1
|
Zhou L, Lu S, Gao X, Chen Z, Zhang Y, Zhong W, Zhu F, Li B, Lin X. Antioxidant and Anticancer Mechanisms of Unique Polyphenols in Camellia ptilophylla: Focus on Gallocatechin-3,5-di-O-gallate and 1,2,4,6-Tetra-O-galloyl-β-D-glucopyranose. Molecules 2025; 30:1919. [PMID: 40363725 PMCID: PMC12073820 DOI: 10.3390/molecules30091919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Camellia ptilophylla Chang (C. ptilophylla), a unique low-caffeine tea species, is valued for its bioactive properties, especially antioxidant and anticancer activities, due to its distinct phytochemical profile. However, its precise constituents and mechanisms remain poorly understood. This study employs an integrated approach combining chromatographic separation, bioinformatic analysis, and cellular assays to systematically investigate the antioxidant and anticancer properties of C. ptilophylla and elucidate its underlying molecular mechanisms. Quantitative analysis revealed that in addition to trans-catechins, the unique polyphenolic compounds, gallocatechin-3,5-di-O-gallate (GC-3,5-diGA) and 1,2,4,6-tetra-O-galloyl-β-D-glucopyranose (1,2,4,6-GA-glc), constituted significant proportions of C. ptilophylla extracts, with concentrations of 10.25 ± 0.29% and 6.60 ± 0.14%, respectively. Monomeric activity assessment demonstrated that both GC-3,5-diGA and 1,2,4,6-GA-glc exhibited pronounced antiproliferative effects against three cancer cell lines including the Lymph Node Carcinoma of the Prostate cell, human colon cancer cell, and human breast cancer cell. Notably, these compounds demonstrated potent antioxidant capacity, with 62.5 μM of GC-3,5-diGA and 15.63 μM of 1,2,4,6-GA-glc protecting against tBHP-induced oxidative stress in NIH3T3 cells comparable to 125 μM of epigallocatechin gallate and gallocatechin gallate in half-maximal inhibitory concentration. Mechanistic studies revealed that these polyphenols modulated antioxidant defenses and reactive oxygen species homeostasis via targets like fibroblast growth factor 2, telomerase reverse transcriptase, matrix metalloproteinase 9, and ATP-binding cassette subfamily G member 2, inducing oxidative stress and mitochondrial apoptosis to inhibit carcinogenesis. These findings enhance our understanding of the bioactive components responsible for the anticancer and antioxidant properties of C. ptilophylla and provide a scientific basis for the development of this dual-purpose plant for food and medicinal applications.
Collapse
Affiliation(s)
- Langhua Zhou
- College of Food Science, Scientific Research Base of Tea Comprehensive Utilization Technology Integration of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (S.L.); (Z.C.); (Y.Z.); (W.Z.); (F.Z.)
| | - Sen Lu
- College of Food Science, Scientific Research Base of Tea Comprehensive Utilization Technology Integration of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (S.L.); (Z.C.); (Y.Z.); (W.Z.); (F.Z.)
| | - Xiong Gao
- Institute of Food Microstructure, College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing 350300, China;
| | - Zhongzheng Chen
- College of Food Science, Scientific Research Base of Tea Comprehensive Utilization Technology Integration of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (S.L.); (Z.C.); (Y.Z.); (W.Z.); (F.Z.)
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Yuanyuan Zhang
- College of Food Science, Scientific Research Base of Tea Comprehensive Utilization Technology Integration of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (S.L.); (Z.C.); (Y.Z.); (W.Z.); (F.Z.)
| | - Weixia Zhong
- College of Food Science, Scientific Research Base of Tea Comprehensive Utilization Technology Integration of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (S.L.); (Z.C.); (Y.Z.); (W.Z.); (F.Z.)
| | - Fuming Zhu
- College of Food Science, Scientific Research Base of Tea Comprehensive Utilization Technology Integration of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (S.L.); (Z.C.); (Y.Z.); (W.Z.); (F.Z.)
| | - Bin Li
- College of Food Science, Scientific Research Base of Tea Comprehensive Utilization Technology Integration of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (S.L.); (Z.C.); (Y.Z.); (W.Z.); (F.Z.)
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Xiaorong Lin
- College of Food Science, Scientific Research Base of Tea Comprehensive Utilization Technology Integration of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (S.L.); (Z.C.); (Y.Z.); (W.Z.); (F.Z.)
| |
Collapse
|
2
|
Du L, Zheng Y, Yang YH, Huang YJ, Hao YM, Chen C, Wang BZ, Guo X, Wu H, Su GH. Krill oil prevents lipopolysaccharide-evoked acute liver injury in mice through inhibition of oxidative stress and inflammation. Food Funct 2022; 13:3853-3864. [PMID: 35274650 DOI: 10.1039/d1fo04136c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute liver injury is a life-threatening syndrome that often results from the actions of viruses, drugs and toxins. Herein, the protective effect and potential mechanism of krill oil (KO), a novel natural product rich in long-chain n-3 polyunsaturated fatty acids bound to phospholipids and astaxanthin, on lipopolysaccharide (LPS)-evoked acute liver injury in mice were investigated. Male C57BL/6J mice were administered intragastrically with 400 mg kg-1 KO or fish oil (FO) once per day for 28 consecutive days prior to LPS exposure (10 mg kg-1, intraperitoneally injected). The results revealed that KO pretreatment significantly ameliorated LPS-evoked hepatic dysfunction indicated by reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and attenuated hepatic histopathological damage. KO pretreatment also mitigated LPS-induced hepatic oxidative stress, as evidenced by decreased malondialdehyde (MDA) contents, elevated glutathione (GSH) levels, and elevated catalase (CAT) and superoxide dismutase (SOD) activities. Additionally, LPS-evoked overproduction of pro-inflammatory mediators in serum and the liver was inhibited by KO pretreatment. Furthermore, KO pretreatment suppressed LPS-induced activation of the hepatic toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3) signaling pathway. Interestingly, the hepatoprotective effect of KO was superior to that of FO. Collectively, the current findings suggest that KO protects against LPS-evoked acute liver injury via inhibition of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China. .,Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China.
| | - Yu-Hong Yang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, Shandong, 250353, China
| | - Yu-Jie Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Yi-Ming Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Chen Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Bao-Zhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Xin Guo
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China. .,Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China. .,Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Guo-Hai Su
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China.
| |
Collapse
|
3
|
Luo T, Jiang S, Zhou B, Song Q, Du J, Liu P, Wang X, Song H, Shao C. Protective Effect of Isoorientin on Oleic Acid-Induced Oxidative Damage and Steatosis in Rat Liver Cells. Front Pharmacol 2022; 13:818159. [PMID: 35185572 PMCID: PMC8853441 DOI: 10.3389/fphar.2022.818159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022] Open
Abstract
The harm of nonalcoholic fatty liver disease to human health is increasing, which calls for urgent prevention and treatment of the disease. Isoorientin is an effective ingredient of Chinese herbal medicine with anti-inflammatory and antioxidant effects. However, the effect of isoorientin in nonalcoholic fatty liver disease is still unclear. In this study, combined in vivo and in vitro experiments, through pathological observation, flow cytometry, immunofluorescence and western blot analysis to explore the role of isoorientin in steatosis and reveal its molecular mechanism. The results demonstrated that oleic acid treatment significantly increased the content of ROS and lipid droplets in rat hepatocytes, and promoted the expression of γH2AX, HO-1, PPARγ, SREBP-1c, FAS. The ROS content in the cells of co-treated with isoorientin and oleic acid was significantly reduced compared to the oleic acid group, and the expression of γH2AX, HO-1, PPARγ, SREBP-1c, FAS, and the nuclear translocation of NF-κB p65 were also significantly inhibited. Our data showed that oleic acid induce oxidative damage and steatosis in hepatocytes both in vitro and in vivo, and activate the PPARγ/NF-κB p65 signal pathway. Moreover, isoorientin can significantly reduce oleic acid -induced oxidative damage and steatosis by regulating the PPARγ/NF-kB p65 signal pathway.
Collapse
Affiliation(s)
- Tongwang Luo
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Tongwang Luo, ; Houhui Song, ; Chunyan Shao,
| | - Sheng Jiang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Bin Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Quanjiang Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jing Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Ping Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xiaodu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Tongwang Luo, ; Houhui Song, ; Chunyan Shao,
| | - Chunyan Shao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Tongwang Luo, ; Houhui Song, ; Chunyan Shao,
| |
Collapse
|
4
|
Peng X, Luo Z, He S, Zhang L, Li Y. Blood-Brain Barrier Disruption by Lipopolysaccharide and Sepsis-Associated Encephalopathy. Front Cell Infect Microbiol 2021; 11:768108. [PMID: 34804998 PMCID: PMC8599158 DOI: 10.3389/fcimb.2021.768108] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022] Open
Abstract
As a complex multicellular structure of the vascular system at the central nervous system (CNS), the blood-brain barrier (BBB) separates the CNS from the system circulation and regulates the influx and efflux of substances to maintain the steady-state environment of the CNS. Lipopolysaccharide (LPS), the cell wall component of Gram-negative bacteria, can damage the barrier function of BBB and further promote the occurrence and development of sepsis-associated encephalopathy (SAE). Here, we conduct a literature review of the direct and indirect damage mechanisms of LPS to BBB and the relationship between these processes and SAE. We believe that after LPS destroys BBB, a large number of inflammatory factors and neurotoxins will enter and damage the brain tissue, which will activate brain immune cells to mediate inflammatory response and in turn further destroys BBB. This vicious circle will ultimately lead to the progression of SAE. Finally, we present a succinct overview of the treatment of SAE by restoring the BBB barrier function and summarize novel opportunities in controlling the progression of SAE by targeting the BBB.
Collapse
Affiliation(s)
- Xiaoyao Peng
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Zhixuan Luo
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Shuang He
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Luhua Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ying Li
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Zhao Y, Li Z, Lu E, Sheng Q, Zhao Y. Berberine exerts neuroprotective activities against cerebral ischemia/reperfusion injury through up-regulating PPAR-γ to suppress NF-κB-mediated pyroptosis. Brain Res Bull 2021; 177:22-30. [PMID: 34517069 DOI: 10.1016/j.brainresbull.2021.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Berberine (BBR) is an anti-inflammatory alkaloid compound extracted from herbs. The purpose of this study is to probe the possible effect and the mechanism of BBR against cerebral ischemia/reperfusion (I/R) injury. METHODS In vitro oxygen and glucose deprivation (OGD) model was established on neurons from rat hippocampus, which was then subjected to BBR, IVA337 (PPAR-γ agonist), or GW9662 (PPAR-γ antagonist) treatment, to identify their effects on neuronal pyroptosis. MTT assay was utilized to determine cell survival rates, TUNEL staining for observation of β-tubulin and MAP2 expressions, qRT-PCR for detection of mRNA expression of PPAR-γ, Western blot for assessment of protein expressions of PPAR-γ and pyroptosis-related proteins (AIM2, NLPR3, ASC, cleaved-Caspase-1, GSDMD, and GSDMD-N), and ELISA for examination of IL-18 and IL-1β expressions. RESULTS OGD modeling induced neuron pyroptosis, as evidenced by increased expression levels of pyroptosis-related proteins as well as IL-1β and IL-18, and elevated cell apoptosis rate. In addition, OGD exposure led to PPAR-γ up-regulation and NF-κB activation. Overexpression of PPAR-γ ameliorated cell pyroptosis, while knockdown of PPAR-γ intensified neuron pyroptosis that could be reversed by BBR. Furthermore, either BBR could block the activation of NF-κB signaling pathway through PPAR-γ. CONCLUSION BBR protects rats from cerebral I/R injury by up-regulating PPAR-γ to restrain NF-κB-mediated pyroptosis.
Collapse
Affiliation(s)
- Yingnan Zhao
- Department of Neurology (Six), The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Zengkun Li
- Department of Neurology, Harbin First Hospital, Harbin, Heilongjiang 150001, PR China
| | - Enrong Lu
- Department of Neurology (Six), The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Qi Sheng
- Department of Neurology, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518000, PR China
| | - Yu Zhao
- Department of Neurology (Six), The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China.
| |
Collapse
|
6
|
Moss JWE, Williams JO, Al-Ahmadi W, O'Morain V, Chan YH, Hughes TR, Menendez-Gonzalez JB, Almotiri A, Plummer SF, Rodrigues NP, Michael DR, Ramji DP. Protective effects of a unique combination of nutritionally active ingredients on risk factors and gene expression associated with atherosclerosis in C57BL/6J mice fed a high fat diet. Food Funct 2021; 12:3657-3671. [PMID: 33900312 PMCID: PMC8359826 DOI: 10.1039/d0fo02867c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherosclerosis, an inflammatory disorder of the vasculature and the underlying cause of cardiovascular disease, is responsible for one in three global deaths. Consumption of active food ingredients such as omega-3 polyunsaturated fatty acids, flavanols and phytosterols has many beneficial effects on cardiovascular disease. However, their combined actions on the risk factors for atherosclerosis remains poorly understood. We have previously shown that a formulation containing each of these active components at physiologically relevant doses modulated several monocyte/macrophage processes associated with atherosclerosis in vitro, including inhibition of cytokine-induced pro-inflammatory gene expression, chemokine-driven monocyte migration, expression of M1 phenotype markers, and promotion of cholesterol efflux. The objectives of the present study were to investigate whether the protective actions of the formulation extended in vivo and to delineate the potential underlying mechanisms. The formulation produced several favourable changes, including higher plasma levels of HDL and reduced levels of macrophages and myeloid-derived suppressor cells in the bone marrow. The mRNA expression of liver-X-receptor-α, peroxisome proliferator-activated receptor-γ and superoxide dismutase-1 was induced in the liver and that of interferon-γ and the chemokine (C-X-C motif) ligand 1 decreased, thereby suggesting the potential mechanisms for many beneficial effects. Other changes were also observed such as increased plasma levels of triglycerides and lipid peroxidation that may reflect potential activation of brown fat. This study provides new insights into the protective actions and the potential underlying mechanisms of the formulation in vivo, particularly in relation to risk factors together with changes in systemic inflammation and hepatic lipid alterations associated with atherosclerosis and metabolic syndrome, and supports further assessments in human trials.
Collapse
Affiliation(s)
- Joe W E Moss
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Jessica O Williams
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Wijdan Al-Ahmadi
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Victoria O'Morain
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Yee-Hung Chan
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Timothy R Hughes
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Juan B Menendez-Gonzalez
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Alhomidi Almotiri
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Sue F Plummer
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, SA12 7BZ, UK
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Daryn R Michael
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot, SA12 7BZ, UK
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
7
|
Hacioglu C, Kar F, Kacar S, Sahinturk V, Kanbak G. Bexarotene inhibits cell proliferation by inducing oxidative stress, DNA damage and apoptosis via PPARγ/ NF-κB signaling pathway in C6 glioma cells. Med Oncol 2021; 38:31. [DOI: 10.1007/s12032-021-01476-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
|
8
|
Peng Y, Shi Z, Kumaran Satyanarayanan S, He C, Li P, Wan JB, Su H. Fish oil alleviates LPS-induced inflammation and depressive-like behavior in mice via restoration of metabolic impairments. Brain Behav Immun 2020; 90:393-402. [PMID: 32916272 DOI: 10.1016/j.bbi.2020.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Our previous study revealed that fish oil (FO) pre-treatment could improve the lipopolysaccharides (LPS)-induced depressive-like behavior in mice but did not alter the expression of stress hormones associated with the hypothalamic-pituitary-adrenal (HPA) axis. The exact mechanisms underlying the protective effects of FO remain elusive. Here we applied the metabolomic technique to investigate the potential involvement of FO metabolites in ameliorating depressive-like behaviors in LPS-injected mice. It revealed that LPS-injection stimulated systemic inflammation, exhausted the nicotinamide adenine dinucleotide (NAD) level in the brain, decreased energy metabolism and impaired neuronal function, which collectively contributed to depressive-like behaviors in mice. FO treatment enhanced the production of neuroprotective metabolites including taurine, hypotaurine and tyramine, decreased the generation of neurotoxic agents such as ADPR, glutamate accumulation and oxidized glutathione, and prevented the NAD exhaustion in the brain, which might underlie the beneficial effects of FO against LPS-induced inflammation and depressive-like behaviors.
Collapse
Affiliation(s)
- Yu Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Zhe Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Senthil Kumaran Satyanarayanan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
9
|
Giustina AD, de Souza Goldim MP, Danielski LG, Garbossa L, Junior ANO, Cidreira T, Denicol T, Bonfante S, da Rosa N, Fortunato JJ, Palandi J, de Oliveira BH, Martins DF, Bobinski F, Garcez M, Bellettini-Santos T, Budni J, Colpo G, Scaini G, Giridharan VV, Barichello T, Petronilho F. Lipoic Acid and Fish Oil Combination Potentiates Neuroinflammation and Oxidative Stress Regulation and Prevents Cognitive Decline of Rats After Sepsis. Mol Neurobiol 2020; 57:4451-4466. [PMID: 32743736 DOI: 10.1007/s12035-020-02032-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Sepsis causes organ dysfunction due to an infection, and it may impact the central nervous system. Neuroinflammation and oxidative stress are related to brain dysfunction after sepsis. Both processes affect microglia activation, neurotrophin production, and long-term cognition. Fish oil (FO) is an anti-inflammatory compound, and lipoic acid (LA) is a universal antioxidant substance. They exert neuroprotective roles when administered alone. We aimed at determining the effect of FO+LA combination on microglia activation and brain dysfunction after sepsis. Microglia cells from neonatal pups were co-treated with lipopolysaccharide (LPS) and FO or LA, alone or combined, for 24 h. Cytokine levels were measured. Wistar rats were subjected to sepsis by cecal ligation and perforation (CLP) and treated orally with FO, LA, or FO+LA. At 24 h after surgery, the hippocampus, prefrontal cortex, and total cortex were obtained and assayed for levels of cytokines, myeloperoxidase (MPO) activity, protein carbonyls, superoxide dismutase (SOD), and catalase (CAT) activity. At 10 days after surgery, brain-derived neurotrophic factor (BDNF) levels were determined and behavioral tests were performed. The combination diminished in vitro levels of pro-inflammatory cytokines. The combination reduced TNF-α in the cortex, IL-1β in the prefrontal cortex, as well as MPO activity, and decreased protein carbonyls formation in all structures. The combination enhanced catalase activity in the prefrontal cortex and hippocampus, elevated BDNF levels in all structures, and prevented behavioral impairment. In summary, the combination was effective in preventing cognitive damage by reducing neuroinflammation and oxidative stress and increasing BDNF levels.
Collapse
Affiliation(s)
- Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Leandro Garbossa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Aloir Neri Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Thainá Cidreira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Taís Denicol
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Sandra Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jucélia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Juliete Palandi
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna Hoffmann de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniel Fernandes Martins
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Michelle Garcez
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Tatiani Bellettini-Santos
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Josiane Budni
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Gabriela Colpo
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Giselli Scaini
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
| | - Tatiana Barichello
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA.,Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil. .,Laboratório de Neurobiologia de Processos Inflamatórios e Metabólicos, Programa de Pós-graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil.
| |
Collapse
|
10
|
Lin Z, Jin J, Shan X. Fish oils protects against cecal ligation and puncture‑induced septic acute kidney injury via the regulation of inflammation, oxidative stress and apoptosis. Int J Mol Med 2019; 44:1771-1780. [PMID: 31545434 PMCID: PMC6777667 DOI: 10.3892/ijmm.2019.4337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/14/2019] [Indexed: 12/26/2022] Open
Abstract
Septic acute kidney injury (AKI) is usually caused by sepsis. ω3 fatty acid has been reported to suppress sepsis-induced organ dysfunction to a certain degree. The present study aimed to investigate the effects of ω3 fatty acid in septic renal injury. Sprague Dawley rats were used to establish a cecal ligation and puncture (CLP) model in order to mimic the development of septic injury. The rats were treated with dexamethasone and fish oils (FOs) for 4 days prior to CLP. Alterations in the morphology of the tissues, the renal function and the induction of inflammation, oxidative stress and apoptosis were evaluated. The effects of FOs on nuclear factor-κB (NF-κB), JAK2/STAT3 and p38-MAPK were determined. The rats of the CLP model group exhibited low survival rates and increased expression of serum creatine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin, kidney injury molecule-1 and of proinflammatory cytokines. In addition, the levels of the markers of oxidative injury and apoptosis were increased. The induction of renal injury was notably reversed by administration of dexamethasone and FOs. The expression levels of the protein markers involved in inflammation and apoptosis were measured and the results indicated that FOs inhibited JAK/STAT3 and p-38MAPK signaling, while they concomitantly increased the expression of NF-κB. The present study highlighted that FOs improve CLP-induced mortality and renal injury by inhibiting inflammation, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Zhaoheng Lin
- Intensive Care Unit, The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Jinghong, Yunnan 666100, P.R. China
| | - Jing Jin
- Intensive Care Unit, The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Jinghong, Yunnan 666100, P.R. China
| | - Xiyun Shan
- Intensive Care Unit, The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Jinghong, Yunnan 666100, P.R. China
| |
Collapse
|
11
|
Das UN. Polyunsaturated fatty acids and sepsis. Nutrition 2019; 65:39-43. [PMID: 31029920 DOI: 10.1016/j.nut.2019.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Undurti N Das
- UND Life Sciences, Battle Ground, Washington, USA; BioScience Research Centre and Department of Medicine, GVP Medical College and Hospital, Visakhapatnam, India.
| |
Collapse
|
12
|
Della Giustina A, Goldim MP, Danielski LG, Florentino D, Garbossa L, Joaquim L, Oliveira Junior AN, Mathias K, Fileti ME, Zarbato GF, da Rosa N, Laurentino AOM, Fortunato JJ, Palandi J, de Oliveira BH, Martins DF, Bonbinski F, Bellettini-Santos T, Garcez M, Budni J, Barichello T, Petronilho F. Fish oil-rich lipid emulsion modulates neuroinflammation and prevents long-term cognitive dysfunction after sepsis. Nutrition 2018; 70:110417. [PMID: 30867119 DOI: 10.1016/j.nut.2018.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/07/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Sepsis is a severe organic dysfunction caused by an infection that affects the normal regulation of several organ systems, including the central nervous system. Inflammation and oxidative stress play crucial roles in the development of brain dysfunction in sepsis. The aim of this study was to determine the effect of a fish oil (FO)-55-enriched lipid emulsion as an important anti-inflammatory compound on brain dysfunction in septic rats. METHODS Wistar rats were subjected to sepsis by cecal ligation and perforation (CLP) or sham (control) and treated orally with FO (600 µL/kg after CLP) or vehicle (saline; sal). Animals were divided into sham+sal, sham+FO, CLP+sal and CLP+FO groups. At 24 h and 10 d after surgery, the hippocampus, prefrontal cortex, and total cortex were obtained and assayed for levels of interleukin (IL)-1β and IL-10, blood-brain barrier permeability, nitrite/nitrate concentration, myeloperoxidase activity, thiobarbituric acid reactive species formation, protein carbonyls, superoxide dismutase and catalase activity, and brain-derived neurotrophic factor levels. Behavioral tasks were performed 10 d after surgery. RESULTS FO reduced BBB permeability in the prefrontal cortex and total cortex of septic rats, decreased IL-1β levels and protein carbonylation in all brain structures, and diminished myeloperoxidase activity in the hippocampus and prefrontal cortex. FO enhanced brain-derived neurotrophic factor levels in the hippocampus and prefrontal cortex and prevented cognitive impairment. CONCLUSIONS FO diminishes the negative effect of polymicrobial sepsis in the rat brain by reducing inflammatory and oxidative stress markers.
Collapse
Affiliation(s)
- Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariana Pereira Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Drielly Florentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Leandro Garbossa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Aloir Neri Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Maria Eduarda Fileti
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Graciela Freitas Zarbato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Ana Olívia Martins Laurentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jucélia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Juliete Palandi
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Bruna Hoffmann de Oliveira
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Daniel Fernandes Martins
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Franciane Bonbinski
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Tatiani Bellettini-Santos
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Michele Garcez
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Josiane Budni
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Tatiana Barichello
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil; Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil.
| |
Collapse
|
13
|
Chitosan Oligosaccharides Improve Glucolipid Metabolism Disorder in Liver by Suppression of Obesity-Related Inflammation and Restoration of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ). Mar Drugs 2018; 16:md16110455. [PMID: 30463189 PMCID: PMC6265870 DOI: 10.3390/md16110455] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/01/2018] [Accepted: 11/16/2018] [Indexed: 12/30/2022] Open
Abstract
Chitosan oligosaccharides (COS) display various biological activities. In this study, we aimed to explore the preventive effects of COS on glucolipid metabolism disorder using palmitic acid (PA)-induced HepG2 cells and high-fat diet (HFD)-fed C57BL/6J mice as experimental models in vitro and in vivo, respectively. The results showed that COS pretreatment for 12 h significantly ameliorated lipid accumulation in HepG2 cells exposed to PA for 24 h, accompanied by a reversing of the upregulated mRNA expression of proinflammatory cytokines (IL-6, MCP-1, TNF-α) and glucolipid metabolism-related regulators (SCD-1, ACC1, PCK1-α). In addition, COS treatment alleviated glucolipid metabolism disorder in mice fed with HFD for five months, including reduction in body weight and fasting glucose, restoration of intraperitoneal glucose tolerance, and suppression of overexpression of proinflammatory cytokines and glucolipid metabolism-related regulators. Furthermore, our study found that COS pretreatment significantly reversed the downregulation of PPARγ at transcriptional and translational levels in both PA-induced HepG2 cells and liver tissues of HFD-fed mice. In summary, the study suggests that COS can improve glucolipid metabolism disorder by suppressing inflammation and upregulating PPARγ expression. This indicates a novel application of COS in preventing and treating glucolipid metabolism-related diseases.
Collapse
|
14
|
Henao Agudelo JS, Baia LC, Ormanji MS, Santos ARP, Machado JR, Saraiva Câmara NO, Navis GJ, de Borst MH, Heilberg IP. Fish Oil Supplementation Reduces Inflammation but Does Not Restore Renal Function and Klotho Expression in an Adenine-Induced CKD Model. Nutrients 2018; 10:nu10091283. [PMID: 30208590 PMCID: PMC6164930 DOI: 10.3390/nu10091283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/29/2022] Open
Abstract
Background: Chronic kidney disease and inflammation promote loss of Klotho expression. Given the well-established anti-inflammatory effects of omega-3 fatty acids, we aimed to investigate the effect of fish oil supplementation in a model of CKD. Methods: Male C57BL/6 mice received supplementation with an adenine-enriched diet (AD, n = 5) or standard diet (CTL, n = 5) for 10 days. Two other experimental groups were kept under the adenine diet for 10 days. Following adenine withdrawal on the 11th day, the animals returned to a standard diet supplemented with fish oil (Post AD-Fish oil, n = 9) or not (Post AD-CTL, n = 9) for an additional period of 7 days. Results: Adenine mice exhibited significantly higher mean serum urea, creatinine, and renal expression of the pro-inflammatory markers Interleukin-6 (IL-6), C-X-C motif chemokine 10 (CXCL10), and Interleukin-1β (IL-1β), in addition to prominent renal fibrosis and reduced renal Klotho gene expression compared to the control. Post AD-Fish oil animals demonstrated a significant reduction of IL-6, C-X-C motif chemokine 9 (CXCL9), and IL-1β compared to Post AD-CTL animals. However, serum creatinine, renal fibrosis, and Klotho were not significantly different in the fish oil-treated group. Furthermore, renal histomorphological changes such as tubular dilatation and interstitial infiltration persisted despite treatment. Conclusions: Fish oil supplementation reduced renal pro-inflammatory markers but was not able to restore renal function nor Klotho expression in an adenine-induced CKD model.
Collapse
Affiliation(s)
- Juan S Henao Agudelo
- Division of Nephrology, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, 04023-900 São Paulo, Brazil.
| | - Leandro C Baia
- Division of Nephrology, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, 04023-900 São Paulo, Brazil.
- Division of Nephrology, University of Groningen, University Medical Centre Groningen (UMCG), P.O. Box 30.001, 9700 RB Groningen, The Netherlands.
| | - Milene S Ormanji
- Division of Nephrology, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, 04023-900 São Paulo, Brazil.
| | - Amandda R P Santos
- Division of Nephrology, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, 04023-900 São Paulo, Brazil.
| | - Juliana R Machado
- Tropical Medicine & Public Health, Federal University of Goiás (UFG), Rua 235 s/n-University Sector, 74605-050 Goiânia, Brazil.
| | - Niels O Saraiva Câmara
- Division of Nephrology, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, 04023-900 São Paulo, Brazil.
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes 1730, ICB IV, Sala 238, 05508-000 São Paulo, Brazil.
| | - Gerjan J Navis
- Division of Nephrology, University of Groningen, University Medical Centre Groningen (UMCG), P.O. Box 30.001, 9700 RB Groningen, The Netherlands.
| | - Martin H de Borst
- Division of Nephrology, University of Groningen, University Medical Centre Groningen (UMCG), P.O. Box 30.001, 9700 RB Groningen, The Netherlands.
| | - Ita P Heilberg
- Division of Nephrology, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, 04023-900 São Paulo, Brazil.
| |
Collapse
|
15
|
Liu G, Gong Y, Zhang R, Piao L, Li X, Liu Q, Yan S, Shen Y, Guo S, Zhu M, Yin H, Funk CD, Zhang J, Yu Y. Resolvin E1 attenuates inj ury‐induced vascular neointimal formation by inhibition of inflammatory responses and vascular smooth muscle cell migration. FASEB J 2018; 32:5413-5425. [DOI: 10.1096/fj.201800173r] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guizhu Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Yanjun Gong
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Rui Zhang
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Lingjuan Piao
- Graduate School of Pharmaceutical SciencesCollege of Pharmacy, Ewha Women's UniversitySeoulSouth Korea
| | - Xinzhi Li
- Department of Biomedical and Molecular SciencesQueen's UniversityKingston OntarioCanada
| | - Qian Liu
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Shuai Yan
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Yujun Shen
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Shumin Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Mingjiang Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Colin D. Funk
- Department of Biomedical and Molecular SciencesQueen's UniversityKingston OntarioCanada
| | - Jian Zhang
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Ying Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| |
Collapse
|
16
|
Effect of Supplementation with n-3 Fatty Acids Extracted from Microalgae on Inflammation Biomarkers from Two Different Strains of Mice. J Lipids 2018; 2018:4765358. [PMID: 29805810 PMCID: PMC5899849 DOI: 10.1155/2018/4765358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/01/2018] [Accepted: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
Background Diabetes mellitus is considered a chronic noncommunicable disease in which inflammation plays a main role in the progression of the disease and it is known that n-3 fatty acids have anti-inflammatory properties. One of the most recent approaches is the study of the fatty acids of microalgae as a substitute for fish oil and a source rich in fatty acids EPA and DHA. Objective To analyze the effect of supplementation with n-3 fatty acids extracted from microalgae on the inflammatory markers from two different strains of mice. Methods Mice of two strains, db/db and CD1, were supplemented with n-3 fatty acids extracted from microalgae in lyophilized form and added to food; the experiment was carried out from week 8 to 16 of life. Flow cytometry was performed to determine the percentage of TCD4+ cells producing Th1 and Th2 cytokines. Results Supplementation with microalgae fatty acids decreased the percentage of TCD4+ cells producing IFN-γ and TNF-α and increased the ones producing IL-17A and IL-12 in both strains; on the other hand, supplementation decreased percentage of TCD4+ cells producing IL-4 and increased the ones producing TGF-β. Conclusions Microalgae n-3 fatty acids could be a useful tool in the treatment of diabetes as well as in the prevention of the appearance of health complications caused by inflammatory states.
Collapse
|
17
|
Giustina AD, Bonfante S, Zarbato GF, Danielski LG, Mathias K, de Oliveira AN, Garbossa L, Cardoso T, Fileti ME, De Carli RJ, Goldim MP, Barichello T, Petronilho F. Dimethyl Fumarate Modulates Oxidative Stress and Inflammation in Organs After Sepsis in Rats. Inflammation 2017; 41:315-327. [DOI: 10.1007/s10753-017-0689-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Meng YK, Li CY, Li RY, He LZ, Cui HR, Yin P, Zhang CE, Li PY, Sang XX, Wang Y, Niu M, Zhang YM, Guo YM, Sun R, Wang JB, Bai ZF, Xiao XH. Cis-stilbene glucoside in Polygonum multiflorum induces immunological idiosyncratic hepatotoxicity in LPS-treated rats by suppressing PPAR-γ. Acta Pharmacol Sin 2017. [PMID: 28649126 DOI: 10.1038/aps.2017.32] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The root of Polygonum multiflorum Thunb (PM) has been used in China to treat a variety of diseases, such as constipation, early graying of the hair and hyperlipemia. Recent evidence shows that PM causes idiosyncratic drug-induced liver injury (IDILI) in humans. In this study, we investigated the molecular basis of PM-induced liver injury in a rat model of IDILI based on a non-hepatotoxic dose of LPS. SD rats were orally administered 3 potentially hepatotoxic compounds of PM: cis-stilbene glucoside (cis-SG, 50 mg/kg), trans-SG (50 mg/kg) or emodin (5 mg/kg), followed by injection of LPS (2.8 mg/kg, iv). Serum and liver histology were evaluated 7 h after LPS injection. Among the 3 compounds tested, cis-SG, but not emodin or trans-SG, induced severe liver injury in rats when combined with LPS. The levels of AST and ALT in plasma and inflammatory cytokines in both plasma and liver tissues were markedly elevated. The liver tissues showed increased injury, hepatocyte apoptosis, and macrophage infiltration, and decreased cell proliferation. Microarray analysis revealed a negative correlation between peroxisome proliferator-activated receptor-γ (PPAR-γ) and LPS/cis-SG-induced liver injury. Immunohistochemical staining and RT-PCR results further confirmed that cis-SG significantly inhibited activation of the PPAR-γ pathway in the liver tissues of LPS/cis-SG-treated rats. Pre-treatment with a PPAR-γ agonist pioglitazone (500 g/kg, ig) reversed LPS/cis-SG-induced liver injury, which was associated with inhibiting the nuclear factor kappa B (NF-κB) pathway. These data demonstrate that cis-stilbene glucoside induces immunological idiosyncratic hepatotoxicity through suppressing PPAR-γ in a rat model of IDILI.
Collapse
|
19
|
Vahedian Z, Fakhraie G, Bovet J, Mozaffarieh M. Nutritional recommendations for individuals with Flammer syndrome. EPMA J 2017; 8:187-195. [PMID: 28824740 DOI: 10.1007/s13167-017-0093-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/19/2017] [Indexed: 11/28/2022]
Abstract
The Flammer syndrome (FS) describes the phenotype of people with a predisposition for an altered reaction of the blood vessels to stimuli like coldness or emotional stress. The question whether such people should be treated is often discussed. On the one hand, most of these subjects are healthy; on the other hand, FS seems to predispose to certain eye diseases such as normal tension glaucoma or retinitis pigmentosa or systemic diseases such as multiple sclerosis or tinnitus. A compromise between doing nothing and a drug treatment is the adaption of nutrition. But what do we mean by healthy food consumption for subjects with FS? The adaption of nutrition depends on the health condition. Whereas patients with e.g. a metabolic syndrome should reduce their calorie intake, this can be counterproductive for subjects with FS, as most subjects with FS have already a low body mass index (BMI) and the lower the BMI the stronger the FS symptoms. Accordingly, while fasting is healthy e.g. for subjects with metabolic syndrome, fasting can even dangerously aggravate the vascular dysregulation, as it has been nicely demonstrated by the loss of retinal vascular regulation during fasting. To give another example, while reducing salt intake is recommended for subjects with systemic hypertensions, such a salt restriction can aggravate systemic hypotension and thereby indirectly also the vascular regulation in subjects with FS. This clearly demonstrates that such a preventive adaption of nutrition needs to be personalized.
Collapse
Affiliation(s)
- Zakieh Vahedian
- Glaucoma Service, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Fakhraie
- Glaucoma Service, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maneli Mozaffarieh
- Augen Glattzentrum, Zurich, Switzerland.,Department of Ophthalmology, University of Basel, Mittlere Strasse 91, 4031 Basel, Switzerland
| |
Collapse
|
20
|
Ames FQ, Sato F, de Castro LV, de Arruda LLM, da Rocha BA, Cuman RKN, Baesso ML, Bersani-Amado CA. Evidence of anti-inflammatory effect and percutaneous penetration of a topically applied fish oil preparation: a photoacoustic spectroscopy study. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:55003. [PMID: 28492854 DOI: 10.1117/1.jbo.22.5.055003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/19/2017] [Indexed: 05/20/2023]
Abstract
This paper investigates the topical anti-inflammatory effect of a fish oil preparation (FOP) in a croton oil (CO) model of skin inflammation. The photoacoustic spectroscopy (PAS) was applied to estimate the percutaneous penetration of the FOP and as a model to evaluate the topical inflammatory response. After applying CO, the groups of mice received a topical application of a FOP on the left ear. The right ear received the vehicle that was used to dilute the CO. After 6 h, ear tissue was collected to determine the percent inhibition of edema, myeloperoxidase (MPO) activity, and cytokine levels and to perform PAS measurements. Treatment with FOP reduced edema and MPO activity, which was at least partially attributed to a decrease in the levels of tumor necrosis factor, interleukin- 1 ? , interleukin-6, keratinocyte-derived chemokine, and monocyte chemoattractant protein-1. The topically applied FOP penetrated into the tissue and decreased the area of the bands that characterize inflamed tissue. The present results demonstrated the topical anti-inflammatory effect of the FOP. PAS suggests that FOP anti-inflammatory activity is linked with its ability to penetrate through the skin.
Collapse
Affiliation(s)
- Franciele Q Ames
- State University of Maringá, Department of Pharmacology and Therapeutics, Maringá, Paraná, Brazil
| | - Francielle Sato
- State University of Maringá, Department of Physics, Maringá, Paraná, Brazil
| | | | - Laura L M de Arruda
- State University of Maringá, Department of Pharmacology and Therapeutics, Maringá, Paraná, Brazil
| | - Bruno A da Rocha
- State University of Maringá, Department of Pharmacology and Therapeutics, Maringá, Paraná, Brazil
| | - Roberto K N Cuman
- State University of Maringá, Department of Pharmacology and Therapeutics, Maringá, Paraná, Brazil
| | - Mauro L Baesso
- State University of Maringá, Department of Physics, Maringá, Paraná, Brazil
| | - Ciomar A Bersani-Amado
- State University of Maringá, Department of Pharmacology and Therapeutics, Maringá, Paraná, Brazil
| |
Collapse
|
21
|
Chen K, Li JJ, Li SN, Feng J, Liu T, Wang F, Dai WQ, Xia YJ, Lu J, Zhou YQ, Guo CY. 15-Deoxy-Δ 12,14-prostaglandin J 2 alleviates hepatic ischemia-reperfusion injury in mice via inducing antioxidant response and inhibiting apoptosis and autophagy. Acta Pharmacol Sin 2017; 38:672-687. [PMID: 28216619 PMCID: PMC5457695 DOI: 10.1038/aps.2016.108] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
Hepatic ischemia-reperfusion (I/R) injury is a common clinical impairment that occurs in many circumstances and leads to poor prognosis. Both apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is one of the best-studied anti-inflammatory prostaglandins, which has been verified to exert anti-inflammatory and cell-protective functions in various types of cells and animal models. In this study we explored the effects of 15d-PGJ2 on both apoptosis and autophagy in mouse hepatic I/R injury and its possible mechanisms. A model of segmental (70%) hepatic warm ischemia was established in Balb/c mice, and the pathological changes in serum and liver tissues were detected at 6, 12, and 24 h post-surgery, while 15d-PGJ2 (2.5, 7.5, 15 μg, iv) was administered 30 min prior the surgery. Pretreatment with 15d-PGJ2 (7.5, 15 μg) significantly ameliorated I/R-induced hepatic injury evidenced by dose-dependent reduction of serum ALT and AST levels as well as alleviated tissue damages. 15d-PGJ2 pretreatment significantly decreased the serum TNF-α and IL-1β levels and the hepatic expression of F4/80, a major biomarker of macrophages. 15d-PGJ2 pretreatment upregulated the Bcl-2/Bax ratio, thus reducing the number of apoptotic cells in the livers. 15d-PGJ2 pretreatment considerably suppressed the expression of Beclin-1 and LC3, thus decreasing the number of autophagosomes in the livers. Furthermore, 15d-PGJ2 pretreatment activated Nrf2 and inhibited a ROS/HIF1α/BNIP3 pathway in the livers. Pretreatment with the PPARγ receptor blocker GW9662 (2 μg, ip) partly reversed the protective effects of 15d-PGJ2 on hepatic I/R injury. In conclusion, our results confirm the protective effect of 15d-PGJ2 on hepatic I/R injury, an effect that may rely on a reduction in the activation of Kupffer cells and on activation of the Nrf2 pathway, which lead to inhibition of ROS generation, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jing-jing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sai-nan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wei-qi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu-jing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ying-qun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chuan-yong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
22
|
Das UN. Combination of aspirin with essential fatty acids is superior to aspirin alone to prevent or ameliorate sepsis or ARDS. Lipids Health Dis 2016; 15:206. [PMID: 27887602 PMCID: PMC5124295 DOI: 10.1186/s12944-016-0377-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022] Open
Abstract
It has been suggested that aspirin may be of benefit in treating sepsis and ARDS in view of its ability to block cyclo-oxygenase-1 (COX-1) and COX-2 activities; inhibit nuclear factor kappa B (NF-κB); enhance the production of endothelial nitric oxide (eNO) and lipoxin A4 (LXA4). Our previous studies revealed that plasma phospholipid content of arachidonic acid (AA) and eicosapentaenoic acid (EPA) is low in patients with sepsis. This implies that beneficial actions of aspirin in sepsis and ARDS is unlikely to be obtained in view of deficiency of AA and EPA, the precursors of LXA4 and resolvins respectively that are potent anti-inflammatory compounds and enhancers of eNO generation. In view of this, I propose that a combination of aspirin and AA and EPA (and possibly, docosahexaenoic acid, DHA) is likely to be superior in the management of sepsis and ARDS compared to aspirin alone. This suggestion is supported by the recent observation that trauma patients with uncomplicated recoveries had higher resolvin pathway gene expression and lower gene expression ratios of leukotriene: resolvin pathways.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2020 S 360th St, # K-202, Federal Way, WA, 98003, USA. .,BioScience Research Centre, GVP College of Engineering Campus and Department of Medicine, GVP Hospital, Madhurawada, Visakhapatnam, 530 048, India.
| |
Collapse
|
23
|
Hwang JK, Yu HN, Noh EM, Kim JM, Hong OY, Youn HJ, Jung SH, Kwon KB, Kim JS, Lee YR. DHA blocks TPA-induced cell invasion by inhibiting MMP-9 expression via suppression of the PPAR-γ/NF-κB pathway in MCF-7 cells. Oncol Lett 2016; 13:243-249. [PMID: 28123548 PMCID: PMC5245160 DOI: 10.3892/ol.2016.5382] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/28/2016] [Indexed: 01/09/2023] Open
Abstract
Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is considered to have applications in cancer prevention and treatment. The beneficial effects of DHA against cancer metastasis are well established; however, the mechanisms underlying these effects in breast cancer are not clear. Cell invasion is critical for neoplastic metastasis, and involves the degradation of the extracellular matrix by matrix metalloproteinase (MMP)-9. The present study investigated the inhibitory effect of DHA on MMP-9 expression and cell invasion induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in the MCF-7 breast cancer cell line. DHA inhibited the TPA-induced activation of mitogen-activated protein kinase (MAPK) and the transcription of nuclear factor (NF)-κB, but did not inhibit the transcription of activator protein-1. DHA increased the activity of peroxisome proliferator-activated receptor (PPAR)-γ, an effect that was reversed by the application of the PPAR-γ antagonist GW9662. In addition, combined treatment with GW9662 and DHA increased NF-κB-related protein expression. These results indicate that DHA regulates MMP-9 expression and cell invasion via modulation of the MAPK signaling pathway and PPAR-γ/NF-κB activity. This suggests that DHA could be a potential therapeutic agent for the prevention of breast cancer metastasis.
Collapse
Affiliation(s)
- Jin-Ki Hwang
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Hong-Nu Yu
- Department of Oncology Medicine, Xinhua Hospital Affiliated to Dalian University, Dalian, Liaoning 116021, P.R. China
| | - Eun-Mi Noh
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Jeong-Mi Kim
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea
| | - On-Yu Hong
- Department of Biochemistry, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 560-182, Republic of Korea
| | - Hyun Jo Youn
- Department of Surgery, Division of Breast Thyroid Surgery, Chonbuk National University Medical School, Jeonju, Jeonbuk 560-182, Republic of Korea
| | - Sung Hoo Jung
- Department of Surgery, Division of Breast Thyroid Surgery, Chonbuk National University Medical School, Jeonju, Jeonbuk 560-182, Republic of Korea
| | - Kang-Beom Kwon
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea; Department of Korean Physiology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 560-182, Republic of Korea
| | - Young-Rae Lee
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea; Department of Oral Biochemistry, Institute of Biomaterials Implant, School of Dentistry, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| |
Collapse
|
24
|
Dhasarathy A, Roemmich JN, Claycombe KJ. Influence of maternal obesity, diet and exercise on epigenetic regulation of adipocytes. Mol Aspects Med 2016; 54:37-49. [PMID: 27825817 DOI: 10.1016/j.mam.2016.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Archana Dhasarathy
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - James N Roemmich
- USDA-ARS-PA, Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND 58203, USA
| | - Kate J Claycombe
- USDA-ARS-PA, Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND 58203, USA.
| |
Collapse
|
25
|
Jiang F, Zhang Z, Zhang Y, Wu J, Yu L, Liu S. L-carnitine ameliorates the liver inflammatory response by regulating carnitine palmitoyltransferase I-dependent PPARγ signaling. Mol Med Rep 2015; 13:1320-8. [PMID: 26647854 DOI: 10.3892/mmr.2015.4639] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 10/28/2015] [Indexed: 11/05/2022] Open
Abstract
The liver is crucial for systemic inflammation in cancer cachexia. Previous studies have shown that L-carnitine, as the key regulator of lipid metabolism, exerts an anti-inflammatory effect in several diseases, and ameliorates the symptoms of cachexia by regulating the expression and activity of carnitine palmitoyltransferase (CPT) in the liver. However, the effect of L-carnitine on the liver inflammatory response in cancer cachexia remains to be elucidated. The aim of the present study was to examine the role of the CPT I-dependent peroxisome proliferator-activated receptor (PPAR)γ signaling pathway in the ameliorative effect of L-carnitine on the liver inflammatory response. This was investigated in a colon-26 tumor-bearing mouse model with cancer cachexia. Liver sections were immunohistochemically analyzed, and mRNA and protein levels of representative molecules of the CPT-associated PPARγ signaling pathway were assessed using PCR and western blot analysis, respectively. The results showed that oral administration of L-carnitine in these mice improved hepatocyte necrosis, liver cell cord derangement and hydropic or fatty degeneration of the liver cells in the liver tissues, decreased serum levels of malondialdehyde, increased serum levels of superoxide dismutase and glutathione peroxidase, and elevated the expression levels of PPARα and PPARγ at the mRNA and protein levels. These changes induced by L-carnitine were reversed by treatment with etomoxir, an inhibitor of CPT I. The inhibitory effect of L-carnitine on the increased expression level of nuclear factor (NF)-κB p65 in the peripheral blood mononuclear cells was markedly weakened by GW9662, a selective inhibitor of PPAR-γ. GW9662 also eliminated the inhibitory effect of L-carnitine on the expression of cyclooxygenase-2 (Cox-2) in the liver, and on the serum expression levels of pro-inflammatory prostaglandin E2, C-reactive protein, tumor necrosis factor-α and interleukin-6 in the cancer cachexia model mice. This reversing effect of GW9662 on L-carnitine was restored by pyrrolidine dithiocarbamate, a specific inhibitor of NF-κB signaling. Taken together, these results demonstrated that L-carnitine ameliorated liver inflammation and serum pro-inflammatory markers in cancer cachexia through regulating CPT I-dependent PPARγ signaling, including the downstream molecules of NF-κB p65 and Cox-2.
Collapse
Affiliation(s)
- Fang Jiang
- Department of Gastroenterology, Zhabei District Central Hospital, Shanghai 200070, P.R. China
| | - Zongqi Zhang
- Department of Cardiology, No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201900, P.R. China
| | - Yi Zhang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jianping Wu
- Department of Gastroenterology, Zhabei District Central Hospital, Shanghai 200070, P.R. China
| | - Li Yu
- Department of Gastroenterology, Zhabei District Central Hospital, Shanghai 200070, P.R. China
| | - Su Liu
- Department of Gastroenterology, Zhabei District Central Hospital, Shanghai 200070, P.R. China
| |
Collapse
|
26
|
Chen K, Dai W, Wang F, Xia Y, Li J, Li S, Liu T, Zhang R, Wang J, Lu W, Zhou Y, Yin Q, Zheng Y, Abudumijiti H, Chen R, Lu J, Zhou Y, Guo C. Inhibitive effects of 15-deoxy-Δ(12),(14)-prostaglandin J2 on hepatoma-cell proliferation through reactive oxygen species-mediated apoptosis. Onco Targets Ther 2015; 8:3585-3593. [PMID: 26664142 PMCID: PMC4671813 DOI: 10.2147/ott.s92832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) induces reactive oxygen species (ROS)-mediated apoptosis in many malignant cells, which has not been studied in hepatoma cells. In this study, we investigated whether 15d-PGJ2 induced apoptosis in hepatocellular carcinoma (HCC) associated with ROS. MATERIALS AND METHODS The LM3, SMMC-7721, and Huh-7 HCC cell lines were treated with 15d-PGJ2 (5-40 μM) for 24, 48, and 72 hours. Cholecystokinin 8 was used to detect the cytotoxicity of 15d-PGJ2. Flow cytometry, Hoechst staining, and Western blotting were used to analyze apoptosis. ROS were combined with the fluorescent probe dihydroethidium and then observed by fluorescence microscopy and flow cytometry. Activation of JNK and expression of Akt were detected by Western blotting. RESULTS 15d-PGJ2 inhibited HCC cell proliferation and induced apoptosis in a dose- and time-dependent manner. Apoptosis was mainly induced via an intrinsic pathway and was ROS-dependent, and was alleviated by ROS scavengers. ROS induced JNK activation and Akt downregulation in HCC cells. CONCLUSION 15d-PGJ2 induced ROS in HCC cell lines, and inhibition of cell growth and apoptosis were partly ROS-dependent.
Collapse
Affiliation(s)
- Kan Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Rong Zhang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, First Clinical Medical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jianrong Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, First Clinical Medical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wenxia Lu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, First Clinical Medical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yuqing Zhou
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Qin Yin
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Huerxidan Abudumijiti
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Rongxia Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
27
|
Liang Q, Dong S, Lei L, Liu J, Zhang J, Li J, Duan J, Fan D. Protective effects of Sparstolonin B, a selective TLR2 and TLR4 antagonist, on mouse endotoxin shock. Cytokine 2015; 75:302-9. [PMID: 25573805 PMCID: PMC4950682 DOI: 10.1016/j.cyto.2014.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/30/2014] [Accepted: 12/03/2014] [Indexed: 01/21/2023]
Abstract
Sepsis is characterized by an overwhelming systemic inflammation and multiple organ injury. Toll-like receptors (TLRs) 2 and 4 mediate these inflammatory responses. Sparstolonin B (SsnB), isolated from Chinese herb Scirpus yagara, is a new selective TLR2/4 antagonist. Herein, we report that SsnB inhibited the expression of various inflammatory mediators such as tumor necrosis factor (TNF-α), interleukin (IL)-1β, IL-6, and chemokine (C-C motif) ligand 2 (CCL-2) in lipopolysaccharide (LPS)- or Pam3csk4-stimulated macrophages. Moreover, in LPS-stimulated macrophages, the downregulation of peroxisome proliferator-activated receptor γ (PPAR-γ) was reversed by SsnB dose-dependently; and SsnB had synergistic inhibitory effects with rosiglitazone, a PPAR-γ agonist, on TNF-α and IL-6 expression in LPS-stimulated macrophages. The effects of SsnB were further evaluated in a mouse endotoxin shock model. When intraperitoneal injected in mice 2 days before or 1-2h after LPS challenge, SsnB attenuated the body temperature reduction and decreased the mortality. SsnB pre-treatment significantly suppressed LPS-induced increase of TNF-α and IL-6 in serum, lungs and livers, and substantially attenuated lung dysfunction in mice. In vivo toxicity test showed that at doses as high as 500 mg/kg, SsnB did not cause death of mice. These results suggest that SsnB protects mice against endotoxin shock by inhibiting production of multiple cytokines and lung dysfunction. In conclusion, our findings indicate that SsnB may be used in the prevention and treatment of endotoxin shock.
Collapse
Affiliation(s)
- Qiaoli Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shuihua Dong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lingling Lei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jie Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianfang Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin'ao Duan
- Jiangsu Key Laboratory for TCM Formulae Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
28
|
Mohammad NS, Arafa MH, Atteia HH. Coenzyme Q10 and fish oil synergistically alleviate aluminum chloride-induced suppression of testicular steroidogenesis and antioxidant defense. Free Radic Res 2015; 49:1319-34. [DOI: 10.3109/10715762.2015.1069290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Dietary n-3 PUFA Protects Mice from Con A Induced Liver Injury by Modulating Regulatory T Cells and PPAR-γ Expression. PLoS One 2015; 10:e0132741. [PMID: 26177196 PMCID: PMC4503783 DOI: 10.1371/journal.pone.0132741] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 06/17/2015] [Indexed: 01/01/2023] Open
Abstract
Background Dietary n-3 polyunsaturated fatty acids (PUFA) exert anti-inflammatory and immunoregulatory effects through down-regulating the innate and adoptive immune response. However, the effect of dietary n-3 PUFA on CD4+CD25+ regulatory T cells (Tregs) is unclear. Aims The current study was to examine the relationship between n-3 PUFA and Tregs as well as their immunoregulatory effect in immune-mediated liver injury. Methods The mice model feeding with n-3 PUFA-enriched diet was established and Tregs were analyzed. Effect of docosahexaenoic acid (DHA) on Tregs proliferation and induction was determined in vitro. The potential immunotherapeutic effect of dietary n-3 PUFA was investigated through Con A-induced hepatitis model. Results Long-term administration of dietary n-3 PUFA significantly increased hepatic Tregs and modulated their phenotype. n-3 PUFA or DHA directly increased natural Tregs (nTreg) proliferation but didn’t increase inducible Tregs (iTreg). In addition, the expression of peroxisome proliferator activated receptor gamma (PPAR-γ), transforming growth factor β (TGF-β) and interleukin (IL)-10 were significantly up-regulated in n-3 PUFA-enriched diet-fed mice. Finally, n-3 PUFA-enriched diet alleviated liver injury induced by Con A and down-regulated pro-inflammatory cytokines expression, accompanied by increased PPAR-γ expression. Conclusion Dietary n-3 PUFA enhanced Tregs generation through up-regulating PPAR-γ and TGF-β expression, and protected mice from Con A-induced liver injury. This finding provides a promising potential therapeutic method in treating inflammatory and autoimmune disease.
Collapse
|
30
|
Chen K, Li J, Wang J, Xia Y, Dai W, Wang F, Shen M, Cheng P, Zhang Y, Wang C, Yang J, Zhu R, Zhang H, Zheng Y, Lu J, Fan Z, Zhou Y, Guo C. 15-Deoxy- γ 12,14-prostaglandin J2 Reduces Liver Impairment in a Model of ConA-Induced Acute Hepatic Inflammation by Activation of PPAR γ and Reduction in NF- κ B Activity. PPAR Res 2014; 2014:215631. [PMID: 25120564 PMCID: PMC4121249 DOI: 10.1155/2014/215631] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/22/2014] [Accepted: 06/23/2014] [Indexed: 11/17/2022] Open
Abstract
Objective. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) reduces inflammation and has been identified as an anti-inflammatory prostaglandin in numerous animal models. In this study, we investigated both effects of 15d-PGJ2 and its protection mechanism in concanavalin A- (ConA-) induced autoimmune hepatitis in mice. Materials and Methods. In vivo, Balb/C mice were injected with ConA (25 mg/kg) to induce acute autoimmune hepatitis, and 15d-PGJ2 (10 μg or 25 μg) was administered 1 h before the ConA injection. The histological grade, proinflammatory cytokine levels, and NF-κB and PPARγ activity were determined 6, 12, and 24 h after the ConA injection. In vitro, LO2 cells and RAW264.7 cells were pretreated with 15d-PGJ2 (2 μM) 1 h before the stimulation with ConA (30 μg/mL). The NF-κB and PPARγ activity were determined 30 min after the ConA administration. Results. Pretreatment with 15d-PGJ2 reduced the pathological effects of ConA-induced autoimmune hepatitis and significantly reduced the levels of cytokines after injection. 15d-PGJ2 activated PPARγ, blocked the degradation of IκBα, and inhibited the translocation of NF-κB into the nucleus. Conclusion. These results indicate that 15d-PGJ2 protects against ConA-induced autoimmune hepatitis by reducing proinflammatory cytokines. This reduction in inflammation may correlate with the activation of PPARγ and the reduction in NF-κB activity.
Collapse
Affiliation(s)
- Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Junshan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Miao Shen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ping Cheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yan Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chengfen Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jing Yang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Rong Zhu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Huawei Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhuoyi Fan
- Tongji University School of Medicine, Shanghai 200092, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|