1
|
Vieira AKG, Bernardo AF, Neves FA, Soares VM, Guedes RM, Soares PN, Lisboa PC, Cortez E, Moura EG, da Silva BG, Garcia-Souza EP, Moura AS. Impact of early postnatal overnutrition on cardiac mitochondrial dysfunction in adult mice with ischemia/reperfusion. Nutr Metab Cardiovasc Dis 2025; 35:103737. [PMID: 39433457 DOI: 10.1016/j.numecd.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND AND AIMS Nutritional imbalance at the beginning of life, a critical window period, leads to the development of obesity, overweight, dyslipidemia, diabetes, and cardiovascular disease in adulthood. In this study, the effects and associations of overnutrition during lactation on energy metabolism and oxidative stress in cardiomyocytes of adult male Swiss mice were examined. METHODS AND RESULTS Animals were divided into two groups (control and overfed) subjected to baseline and ischemia/reperfusion conditions, forming four groups: control baseline (CBL), control ischemia/reperfusion (CIR), overfed baseline (OBL), and overfed ischemia/reperfusion (OIR). The hearts were analyzed for hemodynamics using the Langendorff technique, mitochondrial energy metabolism using the Oroboros apparatus, ATP production, oxidative stress, and SIRT1, pSTAT3 and STAT3 protein content by Western blotting. Hemodynamic abnormalities in the cardiovascular system were associated with mitochondrial dysfunction, as demonstrated by impaired carbohydrate and fatty acid oxidation capacity, decreased mitochondrial coupling in the OG, and reduced ATP production in the OIR group. Alteration in pSTAT3 and SIRT1 proteins expression in overfed mice reinforce energy metabolism impairment. Lipid and/or protein degradation is altered in the heart of OG, suggesting increased oxidative stress. CONCLUSION Overnutrition during lactation associated with heart ischemia leads to molecular cardiac alterations in STAT3 and SIRT1 proteins, compromising energy metabolism via reduced mitochondrial oxidation capacity, ATP production and increased lipid peroxidation.
Collapse
Affiliation(s)
- Anatalia K G Vieira
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Amélia F Bernardo
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana A Neves
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian M Soares
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberta M Guedes
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia N Soares
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia C Lisboa
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erika Cortez
- Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto G Moura
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna G da Silva
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erica P Garcia-Souza
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anibal S Moura
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Guimarães AC, de Moura EG, Silva SG, Lopes BP, Bertasso IM, Pietrobon CB, Quitete FT, de Oliveira Malafaia T, Souza ÉPG, Lisboa PC, de Oliveira E. Citrus aurantium L. and synephrine improve brown adipose tissue function in adolescent mice programmed by early postnatal overfeeding. Front Nutr 2024; 10:1278121. [PMID: 38274208 PMCID: PMC10809993 DOI: 10.3389/fnut.2023.1278121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction and aims Obesity is a multifactorial condition with high health risk, associated with important chronic disorders such as diabetes, dyslipidemia, and cardiovascular dysfunction. Citrus aurantium L. (C. aurantium) is a medicinal plant, and its active component, synephrine, a β-3 adrenergic agonist, can be used for weight loss. We investigated the effects of C. aurantium and synephrine in obese adolescent mice programmed by early postnatal overfeeding. Methods Three days after birth, male Swiss mice were divided into a small litter (SL) group (3 pups) and a normal litter (NL) group (9 pups). At 30 days old, SL and NL mice were treated with C. aurantium standardized to 6% synephrine, C. aurantium with 30% synephrine, isolated synephrine, or vehicle for 19 days. Results The SL group had a higher body weight than the NL group. Heart rate and blood pressure were not elevated. The SL group had hyperleptinemia and central obesity that were normalized by C. aurantium and synephrine. In brown adipose tissue, the SL group showed a higher lipid droplet sectional area, less nuclei, a reduction in thermogenesis markers related to thermogenesis (UCP-1, PRDM16, PGC-1α and PPARg), and mitochondrial disfunction. C. aurantium and synephrine treatment normalized these parameters. Conclusion Our data indicates that the treatment with C. aurantium and synephrine could be a promising alternative for the control of some obesity dysfunction, such as improvement of brown adipose tissue dysfunction and leptinemia.
Collapse
Affiliation(s)
- Andressa Cardoso Guimarães
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephanie Giannini Silva
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Pereira Lopes
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Bruna Pietrobon
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Torres Quitete
- Laboratory for Studies of Interactions Between Nutrition and Genetics, Department of Basic and Experimental Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tayanne de Oliveira Malafaia
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Érica Patrícia Garcia Souza
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elaine de Oliveira
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Engin A. The Unrestrained Overeating Behavior and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:167-198. [PMID: 39287852 DOI: 10.1007/978-3-031-63657-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity-related co-morbidities decrease life quality, reduce working ability, and lead to early death. In the adult population, eating addiction manifests with excessive food consumption and the unrestrained overeating behavior, which is associated with increased risk of morbidity and mortality and defined as the binge eating disorder (BED). This hedonic intake is correlated with fat preference and the total amount of dietary fat consumption is the most potent risk factor for weight gain. Long-term BED leads to greater sensitivity to the rewarding effects of palatable foods and results in obesity fatefully. Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance. In addition to dietary intake of high-fat diet, sedentary lifestyle leads to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction play role in the pathogenesis of lipotoxicity. Food addiction and BED originate from complex action of dopaminergic, opioid, and cannabinoid systems. BED may also be associated with both obesity and major depressive disorder. For preventing morbidity and mortality, as well as decreasing the impact of obesity-related comorbidities in appropriately selected patients, opiate receptor antagonists and antidepressant combination are recommended. Pharmacotherapy alongside behavioral management improves quality of life and reduces the obesity risk; however, the number of licensed drugs is very few. Thus, stereotactic treatment is recommended to break down the refractory obesity and binge eating in obese patient. As recent applications in the field of non-invasive neuromodulation, transcranial magnetic stimulation and transcranial direct current stimulation are thought to be important in image-guided deep brain stimulation in humans. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B (NF-κB) kinase beta subunit/NF-κB (IKKβ/NF-κB) in the hypothalamus before the onset of obesity. However, how the mechanisms of high-fat diet-induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
4
|
Tocantins C, Martins JD, Rodrigues ÓM, Grilo LF, Diniz MS, Stevanovic-Silva J, Beleza J, Coxito P, Rizo-Roca D, Santos-Alves E, Rios M, Carvalho L, Moreno AJ, Ascensão A, Magalhães J, Oliveira PJ, Pereira SP. Metabolic mitochondrial alterations prevail in the female rat heart 8 weeks after exercise cessation. Eur J Clin Invest 2023; 53:e14069. [PMID: 37525474 DOI: 10.1111/eci.14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND The consumption of high-caloric diets strongly contributes to the development of non-communicable diseases (NCDs), including cardiovascular disease, the leading cause of mortality worldwide. Exercise (along with diet intervention) is one of the primary non-pharmacological approaches to promote a healthier lifestyle and counteract the rampant prevalence of NCDs. The present study evaluated the effects of exercise cessation after a short period training on the cardiac metabolic and mitochondrial function of female rats. METHODS Seven-week-old female Sprague-Dawley rats were fed a control or a high-fat, high-sugar (HFHS) diet and, after 7 weeks, the animals were kept on a sedentary lifestyle or submitted to endurance exercise for 3 weeks (6 days per week, 20-60 min/day). The cardiac samples were analysed 8 weeks after exercise cessation. RESULTS The consumption of the HFHS diet triggered impaired glucose tolerance, whereas the HFHS diet and physical exercise resulted in different responses in plasma adiponectin and leptin levels. Cardiac mitochondrial respiration efficiency was decreased by the HFHS diet consumption, which led to reduced ATP and increased NAD(P)H mitochondrial levels, which remained prevented by exercise 8 weeks after cessation. Exercise training-induced cardiac adaptations in redox balance, namely increased relative expression of Nrf2 and downstream antioxidant enzymes persist after an eight-week exercise cessation period. CONCLUSIONS Endurance exercise modulated cardiac redox balance and mitochondrial efficiency in female rats fed a HFHS diet. These findings suggest that exercise may elicit cardiac adaptations crucial for its role as a non-pharmacological intervention for individuals at risk of developing NCDs.
Collapse
Affiliation(s)
- Carolina Tocantins
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - João D Martins
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Óscar M Rodrigues
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luís F Grilo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Mariana S Diniz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Jelena Stevanovic-Silva
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, Porto, Portugal
| | - Jorge Beleza
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, Porto, Portugal
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, Porto, Portugal
| | - David Rizo-Roca
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, Porto, Portugal
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Estela Santos-Alves
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, Porto, Portugal
| | - Manoel Rios
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, Porto, Portugal
| | - Lina Carvalho
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - António J Moreno
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, School of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, Porto, Portugal
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, Porto, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Susana P Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Liver-Derived Exosomes Induce Inflammation and Lipogenesis in Mice Fed High-Energy Diets. Nutrients 2022; 14:nu14235124. [PMID: 36501154 PMCID: PMC9739891 DOI: 10.3390/nu14235124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
The liver is an endocrine organ and is the first organ exposed to nutrients when they are absorbed into the body before being metabolized by the distal organs. Although the liver plays an essential role in the interactions between the metabolic organs, their regulatory mechanisms have not been elucidated. Exosomes mediate communication between cells and primarily enable the transport of lipids, mRNAs, miRNAs, and proteins between cells. In this study, we investigated the effects of lipid metabolism on the liver and adipose tissue between mice fed high-fat (HF) and high-fat/sucrose (HFS) diets and determined the effects of liver tissue-derived exosomes on adipocytes to understand the underlying mechanisms associated with obesity-related metabolic diseases. Normal, HF, and HFS diets were fed to the mice for 12 weeks to compare differences based on dietary patterns. We showed different lipid metabolism effects on the liver and adipose tissue between HF- and HFS-fed mice. In the liver, fibrosis, inflammation, and lipogenesis were activated at higher levels in the HFS than in the HF group, and lipolysis was activated at higher levels in the HF than in the HFS group. In adipose tissue, adipogenesis, fatty acid transport, and lipolysis were activated at higher levels in the HF than in the HFS group, and inflammation and lipogenesis were activated at higher levels in the HFS than in the HF group. This result followed a similar trend reported in 3T3-L1 cells treated with liver-derived exosomes. In addition, the TG content of the liver-derived exosomes was significantly higher, and lipid accumulation was accelerated in the HFS than in the HF group. Based on these results, continuous exposure to HF and HFS diets induces lipid accumulation mediated by liver-derived exosomes; however, there is a difference in lipid metabolism. These results contribute to the elucidation of the mechanisms of exosome function in relation to obesity-related metabolic diseases and the metabolic relationship between tissues.
Collapse
|
6
|
Wu X, Huang J, Tang J, Sun Y, Zhao G, Yan C, Liu Z, Yi W, Xu S, Yu X. Isoginkgetin, a bioactive constituent from Ginkgo Biloba, protects against obesity-induced cardiomyopathy via enhancing Nrf2/ARE signaling. Redox Biol 2022; 57:102485. [PMID: 36162256 PMCID: PMC9516449 DOI: 10.1016/j.redox.2022.102485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
Obesity-induced metabolic cardiomyopathy (MC), characterized by lipotoxicity and excessive oxidative stress, emerges as the leading cause of heart failure in the obese patients. Yet, its therapy remains very limited. Here, we demonstrated that isoginkgetin (IGK), a bioactive biflavonoid isolated from medicinal herb Ginkgo Biloba, protected against obesity-induced cardiac diastolic dysfunction and adverse remodeling. Transcriptomics profiling revealed that IGK activated Nrf2 signaling in the heart tissues of the obese mice. Consistent with this observation, IGK treatment increased the nuclear translocation of Nrf2, which in turn trigger the activation of its downstream target genes (e. g. HO-1 and NQO1). In addition, IGK significantly rejuvenated mitochondrial defects in obese heart tissues as evidenced by enhancing mitochondrial respiratory capacity and resisting the collapse of mitochondrial potential and oxidative stress both in vitro and in vivo. Mechanistically, IGK stabilized Nrf2 protein via inhibiting the proteasomal degradation, independent of transcription regulation. Moreover, molecular docking and dynamics simulation assessment demonstrated a good binding mode between IGK and Nrf2/Keap1. Of note, the protective effects conferred by IGK against obesity-induced mitochondrial defects and cardiac dysfunction was compromised by Nrf2 gene silencing both in vitro and in vivo, consolidating a pivotal role of Nrf2 in IGK-elicited myocardial protection against MC. Thus, the present study identifies IGK as a promising drug candidate to alleviate obesity-induced oxidative stress and cardiomyocyte damage through Nrf2 activation, highlighting the therapeutic potential of IGK in ameliorating obesity-induced cardiomyopathy.
Collapse
Affiliation(s)
- Xiaoqian Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China.
| | - Jianrong Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Junyuan Tang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuling Sun
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China
| | - Cuishi Yan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhenghong Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230037, China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230037, China.
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
7
|
Petroni RC, de Oliveira SJS, Fungaro TP, Ariga SKK, Barbeiro HV, Soriano FG, de Lima TM. Short-term Obesity Worsens Heart Inflammation and Disrupts Mitochondrial Biogenesis and Function in an Experimental Model of Endotoxemia. Inflammation 2022; 45:1985-1999. [PMID: 35411498 DOI: 10.1007/s10753-022-01669-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Abstract
Cardiomyopathy is a well-known complication of sepsis that may deteriorate when accompanied by obesity. To test this hypothesis we fed C57black/6 male mice for 6 week with a high fat diet (60% energy) and submitted them to endotoxemic shock using E. coli LPS (10 mg/kg). Inflammatory markers (cytokines and adhesion molecules) were determined in plasma and heart tissue, as well as heart mitochondrial biogenesis and function. Obesity markedly shortened the survival rate of mouse after LPS injection and induced a persistent systemic inflammation since TNFα, IL-1β, IL-6 and resistin plasma levels were higher 24 h after LPS injection. Heart tissue inflammation was significantly higher in obese mice, as detected by elevated mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6 and TNFα). Obese animals presented reduced maximum respiratory rate after LPS injection, however fatty acid oxidation increased in both groups. LPS decreased mitochondrial DNA content and mitochondria biogenesis factors, such as PGC1α and PGC1β, in both groups, while NRF1 expression was significantly stimulated in obese mice hearts. Mitochondrial fusion/fission balance was only altered by obesity, with no influence of endotoxemia. Obesity accelerated endotoxemia death rate due to higher systemic inflammation and decreased heart mitochondrial respiratory capacity.
Collapse
Affiliation(s)
- Ricardo Costa Petroni
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Suelen Jeronymo Souza de Oliveira
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Thais Pineda Fungaro
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Suely K K Ariga
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Hermes Vieira Barbeiro
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Francisco Garcia Soriano
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Thais Martins de Lima
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil.
| |
Collapse
|
8
|
Clemente-Olivo MP, Habibe JJ, Vos M, Ottenhoff R, Jongejan A, Herrema H, Zelcer N, Kooijman S, Rensen PCN, van Raalte DH, Nieuwdorp M, Eringa EC, de Vries CJ. Four-and-a-half LIM domain protein 2 (FHL2) deficiency protects mice from diet-induced obesity and high FHL2 expression marks human obesity. Metabolism 2021; 121:154815. [PMID: 34119536 DOI: 10.1016/j.metabol.2021.154815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Four-and-a-Half-LIM-domain-protein 2 (FHL2) modulates multiple signal transduction pathways but has not been implicated in obesity or energy metabolism. In humans, methylation and expression of the FHL2 gene increases with age, and high FHL2 expression is associated with increased body weight in humans and mice. This led us to hypothesize that FHL2 is a determinant of diet-induced obesity. METHODS FHL2-deficient (FHL2-/-) and wild type male mice were fed a high-fat diet. Metabolic phenotyping of these mice, as well as transcriptional analysis of key metabolic tissues was performed. Correlation of the expression of FHL2 and relevant genes was assessed in datasets from white adipose tissue of individuals with and without obesity. RESULTS FHL2 Deficiency protects mice from high-fat diet-induced weight gain, whereas glucose handling is normal. We observed enhanced energy expenditure, which may be explained by a combination of changes in multiple tissues; mild activation of brown adipose tissue with increased fatty acid uptake, increased cardiac glucose uptake and browning of white adipose tissue. Corroborating our findings in mice, expression of FHL2 in human white adipose tissue positively correlates with obesity and negatively with expression of browning-associated genes. CONCLUSION Our results position FHL2 as a novel regulator of obesity and energy expenditure in mice and human. Given that FHL2 expression increases during aging, we now show that low FHL2 expression associates with a healthy metabolic state.
Collapse
Affiliation(s)
- Maria P Clemente-Olivo
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Jayron J Habibe
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands; Department of Physiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, location VUmc, Amsterdam, the Netherlands
| | - Mariska Vos
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Aldo Jongejan
- Department of Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Daniël H van Raalte
- Department of Internal Medicine, Diabetes Center, Amsterdam UMC, Amsterdam Cardiovascular Sciences Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, location VUmc, Amsterdam, the Netherlands
| | - Carlie J de Vries
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands.
| |
Collapse
|
9
|
Vileigas DF, de Souza SLB, Corrêa CR, Silva CCVDA, de Campos DHS, Padovani CR, Cicogna AC. The effects of two types of Western diet on the induction of metabolic syndrome and cardiac remodeling in obese rats. J Nutr Biochem 2021; 92:108625. [PMID: 33705955 DOI: 10.1016/j.jnutbio.2021.108625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MetS) include obesity as a critical feature and is strongly associated with risk of cardiovascular disease (CVD). Insights into mechanisms involved in the pathophysiology of these clinical manifestations are essential for the development of therapeutic strategies. Thus, Western diets (WD) have been widely employed in diet-induced obesity (DIO) model. However, there are variations in fat and sugar proportions of such diets, making comparisons challenging. We aimed to assess the impact of two types of the WD on metabolic status and cardiac remodeling, to achieve a DIO model that better mimics the human pathogenesis of MetS-induced CVD. Male Wistar rats were distributed into three groups: control diet, Western diet fat (WDF), and Western diet sugar (WDS) for 41 weeks. Metabolic and inflammatory parameters and cardiac changes were characterized. WDF and WDS feeding promoted higher serum triglycerides, glucose intolerance, and insulin resistance, while just WDF presented inflammation in adipose tissue. WDF-fed rats showed increased catalase activity and malondialdehyde (MDA) and carbonyl protein levels, suggesting cardiac oxidative stress, while WDS-fed rats only raised MDA. Both WD equally elevated protein expressions involved in lipid metabolism, but only WDF downregulated the glycolysis pathway. Furthermore, the mechanical myocardial function was impaired in obese rats, being more relevant in WDF. In conclusion, both WD effectively triggered MetS features, although inflammation was detected just on the WDF-fed animals. Moreover, the WDF promoted a more pronounced functional, metabolic, and oxidative cardiac disorder, suggesting to be an adequate model for studying CVD in the scenario of MetS.
Collapse
Affiliation(s)
- Danielle Fernandes Vileigas
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Sérgio Luiz Borges de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Camila Renata Corrêa
- Department of Patology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
10
|
Insulin-like growth factor-1 short-period therapy stimulates bone marrow cells in obese swiss mice. Cell Tissue Res 2021; 384:721-734. [PMID: 33977324 DOI: 10.1007/s00441-020-03357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/18/2020] [Indexed: 10/21/2022]
Abstract
Bone marrow cells (BMCs) from obese Swiss mice fed with Western diet show mitochondrial dysfunction. Obesity interferes with BMCs disrupting energetic metabolism, stimulating apoptosis, and reducing cell proliferation since adipose tissue releases inflammatory adipokines into the medullar microenvironment. These changes lead to reduction of BMC differentiation capacity and hematopoiesis impairment, a process responsible for blood cell continuous production through hematopoietic stem cells (HSCs). This work aimed to analyze the effects of IGF-1 therapy on BMC viability in Western diet-induced obesity, in vivo. We observed that after only 1 week of treatment, obese Swiss mice presented reduced body weight and visceral fat and increased mitochondrial oxidative capacity and coupling, indicating mitochondrial function improvement. In addition, IGF-1 was able to reduce apoptosis of total BMCs, stem cell subpopulations (hematopoietic and mesenchymal), and leukocytes, restoring all progenitor hematopoietic lineages. The treatment also contributed to increase proliferative capacity of hematopoietic stem cells and leukocytes, keeping the hematopoietic and immune systems balanced. Therefore, we conclude that IGF-1 short period therapy improved BMC survival, proliferation, and differentiation capacity in obese Swiss mice.
Collapse
|
11
|
Chen Y, Wu YY, Si HB, Lu YR, Shen B. Mechanistic insights into AMPK-SIRT3 positive feedback loop-mediated chondrocyte mitochondrial quality control in osteoarthritis pathogenesis. Pharmacol Res 2021; 166:105497. [PMID: 33609697 DOI: 10.1016/j.phrs.2021.105497] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) is a major cause of disability in the elderly population and represents a significant public health problem and socioeconomic burden worldwide. However, no disease-modifying therapeutics are currently available for OA due to an insufficient understanding of the pathogenesis of this disability. As a unique cell type in cartilage, chondrocytes are essential for cartilage homeostasis and play a critical role in OA pathogenesis. Mitochondria are important metabolic centers in chondrocytes and contribute to cell survival, and mitochondrial quality control (MQC) is an emerging mechanism for maintaining cell homeostasis. An increasing number of recent studies have demonstrated that dysregulation of the key processes of chondrocyte MQC, which involve mitochondrial redox, biogenesis, dynamics, and mitophagy, is associated with OA pathogenesis and can be regulated by the chondroprotective molecules 5' adenosine monophosphate-activated protein kinase (AMPK) and sirtuin 3 (SIRT3). Moreover, AMPK and SIRT3 regulate each other, and their expression and activity are always consistent in chondrocytes, which suggests the existence of an AMPK-SIRT3 positive feedback loop (PFL). Although the precise mechanisms are not fully elucidated and need further validation, the current literature indicates that this AMPK-SIRT3 PFL regulates OA development and progression, at least partially by mediating chondrocyte MQC. Therefore, understanding the mechanisms of AMPK-SIRT3 PFL-mediated chondrocyte MQC in OA pathogenesis might yield new ideas and potential targets for subsequent research on the OA pathomechanism and therapeutics.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopaedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong-Yao Wu
- West China College of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hai-Bo Si
- Department of Orthopaedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yan-Rong Lu
- Department of Orthopaedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Shen
- Department of Orthopaedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Nani A, Murtaza B, Sayed Khan A, Khan NA, Hichami A. Antioxidant and Anti-Inflammatory Potential of Polyphenols Contained in Mediterranean Diet in Obesity: Molecular Mechanisms. Molecules 2021; 26:985. [PMID: 33673390 PMCID: PMC7918790 DOI: 10.3390/molecules26040985] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 01/02/2023] Open
Abstract
Nutrition transition can be defined as shifts in food habits, and it is characterized by high-fat (chiefly saturated animal fat), hypercaloric and salty food consumption at the expense of dietary fibers, minerals and vitamins. Western dietary patterns serve as a model for studying the impact of nutrition transition on civilization diseases, such as obesity, which is commonly associated with oxidative stress and inflammation. In fact, reactive oxygen species (ROS) overproduction can be associated with nuclear factor-κB (NF-κB)-mediated inflammation in obesity. NF-κB regulates gene expression of several oxidant-responsive adipokines including tumor necrosis factor-α (TNF-α). Moreover, AMP-activated protein kinase (AMPK), which plays a pivotal role in energy homeostasis and in modulation of metabolic inflammation, can be downregulated by IκB kinase (IKK)-dependent TNF-α activation. On the other hand, adherence to a Mediterranean-style diet is highly encouraged because of its healthy dietary pattern, which includes antioxidant nutraceuticals such as polyphenols. Indeed, hydroxycinnamic derivatives, quercetin, resveratrol, oleuropein and hydroxytyrosol, which are well known for their antioxidant and anti-inflammatory activities, exert anti-obesity proprieties. In this review, we highlight the impact of the most common polyphenols from Mediterranean foods on molecular mechanisms that mediate obesity-related oxidative stress and inflammation. Hence, we discuss the effects of these polyphenols on a number of signaling pathways. We note that Mediterranean diet (MedDiet) dietary polyphenols can de-regulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and NF-κB-mediated oxidative stress, and metabolic inflammation. MedDiet polyphenols are also effective in upregulating downstream effectors of several proteins, chiefly AMPK.
Collapse
Affiliation(s)
- Abdelhafid Nani
- Laboratory of Saharan Natural Resources, African University Ahmed Draia, Adrar 01000, Algeria
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, 21000 Dijon, France; (B.M.); (A.S.K.); (N.A.K.)
| | - Babar Murtaza
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, 21000 Dijon, France; (B.M.); (A.S.K.); (N.A.K.)
| | - Amira Sayed Khan
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, 21000 Dijon, France; (B.M.); (A.S.K.); (N.A.K.)
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, 21000 Dijon, France; (B.M.); (A.S.K.); (N.A.K.)
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, 21000 Dijon, France; (B.M.); (A.S.K.); (N.A.K.)
| |
Collapse
|
13
|
Videja M, Vilskersts R, Korzh S, Cirule H, Sevostjanovs E, Dambrova M, Makrecka-Kuka M. Microbiota-Derived Metabolite Trimethylamine N-Oxide Protects Mitochondrial Energy Metabolism and Cardiac Functionality in a Rat Model of Right Ventricle Heart Failure. Front Cell Dev Biol 2021; 8:622741. [PMID: 33520996 PMCID: PMC7841203 DOI: 10.3389/fcell.2020.622741] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 12/23/2022] Open
Abstract
Aim: Trimethylamine N-oxide (TMAO) is a gut microbiota-derived metabolite synthesized in host organisms from specific food constituents, such as choline, carnitine and betaine. During the last decade, elevated TMAO levels have been proposed as biomarkers to estimate the risk of cardiometabolic diseases. However, there is still no consensus about the role of TMAO in the pathogenesis of cardiovascular disease since regular consumption of TMAO-rich seafood (i.e., a Mediterranean diet) is considered to be beneficial for the primary prevention of cardiovascular events. Therefore, the aim of this study was to investigate the effects of long-term TMAO administration on mitochondrial energy metabolism in an experimental model of right ventricle heart failure. Methods: TMAO was administered to rats at a dose of 120 mg/kg in their drinking water for 10 weeks. Then, a single subcutaneous injection of monocrotaline (MCT) (60 mg/kg) was administered to induce right ventricular dysfunction, and treatment with TMAO was continued (experimental groups: Control; TMAO; MCT; TMAO+MCT). After 4 weeks, right ventricle functionality was assessed by echocardiography, mitochondrial function and heart failure-related gene and protein expression was determined. Results: Compared to the control treatment, the administration of TMAO (120 mg/kg) for 14 weeks increased the TMAO concentration in cardiac tissues up to 14 times. MCT treatment led to impaired mitochondrial function and decreased right ventricular functional parameters. Although TMAO treatment itself decreased mitochondrial fatty acid oxidation-dependent respiration, no effect on cardiac functionality was observed. Long-term TMAO administration prevented MCT-impaired mitochondrial energy metabolism by preserving fatty acid oxidation and subsequently decreasing pyruvate metabolism. In the experimental model of right ventricle heart failure, the impact of TMAO on energy metabolism resulted in a tendency to restore right ventricular function, as indicated by echocardiographic parameters and normalized organ-to-body weight indexes. Similarly, the expression of a marker of heart failure severity, brain natriuretic peptide, was substantially increased in the MCT group but tended to be restored to control levels in the TMAO+MCT group. Conclusion: Elevated TMAO levels preserve mitochondrial energy metabolism and cardiac functionality in an experimental model of right ventricular heart failure, suggesting that under specific conditions TMAO promotes metabolic preconditioning-like effects.
Collapse
Affiliation(s)
- Melita Videja
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Pharmacy, Riga Stradiṇš University, Riga, Latvia
| | - Reinis Vilskersts
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Pharmacy, Riga Stradiṇš University, Riga, Latvia
| | | | - Helena Cirule
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Pharmacy, Riga Stradiṇš University, Riga, Latvia
| | | |
Collapse
|
14
|
Pakiet A, Jakubiak A, Mierzejewska P, Zwara A, Liakh I, Sledzinski T, Mika A. The Effect of a High-Fat Diet on the Fatty Acid Composition in the Hearts of Mice. Nutrients 2020; 12:nu12030824. [PMID: 32245049 PMCID: PMC7146498 DOI: 10.3390/nu12030824] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
The Western diet can lead to alterations in cardiac function and increase cardiovascular risk, which can be reproduced in animal models by implementing a high-fat diet (HFD). However, the mechanism of these alterations is not fully understood and may be dependent on alterations in heart lipid composition. The aim of this study was to evaluate the effect of an HFD on the fatty acid (FA) composition of total lipids, as well as of various lipid fractions in the heart, and on heart function. C57BL/6 mice were fed an HFD or standard laboratory diet. The FA composition of chow, serum, heart and skeletal muscle tissues was measured by gas chromatography–mass spectrometry. Cardiac function was evaluated by ultrasonography. Our results showed an unexpected increase in polyunsaturated FAs (PUFAs) and a significant decrease in monounsaturated FAs (MUFAs) in the heart tissue of mice fed the HFD. For comparison, no such effects were observed in skeletal muscle or serum samples. Furthermore, we found that the largest increase in PUFAs was in the sphingolipid fraction, whereas the largest decrease in MUFAs was in the phospholipid and sphingomyelin fractions. The hearts of mice fed an HFD had an increased content of triacylglycerols. Moreover, the HFD treatment altered aortic flow pattern. We did not find significant changes in heart mass or oxidative stress markers between mice fed the HFD and standard diet. The above results suggest that alterations in FA composition in the heart may contribute to deterioration of heart function. A possible mechanism of this phenomenon is the alteration of sphingolipids and phospholipids in the fatty acid profile, which may change the physical properties of these lipids. Since phospho- and sphingolipids are the major components of cell membranes, alterations in their structures in heart cells can result in changes in cell membrane properties.
Collapse
Affiliation(s)
- Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (A.Z.)
| | - Agnieszka Jakubiak
- Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Paulina Mierzejewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland;
| | - Agata Zwara
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (A.Z.)
| | - Ivan Liakh
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
| | - Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (A.Z.)
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
- Correspondence: ; Tel.: +48-585-230-810
| |
Collapse
|
15
|
Kutsche HS, Schreckenberg R, Weber M, Hirschhäuser C, Rohrbach S, Li L, Niemann B, Schulz R, Schlüter KD. Alterations in Glucose Metabolism During the Transition to Heart Failure: The Contribution of UCP-2. Cells 2020; 9:cells9030552. [PMID: 32120777 PMCID: PMC7140436 DOI: 10.3390/cells9030552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
The cardiac expression of the mitochondrial uncoupling protein (UCP)-2 is increased in patients with heart failure. However, the underlying causes as well as the possible consequences of these alterations during the transition from hypertrophy to heart failure are still unclear. To investigate the role of UCP-2 mechanistically, expression of UCP-2 was silenced by small interfering RNA in adult rat ventricular cardiomyocytes. We demonstrate that a downregulation of UCP-2 by siRNA in cardiomyocytes preserves contractile function in the presence of angiotensin II. Furthermore, silencing of UCP-2 was associated with an upregulation of glucose transporter type (Glut)-4, increased glucose uptake, and reduced intracellular lactate levels, indicating improvement of the oxidative glucose metabolism. To study this adaptation in vivo, spontaneously hypertensive rats served as a model for cardiac hypertrophy due to pressure overload. During compensatory hypertrophy, we found low UCP-2 levels with an upregulation of Glut-4, while the decompensatory state with impaired function was associated with an increase of UCP-2 and reduced Glut-4 expression. By blocking the aldosterone receptor with spironolactone, both cardiac function as well as UCP-2 and Glut-4 expression levels of the compensated phase could be preserved. Furthermore, we were able to confirm this by left ventricular (LV) biopsies of patients with end-stage heart failure. The results of this study show that UCP-2 seems to impact the cardiac glucose metabolism during the transition from hypertrophy to failure by affecting glucose uptake through Glut-4. We suggest that the failing heart could benefit from low UCP-2 levels by improving the efficiency of glucose oxidation. For this reason, UCP-2 inhibition might be a promising therapeutic strategy to prevent the development of heart failure.
Collapse
Affiliation(s)
- Hanna Sarah Kutsche
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
- Correspondence: ; Tel.: +49-641-99-47145
| | - Rolf Schreckenberg
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Martin Weber
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Christine Hirschhäuser
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Susanne Rohrbach
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Ling Li
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Bernd Niemann
- Universitätsklinikum Gießen, Klinik für Herz-, Kinderherz- und Gefäßchirurgie, 35392 Gießen, Germany;
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| | - Klaus-Dieter Schlüter
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (R.S.); (M.W.); (C.H.); (S.R.); (L.L.); (R.S.); (K.-D.S.)
| |
Collapse
|
16
|
Schneider J, Han WH, Matthew R, Sauvé Y, Lemieux H. Age and sex as confounding factors in the relationship between cardiac mitochondrial function and type 2 diabetes in the Nile Grass rat. PLoS One 2020; 15:e0228710. [PMID: 32084168 PMCID: PMC7034865 DOI: 10.1371/journal.pone.0228710] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Our study revisits the role of cardiac mitochondrial adjustments during the progression of type 2 diabetes mellitus (T2DM), while considering age and sex as potential confounding factors. We used the Nile Grass rats (NRs) as the animal model. After weaning, animals were fed either a Standard Rodent Chow Diet (SRCD group) or a Mazuri Chinchilla Diet (MCD group) consisting of high-fiber and low-fat content. Both males and females in the SRCD group, exhibited increased body mass, body mass index, and plasma insulin compared to the MCD group animals. However, the females were able to preserve their fasting blood glucose throughout the age range on both diets, while the males showed significant hyperglycemia starting at 6 months in the SRCD group. In the males, a higher citrate synthase activity-a marker of mitochondrial content-was measured at 2 months in the SRCD compared to the MCD group, and this was followed by a decline with age in the SRCD group only. In contrast, females preserved their mitochondrial content throughout the age range. In the males exclusively, the complex IV capacity expressed independently of mitochondrial content varied with age in a diet-specific pattern; the capacity was elevated at 2 months in the SRCD group, and at 6 months in the MCD group. In addition, females, but not males, were able to adjust their capacity to oxidize long-chain fatty acid in accordance with the fat content of the diet. Our results show clear sexual dimorphism in the variation of mitochondrial content and oxidative phosphorylation capacity with diet and age. The SRCD not only leads to T2DM but also exacerbates age-related cardiac mitochondrial defects. These observations, specific to male NRs, might reflect deleterious dietary-induced changes on their metabolism making them more prone to the cardiovascular consequences of aging and T2DM.
Collapse
Affiliation(s)
- Jillian Schneider
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Woo Hyun Han
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rebecca Matthew
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Sauvé
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Andrade D, Oliveira G, Menezes L, Nascimento AL, Carvalho S, Stumbo AC, Thole A, Garcia-Souza É, Moura A, Carvalho L, Cortez E. Insulin-like growth factor-1 short-period therapy improves cardiomyopathy stimulating cardiac progenitor cells survival in obese mice. Nutr Metab Cardiovasc Dis 2020; 30:151-161. [PMID: 31753790 DOI: 10.1016/j.numecd.2019.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Cardiovascular diseases are the main cause of mortality in obesity. Despite advanced understanding, the mechanisms that regulate cardiac progenitor cells (CPC) survival in pathological conditions are not clear. Low IGF-1 plasma levels are correlated to obesity, cardiomyopathy and CPC death, so this work aimed to investigate IGF-1 therapeutic potential on cardiomyopathy and its relationship with the survival, proliferation and differentiation of CPC in Western diet-induced obesity. METHODS AND RESULTS Male Swiss mice were divided into control group (CG, n = 8), fed with standard diet; and obese group (OG, n = 16), fed with Western diet, for 12 weeks. At 11th week, OG was subdivided to receive a daily subcutaneous injection of human recombinant IGF-1 (100 μg.Kg-1) for seven consecutive days (OG + IGF1, n = 8). Results showed that IGF-1 therapy improved the metabolic parameters negatively impacted by western diet in OG, reaching levels similar to CG. OG + IGF-1 also demonstrated restored heart energetic metabolism, fibrosis resolution, decreased apoptosis level, restored cardiac gap junctions and intracellular calcium balance. Cardiomyopathy improvement was accompanied by increased CPC survival, proliferation and newly cardiomyocytes formation related to increased pAkt/Akt ratio. CONCLUSION These results suggest that only one week of IGF-1 therapy has cardioprotective effects through Akt pathway upregulation, ensuring CPC survival and differentiation, contributing to heart failure rescue.
Collapse
Affiliation(s)
- Daniela Andrade
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Genilza Oliveira
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Luciana Menezes
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Ana Lúcia Nascimento
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Simone Carvalho
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Ana Carolina Stumbo
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Alessandra Thole
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Érica Garcia-Souza
- Laboratory of Nutrition Physiology and Development, Department of Physiological Sciences, Institute of Biology, UERJ, Brazil
| | - Anibal Moura
- Laboratory of Nutrition Physiology and Development, Department of Physiological Sciences, Institute of Biology, UERJ, Brazil
| | - Laís Carvalho
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Erika Cortez
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil.
| |
Collapse
|
18
|
Vileigas DF, Marciano CLDC, Mota GAF, de Souza SLB, Sant’Ana PG, Okoshi K, Padovani CR, Cicogna AC. Temporal Measures in Cardiac Structure and Function During the Development of Obesity Induced by Different Types of Western Diet in a Rat Model. Nutrients 2019; 12:nu12010068. [PMID: 31888029 PMCID: PMC7019835 DOI: 10.3390/nu12010068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is recognized worldwide as a complex metabolic disorder that has reached epidemic proportions and is often associated with a high incidence of cardiovascular diseases. To study this pathology and evaluate cardiac function, several models of diet-induced obesity (DIO) have been developed. The Western diet (WD) is one of the most widely used models; however, variations in diet composition and time period of the experimental protocol make comparisons challenging. Thus, this study aimed to evaluate the effects of two different types of Western diet on cardiac remodeling in obese rats with sequential analyses during a long-term follow-up. Male Wistar rats were distributed into three groups fed with control diet (CD), Western diet fat (WDF), and Western diet sugar (WDS) for 41 weeks. The animal nutritional profile and cardiac histology were assessed at the 41st week. Cardiac structure and function were evaluated by echocardiogram at four different moments: 17, 25, 33, and 41 weeks. A noninvasive method was performed to assess systolic blood pressure at the 33rd and 41st week. The animals fed with WD (WDF and WDS) developed pronounced obesity with an average increase of 86.5% in adiposity index at the end of the experiment. WDF and WDS groups also presented hypertension. The echocardiographic data showed no structural differences among the three groups, but WDF animals presented decreased endocardial fractional shortening and ejection fraction at the 33rd and 41st week, suggesting altered systolic function. Moreover, WDF and WFS animals did not present hypertrophy and interstitial collagen accumulation in the left ventricle. In conclusion, both WD were effective in triggering severe obesity in rats; however, only the WDF induced mild cardiac dysfunction after long-term diet exposure. Further studies are needed to search for an appropriate DIO model with relevant cardiac remodeling.
Collapse
Affiliation(s)
- Danielle Fernandes Vileigas
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Cecília Lume de Carvalho Marciano
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Gustavo Augusto Ferreira Mota
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Sérgio Luiz Borges de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Paula Grippa Sant’Ana
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
| | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University, Botucatu 18618970, Brazil;
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, Botucatu 18618687, Brazil; (D.F.V.); (C.L.d.C.M.); (G.A.F.M.); (S.L.B.d.S.); (P.G.S.); (K.O.)
- Correspondence: ; Tel.: +55-14-3880-1618
| |
Collapse
|
19
|
Plaza A, Antonazzi M, Blanco-Urgoiti J, Del Olmo N, Ruiz-Gayo M. Potential Role of Leptin in Cardiac Steatosis Induced by Highly Saturated Fat Intake during Adolescence. Mol Nutr Food Res 2019; 63:e1900110. [PMID: 31298470 DOI: 10.1002/mnfr.201900110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/16/2019] [Indexed: 01/06/2023]
Abstract
SCOPE To identify the age-dependent effect of diets containing elevated amounts of either saturated or unsaturated fatty acids on cardiac steatosis in mice. METHODS AND RESULTS Five- and eight-week-old C57BL/6J mice cohorts are given free access to either a saturated or an unsaturated fatty-acid-enriched diet during 8 weeks. Body weight (BW) and food intake are monitored during this period. Cardiac lipid content, carnitine palmitoyltransferase-I (CPT-I) activity, and the amount of uncoupling proteins 2 and 3 (UCP2 and UCP3) are analyzed and correlated with blood leptin concentration. Leptin and PPARγ gene expression is quantified in white adipose tissue (WAT). Both diets have a similar effect on food intake, BW, and adiposity, independently of the age. Nevertheless, cardiac steatosis is specifically identified in adolescent mice consuming the saturated diet. These animals also display lower activity of cardiac CPT-I, a down-regulation of cardiac UCP2, together with lower concentration of plasma leptin. Accordingly, leptin gene expression is reduced in the visceral WAT. CONCLUSION Consumption of diets containing elevated amounts of saturated fat during adolescence and early adult life promotes cardiac steatosis in mice. An insufficient endocrine activity of WAT, in terms of leptin production, may account for such an effect.
Collapse
Affiliation(s)
- Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| | - Marco Antonazzi
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| | | | - Nuria Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28925, Madrid, Spain
| |
Collapse
|
20
|
Hirschberg S, Gisevius B, Duscha A, Haghikia A. Implications of Diet and The Gut Microbiome in Neuroinflammatory and Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20123109. [PMID: 31242699 PMCID: PMC6628344 DOI: 10.3390/ijms20123109] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022] Open
Abstract
Within the last century, human lifestyle and dietary behaviors have changed dramatically. These changes, especially concerning hygiene, have led to a marked decrease in some diseases, i.e., infectious diseases. However, other diseases that can be attributed to the so-called ‘Western’ lifestyle have increased, i.e., metabolic and cardiovascular disorders. More recently, multifactorial disorders, such as autoimmune and neurodegenerative diseases, have been associated with changes in diet and the gut microbiome. In particular, short chain fatty acid (SCFA)-producing bacteria are of high interest. SCFAs are the main metabolites produced by bacteria and are often reduced in a dysbiotic state, causing an inflammatory environment. Based on advanced technologies, high-resolution investigations of the abundance and composition of the commensal microbiome are now possible. These techniques enable the assessment of the relationship between the gut microbiome, its metabolome and gut-associated immune and neuronal cells. While a growing number of studies have shown the indirect impact of gut metabolites, mediated by alterations of immune-mediated mechanisms, the direct influence of these compounds on cells of the central nervous system needs to be further elucidated. For instance, the SCFA propionic acid (PA) increases the amount of intestine-derived regulatory T cells, which furthermore can positively affect the central nervous system (CNS), e.g., by increasing remyelination. However, the question of if and how PA can directly interact with CNS-resident cells is a matter of debate. In this review, we discuss the impact of an altered microbiome composition in relation to various diseases and discuss how the commensal microbiome is shaped, starting from the beginning of human life.
Collapse
Affiliation(s)
- Sarah Hirschberg
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital Bochum, Gudrunstr. 56, 44791 Bochum, Germany.
| | - Barbara Gisevius
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital Bochum, Gudrunstr. 56, 44791 Bochum, Germany.
| | - Alexander Duscha
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital Bochum, Gudrunstr. 56, 44791 Bochum, Germany.
| | - Aiden Haghikia
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital Bochum, Gudrunstr. 56, 44791 Bochum, Germany.
| |
Collapse
|
21
|
Tanajak P, Sa-Nguanmoo P, Sivasinprasasn S, Thummasorn S, Siri-Angkul N, Chattipakorn SC, Chattipakorn N. Cardioprotection of dapagliflozin and vildagliptin in rats with cardiac ischemia-reperfusion injury. J Endocrinol 2018; 236:69-84. [PMID: 29142025 DOI: 10.1530/joe-17-0457] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitor (SGLT2-i) effects on cardiac ischemia/reperfusion (I/R) injury are unclear. Unlike SGLT2-i, dipeptidyl peptidase 4 inhibitors (DPP4-i) have shown effective cardioprotection in cardiac I/R injury. We aimed to investigate whether SGLT2-i reduces myocardial dysfunction and myocardial injury to a greater extent than DPP4-i in obese insulin-resistant rats with/without cardiac I/R injury. The high-fat (HF) diet-induced obese insulin-resistant rats were divided into 4 groups and received the following treatments for 28 days: vehicle (HFV); vildagliptin at a dosage of 3 mg/kg/day (HFVil); dapagliflozin at a dosage of 1 mg/kg/day (HFDa) and combination drugs (HFDaVil). At the end, I/R injury was induced by a 30-min left anterior descending coronary occlusion and 120-min reperfusion. Dapagliflozin showed a greater efficacy than vildagliptin in improving the metabolic impairments, low frequency/high frequency (LF/HF) ratio, systolic blood pressure and left ventricular (LV) function in comparison to HFV rats. In cardiac I/R injury, dapagliflozin had a greater efficacy than vildagiptin in decreasing mitochondrial DRP1, cleaved caspase 3, LV dysfunction and infarct size in comparison to HFV rats. However, the combined therapy showed the greatest efficacy in attenuating LV dysfunction, mitochondrial DRP1 and infarct size in comparison to HFV rats. In conclusion, dapagliflozin has a more pronounced effect than vildagliptin in obese insulin-resistant rats for the improvement of LV function. In rats with cardiac I/R injury, although dapagliflozin had a greater efficacy on cardioprotection than vildagliptin, the combined therapy exerted the highest cardioprotective effects potentially by reducing mitochondrial fission.
Collapse
Affiliation(s)
- Pongpan Tanajak
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Piangkwan Sa-Nguanmoo
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Sivaporn Sivasinprasasn
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Savitree Thummasorn
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Natthaphat Siri-Angkul
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic SciencesFaculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
22
|
Butler TJ, Ashford D, Seymour AM. Western diet increases cardiac ceramide content in healthy and hypertrophied hearts. Nutr Metab Cardiovasc Dis 2017; 27:991-998. [PMID: 29070436 DOI: 10.1016/j.numecd.2017.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/23/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND AIMS Obesity and cardiac left ventricular hypertrophy (LVH) are recognised independent risk factors in the development of heart failure (HF). However, the combination of these factors may exacerbate the onset of cardiovascular disease by mechanisms as yet unclear. LVH leads to significant cellular remodelling, including alterations in metabolism which may result in an inappropriate accumulation of lipids and eventual lipotoxicity and apoptosis. The aim of the study was to determine the impact of dietary manipulation on cardiac metabolism in the obese and hypertrophied heart. METHODS AND RESULTS LVH was induced via aortic constriction (AC) in an experimental model of cardiac hypertrophy and animals subjected to 9 weeks of dietary manipulation with either a standard, high fat, or a sucrose containing Western-style diet (SD, HFD and WD, respectively). This latter diet resulted in accelerated weight gain in both LVH/AC and control animals. LVH was greater in AC animals fed a WD, and both control and AC animals from this diet showed a significant reduction in cardiac fatty acid oxidation and increased triacylglycerol content. Ceramide content was significantly increased in the WD groups, with no additional effect of LVH. Comparison with a model of HF induced by exposure to Doxorubicin and WD showed exacerbated remodelling of cardiac ceramide species leading to increased C16 and C18 content. CONCLUSIONS These findings highlight the inappropriate accumulation and re-distribution of cardiac ceramide species in a diet-induced model of obesity and LVH, potentially increasing susceptibility to cell death. The combination of increased fat and sugar leads to greater pathological remodelling and may explain why this diet pattern is consistently linked with poor cardiovascular outcomes.
Collapse
Affiliation(s)
- T J Butler
- School of Biological, Biomedical and Environmental Sciences, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| | - D Ashford
- Technology Facility (Proteomics & Analytical Biochemistry Laboratory), Centre of Excellence in Mass Spectrometry, Department of Biology, University of York, UK
| | - A-M Seymour
- School of Biological, Biomedical and Environmental Sciences, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
23
|
Autism-Like Behaviours and Memory Deficits Result from a Western Diet in Mice. Neural Plast 2017; 2017:9498247. [PMID: 28685102 PMCID: PMC5480052 DOI: 10.1155/2017/9498247] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/09/2017] [Accepted: 03/20/2017] [Indexed: 01/02/2023] Open
Abstract
Nonalcoholic fatty liver disease, induced by a Western diet (WD), evokes central and peripheral inflammation that is accompanied by altered emotionality. These changes can be associated with abnormalities in social behaviour, hippocampus-dependent cognitive functions, and metabolism. Female C57BL/6J mice were fed with a regular chow or with a WD containing 0.2% of cholesterol and 21% of saturated fat for three weeks. WD-treated mice exhibited increased social avoidance, crawl-over and digging behaviours, decreased body-body contacts, and hyperlocomotion. The WD-fed group also displayed deficits in hippocampal-dependent performance such as contextual memory in a fear conditioning and pellet displacement paradigms. A reduction in glucose tolerance and elevated levels of serum cholesterol and leptin were also associated with the WD. The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1a) mRNA, a marker of mitochondrial activity, was decreased in the prefrontal cortex, hippocampus, hypothalamus, and dorsal raphe, suggesting suppressed brain mitochondrial functions, but not in the liver. This is the first report to show that a WD can profoundly suppress social interactions and induce dominant-like behaviours in naïve adult mice. The spectrum of behaviours that were found to be induced are reminiscent of symptoms associated with autism, and, if paralleled in humans, suggest that a WD might exacerbate autism spectrum disorder.
Collapse
|
24
|
Creus A, Benmelej A, Villafañe N, Lombardo YB. Dietary Salba (Salvia hispanica L) improves the altered metabolic fate of glucose and reduces increased collagen deposition in the heart of insulin-resistant rats. Prostaglandins Leukot Essent Fatty Acids 2017; 121:30-39. [PMID: 28651695 DOI: 10.1016/j.plefa.2017.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
Abstract
This study reports the effects of dietary Salba (chia) seeds on the mechanisms underlying impaired glucose metabolism in the heart of dyslipemic insulin-resistant rats fed a sucrose-rich diet (SRD). Wistar rats were fed a SRD for 3 months. Afterwards, half the animals continued with the SRD; in the other half's diet chia seeds replaced corn oil (CO) for three months (SRD+chia). In the control group, corn starch replaced sucrose. The replacement of CO by chia seeds in the SRD restored the activities of key enzymes involved in heart glucose metabolism decreasing fatty acid oxidation. Chia seeds normalized insulin stimulated GLUT-4 transporter, the abundance of IRS-1 and pAMPK, changed the profile of fatty acid phospholipids, reduced left-ventricle collagen deposition and normalized hypertension and dyslipidemia. New evidence is provided concerning the effects of dietary chia seeds in improving the altered metabolic fate of glucose in the heart of dyslipemic insulin-resistant rats.
Collapse
Affiliation(s)
- Agustina Creus
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria El Pozo cc 242, 3000 Santa Fe, Argentina
| | - Adriana Benmelej
- Department of Morphology, School of Biochemistry, University of Litoral, Ciudad Universitaria El Pozo cc 242, 3000 Santa Fe, Argentina
| | - Noelia Villafañe
- Department of Morphology, School of Biochemistry, University of Litoral, Ciudad Universitaria El Pozo cc 242, 3000 Santa Fe, Argentina
| | - Yolanda B Lombardo
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria El Pozo cc 242, 3000 Santa Fe, Argentina.
| |
Collapse
|
25
|
Abstract
Obesity-related co-morbidities decrease life quality, reduce working ability and lead to early death. The total amount of dietary fat consumption may be the most potent food-related risk factor for weight gain. In this respect, dietary intake of high-caloric, high-fat diets due to chronic over-eating and sedentary lifestyle lead to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues . Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance in an inflammation-independent manner. Even in the absence of metabolic disorders, mismatch between fatty acid uptake and utilization leads to the accumulation of toxic lipid species resulting in organ dysfunction. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction may play role in the pathogenesis of lipotoxicity. The hypothalamus senses availability of circulating levels of glucose, lipids and amino acids, thereby modifies feeding according to the levels of those molecules. However, the hypothalamus is also similarly vulnerable to lipotoxicity as the other ectopic lipid accumulated tissues. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B kinase beta subunit/nuclear factor kappa B (IKKβ/NF-κB) in the hypothalamus before the onset of obesity. However, the mechanisms by which high-fat diet induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown. In this chapter, besides lipids and leptin, the role of glucose and insulin on specialized fuel-sensing neurons of hypothalamic neuronal circuits has been debated.
Collapse
|
26
|
Zhang Y, Fang X, Dai M, Cao Q, Tan T, He W, Huang Y, Chu L, Bao M. Cardiac-specific down-regulation of carnitine palmitoyltransferase-1b (CPT-1b) prevents cardiac remodeling in obese mice. Obesity (Silver Spring) 2016; 24:2533-2543. [PMID: 27804274 DOI: 10.1002/oby.21665] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/05/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To determine whether inhibiting cardiac carnitine palmitoyltransferase-1b (CPT-1b) improves obesity-related cardiomyopathy. METHODS Four-week-old male C57BL/6J mice were fed with high-fat diet (HFD) for 12 weeks to induce obesity. At 6 weeks of age, mice were subjected to intramyocardial injection with lentivirus to down-regulate the expression of either cardiac CPT-1b or green fluorescent protein. Morphological, biochemical, functional, histological, and ultrastructural profiles were assessed at 16 weeks of age. RESULTS HFD administration elicited obesity, cardiac hypertrophy, and systolic dysfunction accompanied with altered biochemical parameters. In addition, HFD consumption promoted lipid accumulation and reactive oxygen species generation in cardiomyocytes and damaged myocardial ultrastructure. Cardiac CPT-1b silencing protected against HFD-induced cardiac remodeling by decreasing heart weight/tibial length ratio and increasing left ventricular ejection fraction and fractional shortening, as well as normalizing left ventricular diameter. Meanwhile, CPT-1b inhibition mitigated the changes in biochemical parameters, aggravated myocardial lipid accumulation, reduced intramyocardial reactive oxygen species production, and partly amended myocardial ultrastructural alterations in obese mice. CONCLUSIONS Cardiac CPT-1b suppression protects against the aggravation of cardiac morphology and function associated with HFD feeding. CPT-1b represents a potential therapeutic target for the treatment of cardiac dysfunction related to metabolic diseases such as obesity and diabetes.
Collapse
Affiliation(s)
- Yijie Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Xianlong Fang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Mingyan Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Quan Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Tuantuan Tan
- Department of Ultrasonography, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Wenbo He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Yan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Liang Chu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Mingwei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| |
Collapse
|
27
|
Tanajak P, Sa-nguanmoo P, Wang X, Liang G, Li X, Jiang C, Chattipakorn SC, Chattipakorn N. Fibroblast growth factor 21 (FGF21) therapy attenuates left ventricular dysfunction and metabolic disturbance by improving FGF21 sensitivity, cardiac mitochondrial redox homoeostasis and structural changes in pre-diabetic rats. Acta Physiol (Oxf) 2016; 217:287-99. [PMID: 27119620 DOI: 10.1111/apha.12698] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/04/2016] [Accepted: 04/22/2016] [Indexed: 01/10/2023]
Abstract
AIMS Fibroblast growth factor 21 (FGF21) acts as a metabolic regulator and exerts cardioprotective effects. However, the effects of long-term FGF21 administration on the heart under the FGF21-resistant condition in obese, insulin-resistant rats have not been investigated. We hypothesized that long-term FGF21 administration reduces FGF21 resistance and insulin resistance and attenuates cardiac dysfunction in obese, insulin-resistant rats. METHODS Eighteen rats were fed on either a normal diet (n = 6) or a high-fat diet (HFD; n = 12) for 12 weeks. Then, rats in the HFD group were divided into two subgroups (n = 6 per subgroup) and received either the vehicle (HFV) or recombinant human FGF21 (rhFGF21, 0.1 mg kg(-1) day(-1) ; HFF) injected intraperitoneally for 28 days. The metabolic parameters, inflammation, malondialdehyde (MDA), heart rate variability (HRV), left ventricular (LV) function, cardiac mitochondrial redox homoeostasis, cardiac mitochondrial fatty acid β-oxidation (FAO) and anti-apoptotic signalling pathways were determined. RESULTS HFV rats had increased dyslipidaemia, insulin resistance, plasma FGF21 levels, TNF-α, adiponectin and MDA, depressed HRV, and impaired LV and mitochondrial function. HFV rats also had decreased cardiac Bcl-2, cardiac PGC-1α and CPT-1 protein expression. However, FGF21 restored metabolic parameters, decreased TNF-α and MDA, increased serum adiponectin, and improved HRV, cardiac mitochondrial and LV function in HFF rats. Moreover, HFF rats had increased cardiac Bcl-2, cardiac PGC-1α and CPT-1 protein expression. CONCLUSION Long-term FGF21 therapy attenuates FGF21 resistance and insulin resistance and exerts cardioprotection by improving cardiometabolic regulation via activating anti-apoptotic and cardiac mitochondrial FAO signalling pathways in obese, insulin-resistant rats.
Collapse
Affiliation(s)
- P. Tanajak
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - P. Sa-nguanmoo
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - X. Wang
- School of Pharmaceutical Sciences; Wenzhou Medical University; University-Town Wenzhou Zhejiang China
| | - G. Liang
- School of Pharmaceutical Sciences; Wenzhou Medical University; University-Town Wenzhou Zhejiang China
| | - X. Li
- School of Pharmaceutical Sciences; Wenzhou Medical University; University-Town Wenzhou Zhejiang China
| | - C. Jiang
- School of Pharmaceutical Sciences; Wenzhou Medical University; University-Town Wenzhou Zhejiang China
| | - S. C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences; Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - N. Chattipakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
28
|
Overnutrition during lactation leads to impairment in insulin signaling, up-regulation of GLUT1 and increased mitochondrial carbohydrate oxidation in heart of weaned mice. J Nutr Biochem 2015; 29:124-32. [PMID: 26608021 DOI: 10.1016/j.jnutbio.2015.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/12/2015] [Accepted: 09/23/2015] [Indexed: 01/19/2023]
Abstract
Several studies have demonstrated that overnutrition during early postnatal period can increase the long-term risk of developing obesity and cardiac disorders, yet the short-term effects of postnatal overfeeding in cardiac metabolism remains unknown. The aim of our study was to investigate the cardiac metabolism of weaned mice submitted to overnutrition during lactation, particularly as to mitochondrial function, substrate preference and insulin signaling. Postnatal overfeeding was induced by litter size reduction in mice at postnatal day 3. At 21 days of age (weaning), mice in the overfed group (OG) presented biometric and biochemical parameters of obesity, including increased body weight, visceral fat, liver weight and increased left ventricle weight/tibia length ratio; indicating cardiac hypertrophy, hyperglycemia, hyperinsulinemia and increased liver glycogen content compared to control group. In the heart, we detected impaired insulin signaling, mainly due to decreased IRβ, pTyr-IRS1, PI3K, GLUT4 and pAkt/Akt and increased PTP1B, GLUT1 and pAMPKα/AMPKα content. Activities of lactate dehydrogenase and citrate synthase were increased, accompanied by enhanced carbohydrate oxidation, as observed by high-resolution respirometry. Moreover, OG hearts had lower CPT1, PPARα and increased UCP2 mRNA expression, associated with increased oxidative stress (4-HNE content), BAX/BCL2 ratio and cardiac fibrosis. Ultrastructural analysis of OG hearts demonstrated mild mitochondrial damage without alterations in OXPHOS complexes. In conclusion, overnutrition during early life induces short-term metabolic disturbances, impairment in heart insulin signaling, up-regulates GLUT-1 and switch cardiac fuel preference in juvenile mice.
Collapse
|
29
|
Talati M, Hemnes A. Fatty acid metabolism in pulmonary arterial hypertension: role in right ventricular dysfunction and hypertrophy. Pulm Circ 2015; 5:269-78. [PMID: 26064451 DOI: 10.1086/681227] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 12/30/2014] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex, multifactorial disease in which an increase in pulmonary vascular resistance leads to increased afterload on the right ventricle (RV), causing right heart failure and death. Our understanding of the pathophysiology of RV dysfunction in PAH is limited but is constantly improving. Increasing evidence suggests that in PAH RV dysfunction is associated with various components of metabolic syndrome, such as insulin resistance, hyperglycemia, and dyslipidemia. The relationship between RV dysfunction and fatty acid/glucose metabolites is multifaceted, and in PAH it is characterized by a shift in utilization of energy sources toward increased glucose utilization and reduced fatty acid consumption. RV dysfunction may be caused by maladaptive fatty acid metabolism resulting from an increase in fatty acid uptake by fatty acid transporter molecule CD36 and an imbalance between glucose and fatty acid oxidation in mitochondria. This leads to lipid accumulation in the form of triglycerides, diacylglycerol, and ceramides in the cytoplasm, hallmarks of lipotoxicity. Current interventions in animal models focus on improving RV dysfunction through altering fatty acid oxidation rates and limiting lipid accumulation, but more specific and effective therapies may be available in the coming years based on current research. In conclusion, a deeper understanding of the complex mechanisms of the metabolic remodeling of the RV will aid in the development of targeted treatments for RV failure in PAH.
Collapse
Affiliation(s)
- Megha Talati
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
30
|
Impaired mitochondrial function and reduced viability in bone marrow cells of obese mice. Cell Tissue Res 2014; 357:185-94. [DOI: 10.1007/s00441-014-1857-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
|