrane Phospholipids Containing Long-Chain Polyunsaturated Fatty Acids and Their Oxidation Products Orchestrate Lipid Raft Dynamics to Control Inflammation. J Nutr 2024; 154:2862-2870. [PMID: 39025329 PMCID: PMC11393169 DOI: 10.1016/j.tjnut.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Long-chain PUFA (LC-PUFA) influence varying aspects of inflammation. One mechanism by which they regulate inflammation is by controlling the size and molecular composition of lipid rafts. Lipid rafts are sphingolipid/cholesterol-enriched plasma membrane microdomains that compartmentalize signaling proteins and thereby control downstream inflammatory gene expression and cytokine production. OBJECTIVES This review summarizes developments in our understanding of how LC-PUFA acyl chains of phospholipids, in addition to oxidized derivatives of LC-PUFAs such as oxidized 1-palmitoyl-2-arachidonyl-phosphatidylcholine (oxPAPC), manipulate formation of lipid rafts and thereby inflammation. METHODS We reviewed the literature, largely from the past 2 decades, on the impact of LC-PUFA acyl chains and oxidized products of LC-PUFAs on lipid raft biophysical organization of myeloid and lymphoid cells. The majority of the studies are based on rodent or cellular experiments with supporting mechanistic studies using biomimetic membranes and molecular dynamic simulations. These studies have focused largely on the LC-PUFA docosahexaenoic acid, with some studies addressing eicosapentaenoic acid. A few studies have investigated the role of oxidized phospholipids on rafts. RESULTS The biophysical literature suggests a model in which n-3 LC-PUFAs, in addition to oxPAPC, localize predominately to nonraft regions and impart a disordering effect in this environment. Rafts become larger because of the ensuing increase in the difference in order between raft and nonrafts. Biochemical studies suggest that some n-3 LC-PUFAs can be found within rafts. This deviation from homeostasis is a potential trigger for controlling aspects of innate and adaptive immunity. CONCLUSION Overall, select LC-PUFA acyl chains and oxidized acyl chains of phospholipids control lipid raft dynamics and downstream inflammation. Gaps in knowledge remain, particularly on underlying molecular mechanisms by which plasma membrane receptor organization is controlled in response to oxidized LC-PUFA acyl chains of membrane phospholipids. Validation in humans is also an area for future study.
Collapse
Affiliation(s)
- Rafia Virk
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Katie Cook
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Andres Cavazos
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
3
|
Sublette ME, Daray FM, Ganança L, Shaikh SR. The role of polyunsaturated fatty acids in the neurobiology of major depressive disorder and suicide risk. Mol Psychiatry 2024; 29:269-286. [PMID: 37993501 DOI: 10.1038/s41380-023-02322-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) are obtained from diet or derived from essential shorter-chain fatty acids, and are crucial for brain development and functioning. Fundamentally, LC-PUFAs' neurobiological effects derive from their physicochemical characteristics, including length and double bond configuration, which differentiate LC-PUFA species and give rise to functional differences between n(omega)-3 and n-6 LC-PUFAs. LC-PUFA imbalances are implicated in psychiatric disorders, including major depression and suicide risk. Dietary intake and genetic variants in enzymes involved in biosynthesis of LC-PUFAs from shorter chain fatty acids influence LC-PUFA status. Domains impacted by LC-PUFAs include 1) cell signaling, 2) inflammation, and 3) bioenergetics. 1) As major constituents of lipid bilayers, LC-PUFAs are determinants of cell membrane properties of viscosity and order, affecting lipid rafts, which play a role in regulation of membrane-bound proteins involved in cell-cell signaling, including monoaminergic receptors and transporters. 2) The n-3:n-6 LC-PUFA balance profoundly influences inflammation. Generally, metabolic products of n-6 LC-PUFAs (eicosanoids) are pro-inflammatory, while those of n-3 LC-PUFAs (docosanoids) participate in the resolution of inflammation. Additionally, n-3 LC-PUFAs suppress microglial activation and the ensuing proinflammatory cascade. 3) N-3 LC-PUFAs in the inner mitochondrial membrane affect oxidative stress, suppressing production of and scavenging reactive oxygen species (ROS), with neuroprotective benefits. Until now, this wealth of knowledge about LC-PUFA biomechanisms has not been adequately tapped to develop translational studies of LC-PUFA clinical effects in humans. Future studies integrating neurobiological mechanisms with clinical outcomes may suggest ways to identify depressed individuals most likely to respond to n-3 LC-PUFA supplementation, and mechanistic research may generate new treatment strategies.
Collapse
Affiliation(s)
- M Elizabeth Sublette
- Department of Psychiatry, Columbia University, New York, NY, USA.
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA.
| | - Federico Manuel Daray
- University of Buenos Aires, School of Medicine, Institute of Pharmacology, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Licínia Ganança
- Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Saame Raza Shaikh
- Nutritional Obesity Research Center, Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Immune regulation of poly unsaturated fatty acids and free fatty acid receptor 4. J Nutr Biochem 2023; 112:109222. [PMID: 36402250 DOI: 10.1016/j.jnutbio.2022.109222] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 09/24/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
Fatty acid metabolism contributes to energy supply and plays an important role in regulating immunity. Free fatty acids (FFAs) bind to free fatty acid receptors (FFARs) on the cell surface and mediate effects through the intra-cellular FFAR signaling pathways. FFAR4, also known as G-protein coupled receptor 120 (GPR120), has been identified as the primary receptor of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). FFAR4 is a promising target for treating metabolic and inflammatory disorders due to its immune regulatory functions and the discovery of highly selective and efficient agonists. This review summarizes the reported immune regulatory functions of ω-3 PUFAs and FFAR4 in immune cells and immune-related diseases. We also speculate possible involvements of ω-3 PUFAs and FFAR4 in other types of inflammatory disorders.
Collapse
|
5
|
Liddle DM, Hutchinson AL, Monk JM, Power KA, Robinson LE. Dietary ω-3 polyunsaturated fatty acids modulate CD4 + T-cell subset markers, adipocyte antigen-presentation potential, and NLRP3 inflammasome activity in a coculture model of obese adipose tissue. Nutrition 2021; 91-92:111388. [PMID: 34298481 DOI: 10.1016/j.nut.2021.111388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Chronic low-grade inflammation in obesity is partly driven by inflammatory cross talk between adipocytes and interferon-γ-secreting CD4+ T-helper (Th)1 cells, a process we have shown may be mitigated by long-chain (LC) ω-3 polyunsaturated fatty acids (PUFAs). Our objective was to study pivotal mediators of interactions between Th1 cells and adipocytes as potential mechanisms underlying the antiinflammatory effects of LC ω-3 PUFAs. METHODS Using an in vitro model, 3T3-L1 adipocytes were cocultured with purified splenic CD4+ T cells from C57BL/6 mice consuming one of two isocaloric high-fat (HF) diets (60% kcal fat), containing either 41.2% kcal from lard + 18.7% kcal from corn oil (control, HF) or 41.2% kcal from lard + 13.4% kcal from corn oil + 5.3% kcal from fish oil (HF+FO). Cocultures were stimulated for 48 h with lipopolysaccharide (10 ng/mL). RESULTS Compared with HF cocultures, HF+FO reduced Th1-cell markers (including secreted interferon-γ) and increased Th2-cell markers, consistent with reduced expression of genes related to major histocompatibility complex II (P < 0.05). HF+FO also blunted markers of priming and activity of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome (P < 0.05). In confirmatory work, 3T3-L1 adipocyte pretreatment with the LC ω-3 PUFA docosahexaenoic acid (100 μM, 24 h) blunted interferon-γ-induced (5 ng/mL, 24 h) expression of genes related to major histocompatibility complex II and priming and activity markers of the NLRP3 inflammasome compared with control (P < 0.05). CONCLUSIONS Inflammatory interactions between CD4+ T cells and adipocytes may provide a target for LC ω-3 PUFAs to mitigate obesity-associated inflammation.
Collapse
Affiliation(s)
- Danyelle M Liddle
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Amber L Hutchinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Krista A Power
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
6
|
Kinnun JJ, Bittman R, Shaikh SR, Wassall SR. DHA Modifies the Size and Composition of Raftlike Domains: A Solid-State 2H NMR Study. Biophys J 2019; 114:380-391. [PMID: 29401435 DOI: 10.1016/j.bpj.2017.11.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 01/22/2023] Open
Abstract
Docosahexaenoic acid is an omega-3 polyunsaturated fatty acid that relieves the symptoms of a wide variety of chronic inflammatory disorders. The structural mechanism is not yet completely understood. Our focus here is on the plasma membrane as a site of action. We examined the molecular organization of [2H31]-N-palmitoylsphingomyelin (PSM-d31) mixed with 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) or 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), as a monounsaturated control, and cholesterol (chol) (1:1:1 mol) in a model membrane by solid-state 2H NMR. The spectra were analyzed in terms of segregation into ordered SM-rich/chol-rich (raftlike) and disordered PC-rich/chol-poor (nonraft) domains that are nanoscale in size. An increase in the size of domains is revealed when POPC was replaced by PDPC. Spectra that are single-component, attributed to fast exchange between domains (<45 nm), for PSM-d31 mixed with POPC and chol become two-component, attributed to slow exchange between domains (r > 30 nm), for PSM-d31 mixed with PDPC and chol. The resolution of separate signals from PSM-d31, and correspondingly from [3α-2H1]cholesterol (chol-d1) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC-d31), in raftlike and nonraft domains enabled us to determine the composition of the domains in the PDPC-containing membrane. Most of the lipid (28% SM, 29% chol, and 23% PDPC with respect to total lipid at 30°C) was found in the raftlike domain. Despite substantial infiltration of PDPC into raftlike domains, there appears to be minimal effect on the order of SM, implying the existence of internal structure that limits contact between SM and PDPC. Our results suggest a significant refinement to the model by which DHA regulates the architecture of ordered, sphingolipid-chol-enriched domains (rafts) in membranes.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University, Indianapolis, Indiana
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of CUNY, Flushing, New York
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University, Indianapolis, Indiana.
| |
Collapse
|
7
|
Wu D, Lewis ED, Pae M, Meydani SN. Nutritional Modulation of Immune Function: Analysis of Evidence, Mechanisms, and Clinical Relevance. Front Immunol 2019; 9:3160. [PMID: 30697214 PMCID: PMC6340979 DOI: 10.3389/fimmu.2018.03160] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
It is well-established that the nutritional deficiency or inadequacy can impair immune functions. Growing evidence suggests that for certain nutrients increased intake above currently recommended levels may help optimize immune functions including improving defense function and thus resistance to infection, while maintaining tolerance. This review will examine the data representing the research on prominent intervention agents n-3 polyunsaturated fatty acids (PUFA), micronutrients (zinc, vitamins D and E), and functional foods including probiotics and tea components for their immunological effects, working mechanisms, and clinical relevance. Many of these nutritive and non-nutritive food components are related in their functions to maintain or improve immune function including inhibition of pro-inflammatory mediators, promotion of anti-inflammatory functions, modulation of cell-mediated immunity, alteration of antigen-presenting cell functions, and communication between the innate and adaptive immune systems. Both animal and human studies present promising findings suggesting a clinical benefit of vitamin D, n-3 PUFA, and green tea catechin EGCG in autoimmune and inflammatory disorders, and vitamin D, vitamin E, zinc, and probiotics in reduction of infection. However, many studies report divergent and discrepant results/conclusions due to various factors. Chief among them, and thus call for attention, includes more standardized trial designs, better characterized populations, greater consideration for the intervention doses used, and more meaningful outcome measurements chosen.
Collapse
Affiliation(s)
- Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Erin D Lewis
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Munyong Pae
- Department of Food and Nutrition, Chungbuk National University, Cheongju, South Korea
| | - Simin Nikbin Meydani
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| |
Collapse
|
8
|
Gan RW, Demoruelle MK, Deane KD, Weisman MH, Buckner JH, Gregersen PK, Mikuls TR, O’Dell JR, Keating RM, Fingerlin TE, Zerbe GO, Clare-Salzler MJ, Holers VM, Norris JM. Omega-3 fatty acids are associated with a lower prevalence of autoantibodies in shared epitope-positive subjects at risk for rheumatoid arthritis. Ann Rheum Dis 2017; 76:147-152. [PMID: 27190099 PMCID: PMC5371398 DOI: 10.1136/annrheumdis-2016-209154] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Previously, we found that omega-3 fatty acids (n-3 FAs) were inversely associated with anti-cyclic citrullinated peptide (anti-CCP) positivity in participants at risk for future rheumatoid arthritis (RA). We investigated whether n-3 FAs were also associated with rheumatoid factor (RF) positivity and whether these associations were modified by shared epitope (SE) positivity. METHODS The Studies of the Etiology of RA (SERA) cohort includes RA-free participants who are at increased risk for RA. We conducted a nested case-control study (n=136) to determine the association between RF and anti-CCP2 positivity and n-3 FA percentage in erythrocyte membranes (n-3 FA% in red blood cells (RBCs)). Additionally, in the baseline visit of the SERA cohort (n=2166), we evaluated the association between reported n-3 FA supplement use and prevalence of RF and anti-CCP2. We assessed SE positivity as an effect modifier. RESULTS In the case-control study, increasing n-3 FA% in RBCs was inversely associated with RF positivity in SE-positive participants (OR 0.27, 95% CI 0.10 to 0.79), but not SE-negative participants. Similar associations were seen with anti-CCP positivity in SE-positive participants (OR 0.42, 95% CI 0.20 to 0.89), but not SE-negative participants. In the SERA cohort at baseline, n-3 FA supplement use was associated with a lower prevalence of RF positivity in SE-positive participants (OR 0.32, 95% CI 0.12 to 0.82), but not SE-negative participants; similar but non-significant trends were observed with anti-CCP2. CONCLUSIONS The potential protective effect of n-3 FAs on RA-related autoimmunity may be most pronounced in those who exhibit HLA class II genetic susceptibility to RA.
Collapse
Affiliation(s)
- Ryan W Gan
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | | | - Kevin D Deane
- Division of Rheumatology, University of Colorado, Aurora, Colorado, USA
| | | | - Jane H Buckner
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Peter K Gregersen
- Feinstein Institute for Medical Research and North Shore-Long Island Jewish Health System, Manhasset, New York, USA
| | - Ted R Mikuls
- Veteran Affairs Nebraska Western Iowa Health Care System and University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - James R O’Dell
- Veteran Affairs Nebraska Western Iowa Health Care System and University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | - Gary O Zerbe
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado, Aurora, Colorado, USA
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| |
Collapse
|
9
|
Shaikh SR, Fessler MB, Gowdy KM. Role for phospholipid acyl chains and cholesterol in pulmonary infections and inflammation. J Leukoc Biol 2016; 100:985-997. [PMID: 27286794 PMCID: PMC5069085 DOI: 10.1189/jlb.4vmr0316-103r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/19/2016] [Indexed: 12/15/2022] Open
Abstract
Review on how complex mixtures of bioactive lipids and cholesterol may influence the pulmonary immune response during infection. Bacterial and viral respiratory tract infections result in millions of deaths worldwide and are currently the leading cause of death from infection. Acute inflammation is an essential element of host defense against infection, but can be damaging to the host when left unchecked. Effective host defense requires multiple lipid mediators, which collectively have proinflammatory and/or proresolving effects on the lung. During pulmonary infections, phospholipid acyl chains and cholesterol can be chemically and enzymatically oxidized, as well as truncated and modified, producing complex mixtures of bioactive lipids. We review recent evidence that phospholipids and cholesterol and their derivatives regulate pulmonary innate and adaptive immunity during infection. We first highlight data that oxidized phospholipids generated in the lung during infection stimulate pattern recognition receptors, such as TLRs and scavenger receptors, thereby amplifying the pulmonary inflammatory response. Next, we discuss evidence that oxidation of endogenous pools of cholesterol during pulmonary infections produces oxysterols that also modify the function of both innate and adaptive immune cells. Last, we conclude with data that n‐3 polyunsaturated fatty acids, both in the form of phospholipid acyl chains and through enzymatic processing into endogenous proresolving lipid mediators, aid in the resolution of lung inflammation through distinct mechanisms. Unraveling the complex mechanisms of induction and function of distinct classes of bioactive lipids, both native and modified, may hold promise for developing new therapeutic strategies for improving pulmonary outcomes in response to infection.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes and Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University (ECU), Greenville, North Carolina, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIEHS/NIH), Research Triangle Park, North Carolina, USA
| | - Kymberly M Gowdy
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA;
| |
Collapse
|
10
|
Teague H, Harris M, Whelan J, Comstock SS, Fenton JI, Shaikh SR. Short-term consumption of n-3 PUFAs increases murine IL-5 levels, but IL-5 is not the mechanistic link between n-3 fatty acids and changes in B-cell populations. J Nutr Biochem 2015; 28:30-6. [PMID: 26878780 DOI: 10.1016/j.jnutbio.2015.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 12/31/2022]
Abstract
N-3 polyunsaturated fatty acids (PUFAs) exert immunomodulatory effects on B cells. We previously demonstrated that n-3 PUFAs enhanced the relative percentage and/or frequency of select B2 cell subsets. The objectives here were to determine if n-3 PUFAs (a) could boost cytokines that target B-cell frequency, (b) enhance the frequency of the B1 population and (c) to identify the mechanism by which n-3 PUFAs modify the proportion of B cells. Administration of n-3 PUFAs as fish oil to C57BL/6 mice enhanced secretion of the Th2 cytokine IL-5 but not IL-9 or IL-13. N-3 PUFAs had no influence on the percentage or frequency of peritoneal B1 or B2 cells. Subsequent experiments with IL-5(-/-) knockout mice showed n-3 PUFAs decreased the percentage of bone marrow B220(lo)IgM(hi) cells and increased the proportion and number of splenic IgM(+)IgD(lo)CD21(lo) cells compared to the control. These results, when compared with our previous findings with wild-type mice, suggested IL-5 had no role in mediating the effect of n-3 PUFAs on B-cell populations. To confirm this conclusion, we assayed IL-5 secretion in a diet-induced obesity model in which n-3 PUFAs enhanced the frequency of select B-cell subsets. N-3 PUFA supplementation as ethyl esters to obesogenic diets did not alter circulating IL-5 levels. Altogether, the data establish that n-3 PUFAs as fish oil can increase circulating IL-5 in lean mice, which has implications for several disease end points, but this increase in IL-5 is not the mechanistic link between n-3 PUFAs and changes in B-cell populations.
Collapse
Affiliation(s)
- Heather Teague
- Department of Biochemistry & Molecular Biology, East Carolina University; East Carolina Diabetes & Obesity Institute, East Carolina University
| | - Mitchel Harris
- Department of Biochemistry & Molecular Biology, East Carolina University; East Carolina Diabetes & Obesity Institute, East Carolina University
| | - Jarrett Whelan
- Department of Biochemistry & Molecular Biology, East Carolina University; East Carolina Diabetes & Obesity Institute, East Carolina University
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI; College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina University; East Carolina Diabetes & Obesity Institute, East Carolina University; Department of Microbiology & Immunology, East Carolina University.
| |
Collapse
|
11
|
Shaikh SR, Boyle S, Edidin M. A high fat diet containing saturated but not unsaturated fatty acids enhances T cell receptor clustering on the nanoscale. Prostaglandins Leukot Essent Fatty Acids 2015; 100:1-4. [PMID: 26143085 PMCID: PMC4554807 DOI: 10.1016/j.plefa.2015.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/07/2015] [Indexed: 01/16/2023]
Abstract
Cell culture studies show that the nanoscale lateral organization of surface receptors, their clustering or dispersion, can be altered by changing the lipid composition of the membrane bilayer. However, little is known about similar changes in vivo, which can be effected by changing dietary lipids. We describe the use of a newly developed method, k-space image correlation spectroscopy, kICS, for analysis of quantum dot fluorescence to show that a high fat diet can alter the nanometer-scale clustering of the murine T cell receptor, TCR, on the surface of naive CD4(+) T cells. We found that diets enriched primarily in saturated fatty acids increased TCR nanoscale clustering to a level usually seen only on activated cells. Diets enriched in monounsaturated or n-3 polyunsaturated fatty acids had no effect on TCR clustering. Also none of the high fat diets affected TCR clustering on the micrometer scale. Furthermore, the effect of the diets was similar in young and middle aged mice. Our data establish proof-of-principle that TCR nanoscale clustering is sensitive to the composition of dietary fat.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/metabolism
- Diet, High-Fat
- Fatty Acids/metabolism
- Fatty Acids, Monounsaturated/metabolism
- Fatty Acids, Omega-3/metabolism
- Mice
- Mice, Transgenic
- Protein Multimerization
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Spectrum Analysis/methods
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina Diabetes & Obesity Institute, East Carolina University, 600 Moye Blvd, Greenville, NC 27834, USA.
| | - Sarah Boyle
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Michael Edidin
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
12
|
Whelan J, Gowdy KM, Shaikh SR. N-3 polyunsaturated fatty acids modulate B cell activity in pre-clinical models: Implications for the immune response to infections. Eur J Pharmacol 2015; 785:10-17. [PMID: 26022530 DOI: 10.1016/j.ejphar.2015.03.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/15/2015] [Accepted: 03/05/2015] [Indexed: 12/12/2022]
Abstract
B cell antigen presentation, cytokine production, and antibody production are targets of pharmacological intervention in inflammatory and infectious diseases. Here we review recent pre-clinical evidence demonstrating that pharmacologically relevant levels of n-3 polyunsaturated fatty acids (PUFA) derived from marine fish oils influence key aspects of B cell function through multiple mechanisms. N-3 PUFAs modestly diminish B cell mediated stimulation of classically defined naïve CD4(+) Th1 cells through the major histocompatibility complex (MHC) class II pathway. This is consistent with existing data showing that n-3 PUFAs suppress the activation of Th1/Th17 cells through direct effects on helper T cells and indirect effects on antigen presenting cells. Mechanistically, n-3 PUFAs lower antigen presentation and T cell signaling by disrupting the formation of lipid microdomains within the immunological synapse. We then review data to show that n-3 PUFAs boost B cell activation and antibody production in the absence and presence of antigen stimulation. This has potential benefits for several clinical populations such as the aged and obese that have poor humoral immunity. The mode of action by which n-3 PUFA boost B cell activation and antibody production remains unclear, but may involve Th2 cytokines, enhanced production of specialized proresolving lipid mediators, and targeting of protein lateral organization in lipid microdomains. Finally, we highlight evidence to show that different n-3 PUFAs are not biologically equivalent, which has implications for the development of future interventions to target B cell activity.
Collapse
Affiliation(s)
- Jarrett Whelan
- Department of Biochemistry & Molecular Biology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Kymberly M Gowdy
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Department of Microbiology & Immunology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
13
|
Shaikh SR, Wassall SR, Brown DA, Kosaraju R. N-3 Polyunsaturated Fatty Acids, Lipid Microclusters, and Vitamin E. CURRENT TOPICS IN MEMBRANES 2015; 75:209-31. [PMID: 26015284 DOI: 10.1016/bs.ctm.2015.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increased consumption of long-chain marine n-3 polyunsaturated fatty acids (PUFA) has potential health benefits for the general population and for select clinical populations. However, several key limitations remain in making adequate dietary recommendations on n-3 PUFAs in addition to translating the fatty acids into clinical trials for select diseases. One major constraint is an incomplete understanding of the underlying mechanisms of action of n-3 PUFAs. In this review, we highlight studies to show n-3 PUFA acyl chains reorganize the molecular architecture of plasma membrane sphingolipid-cholesterol-enriched lipid rafts and potentially sphingolipid-rich cholesterol-free domains and cardiolipin-protein scaffolds in the inner mitochondrial membrane. We also discuss the possibility that the effects of n-3 PUFAs on membrane organization could be regulated by the presence of vitamin E (α-tocopherol), which is necessary to protect highly unsaturated acyl chains from oxidation. Finally, we propose the integrated hypothesis, based predominately on studies in lymphocytes, cancer cells, and model membranes, that the mechanism by which n-3 PUFAs disrupt signaling microclusters is highly dependent on the type of lipid species that incorporate n-3 PUFA acyl chains. The current evidence suggests that n-3 PUFA acyl chains disrupt lipid raft formation by incorporating primarily into phosphatidylethanolamines but can also incorporate into other lipid species of the lipidome.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina University, Greenville, NC, USA; Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - David A Brown
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Rasagna Kosaraju
- Department of Biochemistry & Molecular Biology, East Carolina University, Greenville, NC, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| |
Collapse
|
14
|
Gurzell EA, Teague H, Duriancik D, Clinthorne J, Harris M, Shaikh SR, Fenton JI. Marine fish oils are not equivalent with respect to B-cell membrane organization and activation. J Nutr Biochem 2014; 26:369-77. [PMID: 25616447 DOI: 10.1016/j.jnutbio.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 12/29/2022]
Abstract
We previously reported that docosahexaenoic-acid (DHA)-enriched fish oil (DFO) feeding altered B-cell membrane organization and enhanced B-cell function. The purpose of this study was to evaluate whether menhaden oil (MO) and eicosapentaenoic-acid (EPA)-enriched fish oil (EFO) alters B-cell function/phenotype similarly. Mice were fed control (CON), MO, EFO or DFO diets for 5weeks. We evaluated the fatty acid composition of B-cell phospholipids, membrane microdomain organization, ex vivo B-cell functionality and in vivo B-cell subsets. Red blood cells and B cells were found to be strongly (r>0.85) and significantly (P<.001) correlated for major n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFAs). Compared to CON, MO and DFO resulted in decreased clustering of membrane microdomains, whereas EFO increased clustering. All fish oil treatments had 1.12-1.60 times higher CD40 expression following stimulation; however, we observed 0.86 times lower major histocompatibility complex class II expression and 0.7 times lower interleukin (IL)-6 production from EFO, but 3.25 times higher interferon-γ from MO and 1.5 times higher IL-6 from DFO. By 90min of incubation, MO had 1.11 times higher antigen uptake compared to CON, whereas EFO was 0.86 times lower. All fish oil treatments resulted in decreasingly mature splenic and bone marrow B-cell subsets. We conclude that diets high in n-3 LCPUFAs may elicit similar B-cell phenotypes but different organizational and functional outcomes. More specifically, these data suggest that the EPA and DHA content of a diet influences immunological outcomes, highlighting the importance of understanding how specific n-3 LCPUFAs modulate B-cell development and function.
Collapse
Affiliation(s)
- Eric A Gurzell
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824
| | - Heather Teague
- Department of Biochemistry & Molecular Biology, Department of Microbiology & Immunology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834
| | - David Duriancik
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824
| | - Jonathan Clinthorne
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824
| | - Mitchel Harris
- Department of Biochemistry & Molecular Biology, Department of Microbiology & Immunology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834
| | - Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, Department of Microbiology & Immunology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824; College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
15
|
Robinson MD, Cistola DP. Nanofluidity of fatty acid hydrocarbon chains as monitored by benchtop time-domain nuclear magnetic resonance. Biochemistry 2014; 53:7515-22. [PMID: 25409529 DOI: 10.1021/bi5011859] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The functional properties of lipid-rich assemblies such as serum lipoproteins, cell membranes, and intracellular lipid droplets are modulated by the fluidity of the hydrocarbon chain environment. Existing methods for monitoring hydrocarbon chain fluidity include fluorescence, electron spin resonance, and nuclear magnetic resonance (NMR) spectroscopy; each possesses advantages and limitations. Here we introduce a new approach based on benchtop time-domain (1)H NMR relaxometry (TD-NMR). Unlike conventional NMR spectroscopy, TD-NMR does not rely on the chemical shift resolution made possible by homogeneous, high-field magnets and Fourier transforms. Rather, it focuses on a multiexponential analysis of the time decay signal. In this study, we investigated a series of single-phase fatty acid oils, which allowed us to correlate (1)H spin-spin relaxation time constants (T2) with experimental measures of sample fluidity, as obtained using a viscometer. Remarkably, benchtop TD-NMR at 40 MHz was able to resolve two to four T2 components in biologically relevant fatty acids, assigned to nanometer-scale domains in different segments of the hydrocarbon chain. The T2 values for each domain were exquisitely sensitive to hydrocarbon chain structure; the largest values were observed for pure fatty acids or mixtures with the highest cis-double bond content. Moreover, the T2 values for each domain exhibited positive linear correlations with fluidity. The TD-NMR T2 and fluidity measurements appear to be monitoring the same underlying phenomenon: variations in hydrocarbon chain packing. The results from this study validate the use of benchtop TD-NMR T2 as a nanofluidity meter and demonstrate its potential for probing nanofluidity in other systems of biological interest.
Collapse
Affiliation(s)
- Michelle D Robinson
- Nanoparticle Diagnostics Research Laboratory, Division of Research & Innovation, and Department of Integrative Physiology, University of North Texas Health Science Center , Fort Worth, Texas 76107, United States
| | | |
Collapse
|
16
|
Particle size influences fibronectin internalization and degradation by fibroblasts. Exp Cell Res 2014; 328:172-185. [PMID: 24995996 DOI: 10.1016/j.yexcr.2014.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/20/2014] [Accepted: 06/22/2014] [Indexed: 11/20/2022]
Abstract
The application of nanotechnology for drug targeting underlines the importance of controlling the kinetics and cellular sites of delivery for optimal therapeutic outcomes. Here we examined the effect of particle size on internalization and degradation of surface-bound fibronectin by fibroblasts using polystyrene nanoparticles (NPs; 51 nm) and microparticles (MPs; 1 μm). Fibronectin was strongly bound by NPs and MPs as assessed by immuno-dot blot analysis (5.1 ± 0.4 × 10(- 5)pg fibronectin per μm(2) of NP surface; 4.2 ± ± 0.3 × 10(-5)pg fibronectin per μm(2) of MP surface; p>0.2). We estimated that ~193 fibronectin molecules bound to a MP compared with 0.6 fibronectin molecules per NP, indicating that ~40% of nanoparticles were not bound by fibronectin. One hour after incubation, fibronectin-coated NPs and MPs were rapidly internalized by Rat-2 fibroblasts. MPs and NPs were engulfed partly by receptor-mediated endocytosis as indicated by decreased uptake when incubated at 4°C, or by depletion of ATP with sodium azide. Pulse-chase experiments showed minimal exocytosis of NPs and MPs. Internalization of NPs and MPs was inhibited by jasplakinolide, whereas internalization of MPs but not NPs was inhibited by latrunculin B and by integrin-blocking antibodies. Extraction of plasma membrane cholesterol with methyl β-cyclodextrin inhibited internalization of fibronectin-coated NPs but not MPs. Biotinylated fibronectin internalized by cells was extensively degraded on MPs but not NPs. Particle size affects actin and clathrin-dependent internalization mechanisms leading to fibronectin degradation on MPs but not NPs. Thus either prolonged, controlled release or an immediate delivery of drugs can be achieved by adjusting the particle size along with matrix proteins such as FN.
Collapse
|
17
|
Shaikh SR, Kinnun JJ, Leng X, Williams JA, Wassall SR. How polyunsaturated fatty acids modify molecular organization in membranes: insight from NMR studies of model systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:211-9. [PMID: 24820775 DOI: 10.1016/j.bbamem.2014.04.020] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/23/2014] [Indexed: 11/26/2022]
Abstract
Marine long chain n-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), are bioactive molecules with clinical applications for the treatment of several diseases. In order to effectively translate these molecules into clinical trials, it is essential to establish the underlying mechanisms for n-3 PUFA. This review focuses on efforts to understand how EPA and DHA, upon incorporation into plasma membrane phospholipids, remodel the molecular organization of cholesterol-enriched lipid microdomains. We first give an overview of results from studies on cells. Paradoxical data generated from mouse studies indicate that EPA and DHA incorporate into lipid microdomains, yet in spite of their high disorder increase molecular order within the domain. We then spotlight the utility of solid state (2)H NMR spectroscopy of model bilayers as a tool for elucidating underlying mechanisms by which n-3 PUFA-containing phospholipids can regulate molecular organization of lipid microdomains. Evidence is presented demonstrating that n-3 PUFA exert differential structural effects when incorporated into phosphatidylethanolamines (PE) compared to phosphatidylcholines (PC), which explains some of the conflicting results observed in vivo. Recent studies that reveal differences between the interactions of EPA and DHA with lipid microdomains, potentially reflecting a differential in bioactivity, are finally described. Overall, we highlight the notion that NMR experiments on model membranes suggest a complex model by which n-3 PUFA reorganize lipid microdomains in vivo.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Room 4117, Mail Stop 743, Greenville, NC 27834, USA
| | - Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, IN 46202-3273, USA
| | - Xiaoling Leng
- Department of Physics, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, IN 46202-3273, USA
| | - Justin A Williams
- Department of Physics, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, IN 46202-3273, USA
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, IN 46202-3273, USA.
| |
Collapse
|
18
|
Abstract
Major histocompatibility complex (MHC) class II molecules are ligands for CD4+ T cells and are critical for initiating the adaptive immune response. This review is focused on what is currently known about MHC class II organization at the plasma membrane of antigen presenting cells and how this affects antigen presentation to T cells. The organization and diffusion of class II molecules have been measured by a variety of biochemical and microscopic techniques. Membrane lipids and other proteins have been implicated in MHC class II organization and function. However, when compared with the organization of MHC class I or TCR complexes, much less is known about MHC class II. Since clustering of T cell receptors occurs during activation, the organization of MHC molecules prior to recognition and during synapse formation may be critical for antigen presentation.
Collapse
Affiliation(s)
- David R Fooksman
- Department of Pathology, Albert Einstein College of Medicine , Bronx, NY , USA
| |
Collapse
|
19
|
Fenton JI, Hord NG, Ghosh S, Gurzell EA. Immunomodulation by dietary long chain omega-3 fatty acids and the potential for adverse health outcomes. Prostaglandins Leukot Essent Fatty Acids 2013; 89:379-90. [PMID: 24183073 PMCID: PMC3912985 DOI: 10.1016/j.plefa.2013.09.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/18/2013] [Accepted: 09/21/2013] [Indexed: 01/07/2023]
Abstract
Recommendations to consume fish for prevention of cardiovascular disease (CVD), along with the U.S. Food and Drug Administration-approved generally recognized as safe (GRAS) status for long chain omega-3 fatty acids, may have had the unanticipated consequence of encouraging long-chain omega-3 (ω-3) fatty acid [(eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] supplementation and fortification practices. While there is evidence supporting a protective role for EPA/DHA supplementation in reducing sudden cardiac events, the safety and efficacy of supplementation with LCω-3PUFA in the context of other disease outcomes is unclear. Recent studies of bacterial, viral, and fungal infections in animal models of infectious disease demonstrate that LCω-3PUFA intake dampens immunity and alters pathogen clearance and can result in reduced survival. The same physiological properties of EPA/DHA that are responsible for the amelioration of inflammation associated with chronic cardiovascular pathology or autoimmune states, may impair pathogen clearance during acute infections by decreasing host resistance or interfere with tumor surveillance resulting in adverse health outcomes. Recent observations that high serum LCω-3PUFA levels are associated with higher risk of prostate cancer and atrial fibrillation raise concern for adverse outcomes. Given the widespread use of supplements and fortification of common food items with LCω-3PUFA, this review focuses on the immunomodulatory effects of the dietary LCω-3PUFAs, EPA and DHA, the mechanistic basis for potential negative health outcomes, and calls for biomarker development and validation as rational first steps towards setting recommended dietary intake levels.
Collapse
Affiliation(s)
- Jenifer I Fenton
- Department of Food Science and Human, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States; College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, United States.
| | | | | | | |
Collapse
|
20
|
Teague H, Fhaner CJ, Harris M, Duriancik DM, Reid GE, Shaikh SR. n-3 PUFAs enhance the frequency of murine B-cell subsets and restore the impairment of antibody production to a T-independent antigen in obesity. J Lipid Res 2013; 54:3130-8. [PMID: 23986558 DOI: 10.1194/jlr.m042457] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of n-3 polyunsaturated fatty acids (PUFA) on in vivo B-cell immunity is unknown. We first investigated how n-3 PUFAs impacted in vivo B-cell phenotypes and antibody production in the absence and presence of antigen compared with a control diet. Lean mice consuming n-3 PUFAs for 4 weeks displayed increased percentage and frequency of splenic transitional 1 B cells. Upon stimulation with trinitrophenylated-lipopolysaccharide, n-3 PUFAs increased the number of splenic transitional 1/2, follicular, premarginal, and marginal zone B cells. n-3 PUFAs also increased surface, but not circulating, IgM. We next tested the effects of n-3 PUFAs in a model of obesity that is associated with suppressed humoral immunity. An obesogenic diet after ten weeks of feeding, relative to a lean control, had no effect on the frequency of B cells but lowered circulating IgM upon antigen stimulation. Administration of n-3 PUFAs to lean and obese mice increased the percentage and/or frequency of transitional 1 and marginal zone B cells. Furthermore, n-3 PUFAs in lean and obese mice increased circulating IgM relative to controls. Altogether, the data show n-3 PUFAs enhance B cell-mediated immunity in vivo, which has implications for immunocompromised populations, such as the obese.
Collapse
Affiliation(s)
- Heather Teague
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | | | | | | | | | | |
Collapse
|