1
|
Al‐Ibraheem AMT, Hameed AAZ, Marsool MDM, Jain H, Prajjwal P, Khazmi I, Nazzal RS, AL‐Najati HMH, Al‐Zuhairi BHYK, Razzaq M, Abd ZB, Marsool ADM, wahedaldin AI, Amir O. Exercise-Induced cytokines, diet, and inflammation and their role in adipose tissue metabolism. Health Sci Rep 2024; 7:e70034. [PMID: 39221051 PMCID: PMC11365580 DOI: 10.1002/hsr2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/23/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Obesity poses a significant global health challenge, necessitating effective prevention and treatment strategies. Exercise and diet are recognized as pivotal interventions in combating obesity. This study reviews the literature concerning the impact of exercise-induced cytokines, dietary factors, and inflammation on adipose tissue metabolism, shedding light on potential pathways for therapeutic intervention. METHODOLOGY A comprehensive review of relevant literature was conducted to elucidate the role of exercise-induced cytokines, including interleukin-6 (IL-6), interleukin-15 (IL-15), brain-derived neurotrophic factor (BDNF), irisin, myostatin, fibroblast growth factor 21 (FGF21), follistatin (FST), and angiopoietin-like 4 (ANGPTL4), in adipose tissue metabolism. Various databases were systematically searched using predefined search terms to identify relevant studies. Articles selected for inclusion underwent thorough analysis to extract pertinent data on the mechanisms underlying the influence of these cytokines on adipose tissue metabolism. RESULTS AND DISCUSSION Exercise-induced cytokines exert profound effects on adipose tissue metabolism, influencing energy expenditure (EE), thermogenesis, fat loss, and adipogenesis. For instance, IL-6 activates AMP-activated protein kinase (AMPK), promoting fatty acid oxidation and reducing lipogenesis. IL-15 upregulates peroxisome proliferator-activated receptor delta (PPARδ), stimulating fatty acid catabolism and suppressing lipogenesis. BDNF enhances AMPK-dependent fat oxidation, while irisin induces the browning of white adipose tissue (WAT), augmenting thermogenesis. Moreover, myostatin, FGF21, FST, and ANGPTL4 each play distinct roles in modulating adipose tissue metabolism, impacting factors such as fatty acid oxidation, adipogenesis, and lipid uptake. The elucidation of these pathways offers valuable insights into the complex interplay between exercise, cytokines, and adipose tissue metabolism, thereby informing the development of targeted obesity management strategies. CONCLUSION Understanding the mechanisms by which exercise-induced cytokines regulate adipose tissue metabolism is critical for devising effective obesity prevention and treatment modalities. Harnessing the therapeutic potential of exercise-induced cytokines, in conjunction with dietary interventions, holds promise for mitigating the global burden of obesity. Further research is warranted to delineate the precise mechanisms underlying the interactions between exercise, cytokines, and adipose tissue metabolism.
Collapse
Affiliation(s)
| | | | | | - Hritvik Jain
- All India Institute of Medical SciencesJodhpurIndia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Neshatbini Tehrani A, Hatami B, Helli B, Yari Z, Daftari G, Salehpour A, Hedayati M, Khalili E, Hosseini SA, Hekmatdoost A. The effect of soy isoflavones on non-alcoholic fatty liver disease and the level of fibroblast growth factor-21 and fetuin A. Sci Rep 2024; 14:5134. [PMID: 38429385 PMCID: PMC10907727 DOI: 10.1038/s41598-024-55747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
A two-arm randomized open labeled controlled clinical trial was conducted on 50 patients with non-alcoholic fatty liver disease (NAFLD). Subjects were randomized to either receive two tablets of soy isoflavone (100 mg/day) or placebo. At week 12, the serum levels of alanine amino transferase (ALT), aspartate amino transferase (AST) and controlled attenuation parameter (CAP) score were significantly decreased only in the soy isoflavone group (P < 0.05). A significant decline in the gamma glutamyl transferase (GGT) level was observed only in the placebo group (P = 0.017). A significant increase in the serum level of fetuin A was shown in both groups at the end of the trial with a significantly greater increment in the soy isoflavone group compared to the placebo group (P < 0.05). The changes in the serum level of FGF-21 were not significant in any of the two groups. Steatosis grade significantly improved only in the soy isoflavone group (P = 0.045). There was no significant change in the fibrosis grade in the groups. Soy isoflavone intake led to a decrease in ALT, AST, CAP score, steatosis grade and an increase in the level of fetuin A. However, no significant changes were observed in the fibrosis grade and serum levels of GGT and FGF-21.
Collapse
Affiliation(s)
- Asal Neshatbini Tehrani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bizhan Helli
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Yari
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Daftari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Salehpour
- School of Public Health, Occupational Health Research Center, Iran Universityof Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elmira Khalili
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ahmad Hosseini
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azita Hekmatdoost
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, No 7, West Arghavan St., Farahzadi Blvd., P. O. Box: 19395-4741, Tehran, 1981619573, Iran.
| |
Collapse
|
3
|
Wu M, Wang J, Zhou W, Wang M, Hu C, Zhou M, Jiao K, Li Z. Vitamin D inhibits tamoxifen-induced non-alcoholic fatty liver disease through a nonclassical estrogen receptor/liver X receptor pathway. Chem Biol Interact 2024; 389:110865. [PMID: 38191086 DOI: 10.1016/j.cbi.2024.110865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) is one of the common side effects of tamoxifen treatment for estrogen receptor-positive breast cancer, and is representative of disorders of energy metabolism. Fatty liver is induced after tamoxifen (TAM) inhibition of estrogen receptor activity, but the exact mechanism is not clear. This study investigated the effects and mechanisms of TAM-induced steatosis in the liver. The effects and mechanisms of TAM on hepatocyte lipid metabolism were assessed using C57BL/6 female mice and human hepatoma cells. TAM promoted fat accumulation in the liver by upregulation of Srebp-1c expression. Regarding the molecular mechanism, TAM promoted the recruitment of the auxiliary transcriptional activator, p300, and dissociated the auxiliary transcriptional repressor, nuclear receptor corepressor (NCOR), of the complexes, which led to enhancement of Srebp-1c transcription and an increase of triglyceride (TG) synthesis. Vitamin D (VD), a common fat-soluble vitamin, can decrease TAM-induced NAFLD by promoting p300 dissociation and NCOR recruitment. Tamoxifen promoted the recruitment and dissociation of co-transcription factors on the LXR/ER/RXR receptor complex, leading to a disorder of liver lipid metabolism. VD interfered with TAM-induced liver lipid metabolism disorders by reversing this process.
Collapse
Affiliation(s)
- Maoxuan Wu
- Nantong Center for Disease Control and Prevention, Nantong, 226000, China
| | - Jie Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wanqing Zhou
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mengting Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chunyan Hu
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ming Zhou
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Kailin Jiao
- Department of Nutrition, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Zhong Li
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
4
|
Zhao C, Shi J, Shang D, Guo M, Zhou C, Zhao W. Protective effect of phytoestrogens on nonalcoholic fatty liver disease in postmenopausal women. Front Pharmacol 2023; 14:1237845. [PMID: 37719855 PMCID: PMC10502324 DOI: 10.3389/fphar.2023.1237845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive metabolic disease characterized by hepatic steatosis, inflammation, and fibrosis that seriously endangers global public health. Epidemiological studies have shown that the incidence of non-alcoholic fatty liver disease in postmenopausal women has significantly increased. Studies have shown that estrogen deficiency is the main reason for this situation, and supplementing estrogen has become a new direction for preventing the occurrence of postmenopausal fatty liver. However, although classical estrogen replacement therapy can reduce the incidence of postmenopausal NAFLD, it has the risk of increasing stroke and cardiovascular diseases, so it is not suitable for the treatment of postmenopausal NAFLD. More and more recent studies have provided evidence that phytoestrogens are a promising method for the treatment of postmenopausal NAFLD. However, the mechanism of phytoestrogens in preventing and treating postmenopausal NAFLD is still unclear. This paper summarizes the clinical and basic research evidence of phytoestrogens and reviews the potential therapeutic effects of phytoestrogens in postmenopausal NAFLD from six angles: enhancing lipid metabolism in liver and adipose tissue, enhancing glucose metabolism, reducing oxidative stress, reducing the inflammatory response, regulating intestinal flora, and blocking liver fibrosis (Graphical Abstract).
Collapse
Affiliation(s)
- ChenLu Zhao
- First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - JunHao Shi
- First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - DongFang Shang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Min Guo
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Cheng Zhou
- First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - WenXia Zhao
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
5
|
DiStefano JK. The Role of Choline, Soy Isoflavones, and Probiotics as Adjuvant Treatments in the Prevention and Management of NAFLD in Postmenopausal Women. Nutrients 2023; 15:2670. [PMID: 37375574 DOI: 10.3390/nu15122670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent condition among postmenopausal women that can lead to severe liver dysfunction and increased mortality. In recent years, research has focused on identifying potential lifestyle dietary interventions that may prevent or treat NAFLD in this population. Due to the complex and multifactorial nature of NAFLD in postmenopausal women, the disease can present as different subtypes, with varying levels of clinical presentation and variable treatment responses. By recognizing the significant heterogeneity of NAFLD in postmenopausal women, it may be possible to identify specific subsets of individuals who may benefit from targeted nutritional interventions. The purpose of this review was to examine the current evidence supporting the role of three specific nutritional factors-choline, soy isoflavones, and probiotics-as potential nutritional adjuvants in the prevention and treatment of NAFLD in postmenopausal women. There is promising evidence supporting the potential benefits of these nutritional factors for NAFLD prevention and treatment, particularly in postmenopausal women, and further research is warranted to confirm their effectiveness in alleviating hepatic steatosis in this population.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| |
Collapse
|
6
|
Ruiz de la Bastida A, Langa S, Peirotén Á, Fernández-Gonzalez R, Sánchez-Jiménez A, Maroto Oltra M, Luis Arqués J, Gutierrez-Adan A, María Landete J. Effect of fermented soy beverage in aged female mice model. Food Res Int 2023; 169:112745. [DOI: 10.1016/j.foodres.2023.112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 04/08/2023]
|
7
|
Santos Filho LED, Santos GPLD, Silva JA, Silva FDA, Silva MN, Almeida AAD, Coqueiro RDS, Coimbra CC, Soares TDJ, Magalhães ACMD. Dietary Soy Isoflavones Prevent Metabolic Disturbs Associated with a Deleterious Combination of Obesity and Menopause. J Med Food 2023; 26:104-113. [PMID: 36383150 DOI: 10.1089/jmf.2022.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate the effects of soy isoflavone supplementation (25 mg/kg) on insulin resistance and inflammation in adipose tissue in an experimental model of menopause-obesity. Twenty-four female Wistar rats were ovariectomized (O) and distributed among the groups: OSD-ovariectomized rats submitted to normocaloric standard diet (n = 6); OHF-ovariectomized rats submitted to high-fat diet (n = 9); and OHFI-ovariectomized rats submitted to high-fat diet with isoflavones (n = 9). Weight gain, body adiposity, food and caloric intake, blood pressure, and glucose tolerance were assessed. After 24 weeks, the rats were euthanized; the thoracic blood collected for serum insulin determination and the homeostatic model assessment-insulin resistance) (HOMA-IR) and homeostatic model assessment-β cell (HOMA-β) indices were calculated. Abdominal adipose tissues were removed, weighed, and fixed for immunohistochemical and morphometric studies. Isoflavones decreased weight gain and blood pressure without changing the food and caloric intake (P < .05). Isoflavones did not affect the weight of the abdominal adipose tissue depots (P < .05). Although they did not alter glucose tolerance, the isoflavones reduced HOMA-IR and HOMA-β, serum insulin levels, in addition to reducing adipocytes' size (P < .05). The number of macrophages, lymphocytes, and crown-like structures in adipose tissue was lower in the group treated with isoflavones (P < .05). In conclusion, our data show that dietary soy isoflavones' supplementation prevents many of well-known deleterious combination of obesity and menopause on metabolism, such as body overweight, adipocyte hypertrophy, and hypertension, as well as insulin resistance and adipose tissue inflammation.
Collapse
Affiliation(s)
- Luciano Evangelista Dos Santos Filho
- Postgraduate Multicentric Program in Physiological Sciences, Brazilian Physiological Society/Multidisciplinary Institute of Health, Federal University of Bahia, Vitória of Conquista, Bahia, Brazil
| | - Grazielle Prates Lourenço Dos Santos
- Postgraduate Multicentric Program in Physiological Sciences, Brazilian Physiological Society/Multidisciplinary Institute of Health, Federal University of Bahia, Vitória of Conquista, Bahia, Brazil
| | - Jussara Andrade Silva
- Postgraduate Multicentric Program in Physiological Sciences, Brazilian Physiological Society/Multidisciplinary Institute of Health, Federal University of Bahia, Vitória of Conquista, Bahia, Brazil
| | - Fernanda de Abreu Silva
- Postgraduate Multicentric Program in Physiological Sciences, Brazilian Physiological Society/Multidisciplinary Institute of Health, Federal University of Bahia, Vitória of Conquista, Bahia, Brazil
| | - Mirlana Neves Silva
- Multidisciplinary Institute of Health, Federal University of Bahia, Vitória of Conquista, Bahia, Brazil
| | - Amanda Alves de Almeida
- Multidisciplinary Institute of Health, Federal University of Bahia, Vitória of Conquista, Bahia, Brazil
| | | | - Cândido Celso Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Telma de Jesus Soares
- Multidisciplinary Institute of Health, Federal University of Bahia, Vitória of Conquista, Bahia, Brazil
| | | |
Collapse
|
8
|
Gheit REAE, Younis RL, El-Saka MH, Emam MN, Soliman NA, El-Sayed RM, Hafez YM, AbuoHashish NA, Radwan DA, Khaled HE, Kamel S, Zaitone SA, Badawi GA. Irisin improves adiposity and exercise tolerance in a rat model of postmenopausal obesity through enhancing adipo-myocyte thermogenesis. J Physiol Biochem 2022; 78:897-913. [PMID: 35996069 PMCID: PMC9684260 DOI: 10.1007/s13105-022-00915-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/21/2022] [Indexed: 11/28/2022]
Abstract
The prevalence of obesity and its associated metabolic disorders, along with their healthcare costs, is rising exponentially. Irisin, an adipomyokine, may serve as a critical cross-organ messenger, linking skeletal muscle with adipose tissue and the liver to integrate the energy homeostasis under diet-induced obesity. We aimed to explore the putative role of irisin in the protection against obesity in a postmenopausal rat model by modulating energy expenditure (EE). Bilateral ovariectomy (OVX) was performed. After 3 weeks of recovery, the OVX rats were classified according to their dietary protocol into rats maintained on normal diets (ND) (OVX) or high-fat diet (HFD) groups. The HFD-fed animals were equally divided into OVX/HFD, or irisin-treated OVX/HFD groups. Sham rats, maintained on ND, were selected as the control group. We evaluated anthropometric, EE, and molecular biomarkers of browning and thermogenesis in inguinal white adipose tissue and skeletal muscle, and the activity of the proteins related to mitochondrial long chain fatty acid transport, oxidation, and glycolysis. HFD of OVX further deteriorated the disturbed glucose homeostasis, lipid profile, and the reduced irisin, thermogenic parameters in adipose tissue and skeletal muscle, and EE. Irisin treatment improved the lipid profile and insulin resistance. That was associated with reduced hepatic gluconeogenic enzyme activities and restored hepatic glycogen content. Irisin reduced ectopic lipid infiltration. Irisin augmented EE by activating non-shivering thermogenesis in muscle and adipose tissues and decreasing metabolic efficiency. Our experimental evidence suggests irisin's use as a potential thermogenic agent, therapeutically targeting obesity in postmenopausal patients. Irisin modulates the non-shivering thermogenesis in skeletal muscle and adipose tissue in postmenopausal model.
Collapse
Affiliation(s)
- Rehab E Abo El Gheit
- Department of Physiology, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, Egypt.
| | - Reham L Younis
- Department of Physiology, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, Egypt
| | - Mervat H El-Saka
- Department of Physiology, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, Egypt
| | - Marwa N Emam
- Department of Physiology, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, Egypt
| | - Nema A Soliman
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rehab M El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University, North Sinai, El-Arish, Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Doaa A Radwan
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Howayda E Khaled
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Samar Kamel
- Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, 71451, Saudi Arabia
| | - Ghada A Badawi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University, North Sinai, El-Arish, Egypt
| |
Collapse
|
9
|
Xiao CW, Hendry A. Hypolipidemic Effects of Soy Protein and Isoflavones in the Prevention of Non-Alcoholic Fatty Liver Disease- A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:319-328. [PMID: 35678936 PMCID: PMC9463339 DOI: 10.1007/s11130-022-00984-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and affects about 25% of the population globally. Obesity and diabetes are the main causes of the disease characterized by excessive accumulation of lipids in the liver. There is currently no direct pharmacological treatments for NAFLD. Dietary intervention and lifestyle modification are the key strategies in the prevention and treatment of the disease. Soy consumption is associated with many health benefits such as decreased incidence of coronary heart disease, type-2 diabetes, atherosclerosis and obesity. The hypolipidemic functions of soy components have been shown in both animal studies and human clinical trials. Dietary soy proteins and associated isoflavones suppressed the formation and accumulation of lipid droplets in the liver and improved NAFLD-associated metabolic syndrome. The molecular mechanism(s) underlying the effects of soy components are mainly through modulation of transcription factors, sterol regulatory element-binding protein-1 and peroxisome proliferator-activated receptor-γ2, and expressions of their target genes involved in lipogenesis and lipolysis as well as lipid droplet-promoting protein, fat-specific protein-27. Inclusion of appropriate amounts of soy protein and isoflavones in the diets might be a useful approach to decrease the prevalence of NAFLD and mitigate disease burden.
Collapse
Affiliation(s)
- Chao-Wu Xiao
- Nutrition Research Division, Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada, 2203C Banting Research Centre, Ottawa, ON, K1A 0L2, Canada.
- Food and Nutrition Science Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| | - Amy Hendry
- Nutrition Research Division, Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada, 2203C Banting Research Centre, Ottawa, ON, K1A 0L2, Canada
| |
Collapse
|
10
|
Jafarynezhad F, Shahbazian M, Farhadi Z, Yadeghari M, Rezvani ME, Safari F, Azizian H. The G-Protein-Coupled Estrogen Receptor Agonist Prevents Cardiac Lipid Accumulation by Stimulating Cardiac Peroxisome Proliferator-Activated Receptor α: A Preclinical Study in Ovariectomized-Diabetic Rat Model. Int J Endocrinol Metab 2022; 20:e123560. [PMID: 36407026 PMCID: PMC9661540 DOI: 10.5812/ijem-123560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with cardiometabolic changes, and menopause exacerbates these conditions, leading to a greater risk of cardiovascular diseases (CVDs). The G protein-coupled estrogen receptor (GPER), which mediates the rapid effects of estrogen, has beneficial cardiac effects in both T2DM and menopause, but its mechanism of action is not well understood. OBJECTIVES This study aimed to determine whether G1 as a selective GPER-agonist has beneficial effects on cardiac lipid metabolism in ovariectomized rats with T2DM. METHODS Female Wistar rats were divided into 5 groups (n = 7 in each group): Sham-control (Sh-Ctl), T2DM, ovariectomized-T2DM (OVX-T2DM), OVX-T2DM-G1 (GPER-agonist), and OVX-T2DM-vehicle (OVX-T2DM-Veh). After stabilization of T2DM, G1 (200 μg/Kg) was administrated for 6 weeks. Then, the levels of free fatty acids (FFAs), CD36, peroxisome proliferator-activated receptor α (PPARα), and lipid accumulation in the cardiac tissue were determined. RESULTS Compared with the Sh-Ctl group, cardiac FFAs (P < 0.001), CD36 (P < 0.05), and lipid accumulation (P < 0.001) increased, and cardiac PPARα (P < 0.01) decreased in T2DM animals; ovariectomy intensified these changes. Also, cardiac FFAs, PPARα, and lipid accumulation (P < 0.05) significantly decreased in the OVX-T2DM-G1 group compared to the OVX-T2DM-Veh group. However, cardiac CD36 levels did not change. CONCLUSIONS G1 as a selective GPER-agonist affects lipid metabolism in T2DM animals. It also plays a vital role in improving cardiac metabolism during postmenopausal diabetic conditions.
Collapse
Affiliation(s)
- Faezeh Jafarynezhad
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Shahbazian
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeinab Farhadi
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Yadeghari
- Department of Anatomy and Cell Biology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Safari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Azizian
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
11
|
Hu T, Wei M, Hong G, Qi T, Xiang Y, Yang Y, Yi Y. Xiaoyao San attenuates hepatic steatosis through estrogen receptor α pathway in ovariectomized ApoE-/- mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114612. [PMID: 34496266 DOI: 10.1016/j.jep.2021.114612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoyao San (XYS) is a famous prescription in traditional Chinese medicine, which is used in the treatment of "liver depression and spleen deficiency" syndrome. It is often used clinically to treat chronic hepatitis, liver cirrhosis, various symptoms of postmenopausal women, especially mental disorders and digestive system diseases. However, the effect of XYS on hepatic steatosis in postmenopausal women remains unclear. In this research, we investigated the effects of XYS on hepatic steatosis in ovariectomized (OVX) apolipoprotein E knockout (ApoE-/-) mice, as well as the molecular mechanisms in vitro and in vivo. MATERIALS AND METHODS Fifty female ApoE-/- mice were divided into 5 groups: control group (Sham), model group (OVX), OVX + β-estradiol (E2, 0.4 mg/kg) group, OVX + XYS (13.0 g/kg) group, and OVX + XYS (6.5 g/kg) group. The control group received a standard diet, while the other groups received a high-fat diet (HFD). The hepatic pathologies of the mice were examined with Oil red O staining and HE staining after 12 week treatment. Blood and liver variables were determined enzymatically. Transmission electron microscopy was used to examine the ultrastructure of hepatocytes. The expression of estrogen receptor α (ERα) and lipid metabolism genes was analyzed by real-time PCR and/or Western blot. In in vitro studies, we investigated the effect of XYS-medicated serum on the expression and activity of ERα in L02 cells by immunofluorescence and luciferase reporter assays, and examined the protection of XYS-medicated serum against free fatty acid (FFA)-induced steatosis of L02 cells. Intracellular lipid accumulation were measured by Oil red O staining and Nile red staining assay. Finally, the influence of ICI 182,780, a specific antagonist of ERα, on the protective effect of XYS-medicated serum on FFA-induced steatosis of L02 cells was investigated. RESULTS Treatment of Ovx/ApoE-/- mice with XYS significantly decreased HFD-induced increases in hepatic steatosis and triglyceride (TG) content, accompanied by inhibition of liver X receptor α (LXRα), sterol regulatory element binding protein (SREBP)-1c and its target lipogenic genes transcription. Similarly, XYS-medicated serum reduced the size and number of lipid droplets and the cellular TG content in FFA-induced L02 cells. In addition, XYS significantly increased the ERα expression in hepatocytes in vivo and in vitro and enhanced the transcriptional activity of ERα promoter in L02 cells. And these effects could be partly reversed by the antiestrogen ICI 182,780. CONCLUSIONS These findings suggest that XYS has an estrogen-like effect and inhibits steatosis in postmenopausal animal models by reducing the expression of genes related to TG synthesis through ERα pathway.
Collapse
Affiliation(s)
- Tianhui Hu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; Huai'an Maternal and Child Health-Care Center, Huai'an, 223000, China
| | - Mian Wei
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; Huai'an Maternal and Child Health-Care Center, Huai'an, 223000, China
| | - Guoping Hong
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tingting Qi
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; Huai'an Maternal and Child Health-Care Center, Huai'an, 223000, China
| | - Yuanyuan Xiang
- Huai'an Maternal and Child Health-Care Center, Huai'an, 223000, China
| | - Yunjie Yang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; Huai'an Maternal and Child Health-Care Center, Huai'an, 223000, China
| | - Yuanyuan Yi
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| |
Collapse
|
12
|
Dietary syringic acid reduces fat mass in an ovariectomy-induced mouse model of obesity. ACTA ACUST UNITED AC 2021; 28:1340-1350. [PMID: 34610616 DOI: 10.1097/gme.0000000000001853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Postmenopausal women are at increased risk of metabolic diseases such as obesity and diabetes. Therefore, the chemoprevention of postmenopausal changes in health via dietary supplements is important. Syringic acid (SA) is a phenolic compound present in the fruit of the assai palm, Euterpe oleracea, and in the mycelium of the shiitake mushroom, Lentinula edodes. This compound shows no affinity for estrogen receptors and may exert disease-preventive effects. Reportedly, dietary SA ameliorates high-fat diet-induced obesity in mice; however, its effects on estrogen deficiency-induced obesity are still unclear. Therefore, in this study, we investigated whether and how dietary SA affects these factors in ovariectomized (OVX) mice. METHODS Ten-week-old OVX mice were fed SA-containing diets (100 mg/kg body weight/d) for 12 weeks. Their body weights, food intake, and uterus weights as well as other parameters were measured and comparisons were made with mice in the control group. RESULTS Dietary SA did not affect the body weight, food intake, or uterus weight of OVX mice over the study period; however, the SA-fed group showed lower fat mass (ie, visceral, subcutaneous, and total fat) than the OVX-control group (11.1 ± 3.3 vs. 8.3 ± 2.4, P < 0.05; 7.9 ± 1.1 vs. 5.9 ± 1.6, P < 0.05; 19.0 ± 4.2 vs. 14.1 ± 3.8, P < 0.05, respectively). Furthermore, blood analysis revealed that SA-treatment resulted in a dose-dependent decrease and increase in serum triglyceride (59.2 ± 8.3 vs. 43.9 ± 12.2 mg/dL P < 0.05) and adiponectin (7.7 ± 0.3 vs. 9.5 ± 0.6 μg/mL, P < 0.05) levels, respectively. CONCLUSIONS These results suggest that the SA diet improves lipid metabolism without affecting the uterus in OVX mice. Therefore, dietary SA has potential applicability for the prevention of postmenopausal obesity and type 2 diabetes.
Collapse
|
13
|
Ameliorative Effects of Pueraria lobata Extract on Postmenopausal Symptoms through Promoting Estrogenic Activity and Bone Markers in Ovariectomized Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7924400. [PMID: 34527066 PMCID: PMC8437591 DOI: 10.1155/2021/7924400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023]
Abstract
Pueraria lobata (Willd.) Ohwi, known as kudzu, is one of the most popular traditional medicines in Asian countries. It has been widely used as a natural alternative to hormone replacement therapy for treating postmenopausal symptoms. This study aimed to investigate the estrogenic effect of P. lobata extract (PE) against postmenopausal osteoporosis in ovariectomized (OVX) rats. OVX rats were treated with PE (25–1600 mg/kg) for 8 weeks. Biochemical parameters, estradiol, and bone turnover markers (e.g., osteocalcin, C-terminal telopeptide fragment of type I collagen, deoxypyridinoline, and pyridinoline) were measured in plasma samples. In addition, estrogen receptor-alpha (ER-α) protein expression and morphology of uterine were evaluated. Long-term treatment with PE did not cause liver damage in OVX rats. PE supplementation reduced body weight gain in obese rats with high lipid accumulation induced by ovariectomy. Furthermore, PE exhibited a protective effect against insulin resistance, hyperlipidemia, and hepatic lipid peroxidation. PE treatment increased uterine weight and thickness of the uterine layers in cases of uterus atrophy due to removal of ovaries. The levels of bone turnover markers, which were significantly increased in OVX rats, were decreased by PE treatment. Western blotting analysis showed that ER-α protein expression was upregulated in PE-treated rats compared with OVX rats. These results suggest that PE could be a promising alternative functional food for improving menopausal symptoms.
Collapse
|
14
|
Sangeetha A, Bobby Z, Wadwekar V, Nisha Y. Atherogenic Risk Factors among Young Indian Adults with Epilepsy on Treatment with Phenytoin: Need for Novel Therapeutic Strategies. Neurol India 2021; 69:957-961. [PMID: 34507420 DOI: 10.4103/0028-3886.325371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Background Risk for the development of coronary heart disease and diabetes is found to be more among people with epilepsy especially when on treatment. Redox imbalance contributes to this risk especially in India as it is the diabetic capital of the world with higher prevalence of inflammation. Objectives The aim of this study was to evaluate atherogenic risk factors; dyslipidemia, oxidative stress, and systemic inflammation among young Indian adults with epilepsy on treatment with Phenytoin. Material and Methods Three groups of age and gender-matched young subjects were recruited. Group 1-Healthy control subjects, Group 2- Newly diagnosed epileptic young adults with recent epileptic seizures, Group 3- Epileptic adults on treatment with Phenytoin for more than 6 months were recruited. Results Dyslipidemia was found among the newly diagnosed epileptic subjects in comparison to healthy subjects. The LDL-cholesterol further increased, and HDL-cholesterol further decreased in the third group treated with Phenytoin. Body mass index of these treated epileptic subjects was more in comparison to healthy control. Low-grade inflammation as assessed by hsCRP and oxidative stress were significantly higher among the newly diagnosed epileptic subjects when compared to the healthy controls which further increased on treatment with phenytoin. We found dyslipidemia, oxidative stress, and low-grade inflammation among newly diagnosed epileptic subjects which further increased on treatment with Phenytoin for more than 6 months. Conclusion From this study, we conclude that dyslipidemia, oxidative stress and low-grade inflammation are identified among the newly diagnosed young adult Indian epileptic patients. Phenytoin treatment further augmented these complications.
Collapse
Affiliation(s)
- A Sangeetha
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Zachariah Bobby
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Vaibhav Wadwekar
- Department of Neurology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Yadav Nisha
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
15
|
Xie CL, Park KH, Kang SS, Cho KM, Lee DH. Isoflavone-enriched soybean leaves attenuate ovariectomy-induced osteoporosis in rats by anti-inflammatory activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1499-1506. [PMID: 32851642 DOI: 10.1002/jsfa.10763] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND With an increasing aging population, postmenopausal osteoporosis has become a global public health problem. Previous evidence has shown that postmenopausal osteoporosis is a skeletal disease mainly caused by estrogen deficiency, generally accompanied by inflammation, and dietary isoflavones may ameliorate postmenopausal osteoporosis by anti-inflammatory activity. We have generated isoflavone-enriched soybean leaves (IESLs), but their anti-inflammatory activity and effect on attenuating osteoporosis are still obscure. Here, we determined the isoflavone profiles of IESLs and evaluated their anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 cells and anti-osteoporotic effects on ovariectomy-induced osteoporosis in rats. RESULTS IESLs had a high content of total isoflavone. Hydrolysate of IESLs (HIESLs) was rich with the aglycones daidzein and genistein, and HIESLs can significantly inhibit lipopolysaccharide-induced inflammation by reducing messenger RNA expression of iNOS, COX-2, IL6, and IL1β. Moreover, ovariectomized rats receiving aqueous extracts of IESLs (HIESLs) orally maintained more bone mass than control rats did, which was attributed to inhibition of osteoclastogenesis by downregulating the messenger RNA expression of the bone-specific genes RANKL/OPG, OC, and cathepsin K, and the inflammation-related genes IL6, NFκB, and COX-2. CONCLUSION IESLs may attenuate postmenopausal osteoporosis by suppressing osteoclastogenesis with anti-inflammatory activity and be a potential source of functional food ingredients for the prevention of osteoporosis. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng-Liang Xie
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Ki H Park
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang S Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Kye M Cho
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju, Republic of Korea
| | - Dong H Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
16
|
|
17
|
Germinated Soybean Embryo Extract Ameliorates Fatty Liver Injury in High-Fat Diet-Fed Obese Mice. Pharmaceuticals (Basel) 2020; 13:ph13110380. [PMID: 33187321 PMCID: PMC7696473 DOI: 10.3390/ph13110380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Soybean is known to have diverse beneficial effects against human diseases, including obesity and its related metabolic disorders. Germinated soybean embryos are enriched with bioactive phytochemicals and known to inhibit diet-induced obesity in mice, but their effect on non-alcoholic fatty liver disease (NAFLD) remains unknown. Here, we germinated soybean embryos for 24 h, and their ethanolic extract (GSEE, 15 and 45 mg/kg) was administered daily to mice fed with a high-fat diet (HFD) for 10 weeks. HFD significantly increased the weight of the body, liver and adipose tissue, as well as serum lipid markers, but soyasaponin Ab-rich GSEE alleviated these changes. Hepatic injury and triglyceride accumulation in HFD-fed mice were attenuated by GSEE via decreased lipid synthesis (SREBP1c) and increased fatty acid oxidation (p-AMPKα, PPARα, PGC1α, and ACOX) and lipid export (MTTP and ApoB). HFD-induced inflammation (TNF-α, IL-6, IL-1β, CD14, F4/80, iNOS, and COX2) was normalized by GSEE in mice livers. In adipose tissue, GSEE downregulated white adipose tissue (WAT) differentiation and lipogenesis (PPARγ, C/EBPα, and FAS) and induced browning genes (PGC1α, PRDM16, CIDEA, and UCP1), which could also beneficially affect the liver via lowering adipose tissue-related circulating lipid levels. Thus, our results suggest that GSEE can prevent HFD-induced NAFLD via inhibition of hepatic inflammation and restoration of lipid metabolisms in both liver and adipose tissue.
Collapse
|
18
|
Ovariectomized rodents as a menopausal metabolic syndrome model. A minireview. Mol Cell Biochem 2020; 475:261-276. [PMID: 32852713 DOI: 10.1007/s11010-020-03879-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Bilateral ovariectomy is the best characterized and the most reported animal model of human menopause. Ovariectomized rodents develop insulin resistance (IR) and visceral obesity, the main risk factors in the pathophysiology of metabolic syndrome (MS). These alterations are a consequence of hypoestrogenic status, which produces an augment of visceral fat, high testosterone levels (hyperandrogenism), as well as inflammation, oxidative stress, and metabolic complications, such as dyslipidemia, hepatic steatosis, and endothelial dysfunction, among others. Clinical trials have reported that menopause per se increases the severity and incidence of MS, and causes the highest mortality due to cardiovascular disease in women. Despite all the evidence, there are no reports that clarify the influence of estrogenic deficiency as a cause of MS. In this review, we provide evidence that ovariectomized rodents can be used as a menopausal metabolic syndrome model for evaluating and discovering new, safe, and effective therapeutic approaches in the treatment of cardiometabolic complications associated to MS during menopause.
Collapse
|
19
|
Lim DW, Jeon H, Kim M, Yoon M, Jung J, Kwon S, Cho S, Um MY. Standardized rice bran extract improves hepatic steatosis in HepG2 cells and ovariectomized rats. Nutr Res Pract 2020; 14:568-579. [PMID: 33282120 PMCID: PMC7683207 DOI: 10.4162/nrp.2020.14.6.568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/29/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUD/OBJECTIVES Hepatic steatosis is the most common liver disorder, particularly in postmenopausal women. This study investigated the protective effects of standardized rice bran extract (RBS) on ovariectomized (OVX)-induced hepatic steatosis in rats. MATERIALS/METHODS HepG2 cells were incubated with 200 µM oleic acid to induce lipid accumulation with or without RBS and γ-oryzanol. OVX rats were separated into three groups and fed a normal diet (ND) or the ND containing 17β-estradiol (E2; 10 µg/kg) and RBS (500 mg/kg) for 16 weeks. RESULTS RBS supplementation improved serum triglyceride and free fatty acid levels in OVX rats. Histological analysis showed that RBS significantly attenuated hepatic fat accumulation and decreased hepatic lipid, total cholesterol, and triglyceride levels. Additionally, RBS suppressed the estrogen deficiency-induced upregulation of lipogenic genes, such as sterol regulatory element-binding protein 1 (SREBP1), acetyl-CoA carboxylase 1, fatty acid synthase, glycerol-3-phosphate acyltransferase, and stearoyl-CoA desaturase 1. CONCLUSIONS RBS and γ-oryzanol effectively reduced lipid accumulation in a HepG2 cell hepatic steatosis model. RBS improves OVX-induced hepatic steatosis by regulating the SREBP1-mediated activation of lipogenic genes, suggesting the benefits of RBS in preventing fatty liver in postmenopausal women.
Collapse
Affiliation(s)
- Dong Wook Lim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea
| | - Hyejin Jeon
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea
| | - Minji Kim
- Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Korea
| | - Minseok Yoon
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea
| | - Jonghoon Jung
- Technical Assistance Center, Korea Food Research Institute, Wanju 55365, Korea
| | - Sangoh Kwon
- S&D Research and Development Institute, Cheongju 28156, Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Min Young Um
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea.,Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Korea
| |
Collapse
|
20
|
Venetsanaki V, Polyzos SA. Menopause and Non-Alcoholic Fatty Liver Disease: A Review Focusing on Therapeutic Perspectives. Curr Vasc Pharmacol 2020; 17:546-555. [PMID: 29992886 DOI: 10.2174/1570161116666180711121949] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
There is increasing evidence that menopause is associated with the progression and severity of non-alcoholic fatty liver disease (NAFLD). Estrogen deficiency worsens non-alcoholic steatohepatitis (NASH) in mice models with fatty liver. The prevalence of NAFLD seems to be higher in postmenopausal compared with premenopausal women. Although more data are needed, lower serum estradiol levels are associated with NASH in postmenopausal women. Apart from estrogen deficiency, relative androgen excess and decrease in sex hormone-binding protein are observed in postmenopausal women. These hormonal changes seem to interplay with an increase in abdominal adipose mass, also observed in postmenopausal women, and aging, which are both closely related to the severity and progressive forms of NAFLD. NAFLD adds extra morbidity to postmenopausal women, possibly increasing the risk of type 2 diabetes mellitus and cardiovascular disease. Improving parameters of the metabolic syndrome via modifications in diet and physical exercise may reduce the risk of NAFLD and its related morbidity. Limited studies have shown a beneficial effect of hormone replacement therapy (HRT) on NAFLD, although adverse hepatic effects have been attributed to progesterone in one study. Phytoestrogens may be alternatives to HRT, but their long-term efficacy and safety remain to be shown. The aim of this review was to summarize evidence linking menopause with NAFLD with a special focus on potential therapeutic perspectives.
Collapse
Affiliation(s)
- Vasiliki Venetsanaki
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynaecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios A Polyzos
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
21
|
Li H, Jia E, Hong Y, Chen Y, Jiao J. Phytoestrogens and NAFLD: Possible Mechanisms of Action. Mini Rev Med Chem 2020; 20:578-583. [PMID: 31902357 DOI: 10.2174/1389557520666200103114123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 12/18/2018] [Accepted: 02/22/2019] [Indexed: 01/08/2023]
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) includes a variety of changes including nonalcoholic fatty liver, cirrhosis and Hepatocellular Carcinoma (HCC), which are associated with metabolic disorders and cardiovascular diseases. The pathogenesis of NAFLD is complex and multifactorial. Many studies have shown that estrogen has a protective effect on premenopausal women with metabolic disorders and non-alcoholic fatty liver disease. Estrogen supplements may, at least in theory, prevent the development and progression of NAFLD. Phytoestrogen is extracted from plants, especially legumes, whose molecular structure and biological activity are similar to those of mammals estrogen, therefore it could replace the role of estrogen and prevent the occurrence of adverse reactions to estrogen. In this article, we review the published literature related to phytoestrogens and NAFLD as well as suggest the possible mechanisms that may underlie the association between phytoestrogens and NAFLD.
Collapse
Affiliation(s)
- Hui Li
- Department of Dentistry, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Erna Jia
- Department of Gastroenterolgy and Hepatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yu Hong
- Department of Gastroenterolgy and Hepatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yanzhen Chen
- Department of Gastroenterolgy and Hepatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Jian Jiao
- Department of Gastroenterolgy and Hepatology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
22
|
Panneerselvam S, Packirisamy RM, Bobby Z, Sridhar MG. WITHDRAWN: Soy isoflavones (from Glycine max) preserves hepatocellular free radical defense system potential and ameliorates inflammatory response in high fat fed ovariectomised Wistar rats: The molecular mechanisms. Nutr Metab Cardiovasc Dis 2019:S0939-4753(19)30121-8. [PMID: 31151883 DOI: 10.1016/j.numecd.2019.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 10/26/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Sankar Panneerselvam
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research [JIPMER], Puducherry, 605 006, India
| | - Rajaa M Packirisamy
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research [JIPMER], Puducherry, 605 006, India
| | - Zachariah Bobby
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research [JIPMER], Puducherry, 605 006, India.
| | - Magadi G Sridhar
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research [JIPMER], Puducherry, 605 006, India
| |
Collapse
|
23
|
Kaliannan K, Robertson RC, Murphy K, Stanton C, Kang C, Wang B, Hao L, Bhan AK, Kang JX. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. MICROBIOME 2018; 6:205. [PMID: 30424806 PMCID: PMC6234624 DOI: 10.1186/s40168-018-0587-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/30/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Understanding the mechanism of the sexual dimorphism in susceptibility to obesity and metabolic syndrome (MS) is important for the development of effective interventions for MS. RESULTS Here we show that gut microbiome mediates the preventive effect of estrogen (17β-estradiol) on metabolic endotoxemia (ME) and low-grade chronic inflammation (LGCI), the underlying causes of MS and chronic diseases. The characteristic profiles of gut microbiome observed in female and 17β-estradiol-treated male and ovariectomized mice, such as decreased Proteobacteria and lipopolysaccharide biosynthesis, were associated with a lower susceptibility to ME, LGCI, and MS in these animals. Interestingly, fecal microbiota-transplant from male mice transferred the MS phenotype to female mice, while antibiotic treatment eliminated the sexual dimorphism in MS, suggesting a causative role of the gut microbiome in this condition. Moreover, estrogenic compounds such as isoflavones exerted microbiome-modulating effects similar to those of 17β-estradiol and reversed symptoms of MS in the male mice. Finally, both expression and activity of intestinal alkaline phosphatase (IAP), a gut microbiota-modifying non-classical anti-microbial peptide, were upregulated by 17β-estradiol and isoflavones, whereas inhibition of IAP induced ME and LGCI in female mice, indicating a critical role of IAP in mediating the effects of estrogen on these parameters. CONCLUSIONS In summary, we have identified a previously uncharacterized microbiome-based mechanism that sheds light upon sexual dimorphism in the incidence of MS and that suggests novel therapeutic targets and strategies for the management of obesity and MS in males and postmenopausal women.
Collapse
Affiliation(s)
- Kanakaraju Kaliannan
- Laboratory of Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 -13th Street, Boston, MA 02129 USA
| | - Ruairi C. Robertson
- School of Microbiology, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Fermoy, Co., Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Kiera Murphy
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- School of Microbiology, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Fermoy, Co., Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Chao Kang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, People’s Republic of China
| | - Bin Wang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, People’s Republic of China
| | - Lei Hao
- Laboratory of Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 -13th Street, Boston, MA 02129 USA
| | - Atul K. Bhan
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Jing X. Kang
- Laboratory of Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 -13th Street, Boston, MA 02129 USA
| |
Collapse
|
24
|
Chen J, Yue J, Liu J, Liu Y, Jiao KL, Teng MY, Hu CY, Zhen J, Wu MX, Zhou M, Li Z, Li Y. Salvianolic acids improve liver lipid metabolism in ovariectomized rats via blocking STAT-3/SREBP1 signaling. Chin J Nat Med 2018; 16:838-845. [PMID: 30502765 DOI: 10.1016/s1875-5364(18)30125-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Indexed: 12/17/2022]
Abstract
Postmenopausal women, who have reduced circulating estrogen levels, are more prone to develop obesity and related metabolic diseases than premenopausal women. The absence of safe and effective treatments for postmenopausal obesity has changed the focus to natural products as alternative remedies. Total salvianolic acids (TSA) are the major water-soluble ingredients of Danshen. Salvianolic acid (SA) is the major constituent of the TSA. Salvianolic acids, including TSA and SA, are widely used in traditional Chinese medicine. In the present study, ovariectomized rats and LO2 cells were used to study the effects of salvianolic acids on body weight gain and hepatic steatosis. Salvianolic acids reduced ovariectomy (OVX)-induced body weight gain, attenuated the expressions of hepatic lipogenic genes, such as sterol regulatory element binding protein (SREBP)1, fatty acid synthase (FAS), and stearoyl-CoA desaturase (SCD)1, and decreased the liver triglyceride (TG) and total cholesterol (TC). For the molecular mechanisms, OVX and high glucose-induced phosphorylation of signal transducer and activator of transcription (STAT)-3 was inhibited by salvianolic acids treatment. In LO2 cells, inhibition of STAT-3 by siRNA attenuated the increased expression of SREBP1 and TG induced by high glucose. Salvianolic acids reduced the upregulation of SREBP1 and TG induced by high glucose in LO2 cells. In conclusion, these findings illustrated that salvianolic acids markedly alleviated the lipid metabolism disorders and protected against the postmenopausal obesity. The underlying mechanism was probably associated with the regulation of STAT-3 signaling.
Collapse
Affiliation(s)
- Juan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jia Yue
- Department of Nutrition and Food Hygiene, School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jiao Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kai-Lin Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Meng-Ying Teng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chun-Yan Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jing Zhen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mao-Xuan Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yuan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
25
|
Blocking of STAT-3/SREBP1-mediated glucose-lipid metabolism is involved in dietary phytoestrogen-inhibited ovariectomized-induced body weight gain in rats. J Nutr Biochem 2018; 61:17-23. [PMID: 30179725 DOI: 10.1016/j.jnutbio.2018.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/23/2018] [Accepted: 06/25/2018] [Indexed: 12/24/2022]
Abstract
Postmenopausal women have a decline in circulating estrogen levels and are more prone to obesity and its related metabolic diseases than premenopausal women are. The absence of safe and effective conventional treatments for postmenopausal obesity has changed the focus to natural products as alternative remedies. Here, ovariectomized rats and LO2 cells were used to study the molecular basis of the effect of dietary phytoestrogens on body weight gain and hepatic steatosis. Dietary phytoestrogens can inhibit ovariectomy (OVX)-induced body weight gain, blood glucose concentration, expression of hepatic lipogenic genes, such as sterol regulatory element binding protein (SREBP)1, acetyl-CoA carboxylase (ACC)1, fatty acid synthase (FAS), and stearoyl-CoA desaturase (SCD)1, and decrease liver triglyceride (TG) content, but later estradiol withdrawal increased expression of SREBP1. Histological analysis of liver showed that dietary phytoestrogens improved OVX-induced morphological abnormalities. OVX and high glucose-induced phosphorylation of signal transducer and activator of transcription (STAT)-3 were inhibited by phytoestrogens treatment. In LO2 cells, inhibition of STAT-3 by siRNA attenuated the increased TG content and expression of SREBP1 induced by high glucose. Phytoestrogens reduced the upregulation of SREBP1 and TG induced by high glucose in LO2 cells. In conclusion, these findings illustrated that dietary phytoestrogens markedly alleviated the derangement of lipid metabolism. The underlying mechanism is probably associated with regulating STAT-3/SREBP1 signaling.
Collapse
|
26
|
Babajafari S, Hojhabrimanesh A, Sohrabi Z, Ayaz M, Noorafshan A, Akrami A. Comparing isolated soy protein with flaxseed oil vs isolated soy protein with corn oil and wheat flour with corn oil consumption on muscle catabolism, liver function, blood lipid, and sugar in burn patients: a randomized clinical trial. Trials 2018; 19:308. [PMID: 29866187 PMCID: PMC5987465 DOI: 10.1186/s13063-018-2693-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/17/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND There is controversy regarding whether increasing isolated soy protein (ISP) with or without flaxseed oil (FO), as functional foods, would lead to reduce muscle catabolism and cachexia in burn patients. METHODS One hundred and eighty-eight patients were assessed for eligibility in this randomized controlled trial. Of these, seventy-three eligible patients (total burn surface area 20-50%) were randomly assigned to three groups, labeled as Control (wheat flour [WF] + corn oil [CO]), ISP + FO, and ISP + CO, to receive these nutrients for three weeks. Weight, body mass index (BMI), serum hepatic enzymes (alanine transaminase [ALT], aspartate transaminase [AST], alkaline phosphatase [ALP]), systemic inflammatory response syndrome (SIRS), 24-h urinary urea nitrogen excretion (UUN), serum creatinine, 24-h urinary creatinine (UUC) excretion, fasting blood sugar (FBS), triglyceride (TG), and cholesterol were measured. RESULTS Using analysis of covariance models in the intention-to-treat population (n = 73), we found that at three weeks, patients in the ISP groups had lost significantly less in weight and BMI compared to those in the control group (all P < 0.01). Nitrogen retention and serum creatinine (primary outcomes) increased significantly in the ISP groups compared with the control group. Even after controlling for potential covariates in ANCOVA models, changes in these indices were still statistically significant (P = 0.008 and P = 0.005 for nitrogen balance and serum creatinine, respectively). However, no such significant differences were found between the ISP groups. On the other hand, 24-h UUN, and UUC excretion, serum hepatic enzymes, FBS, TG, and cholesterol were not significant between the groups (P > 0.05). CONCLUSION ISP and FO compared to WF and CO reduced muscle catabolism and increased body weight in burn patients. TRIAL REGISTRATION Iranian Registry of Clinical Trials, IRCT2014051817740N1 . Registered on 27 June 2014.
Collapse
Affiliation(s)
- Siavash Babajafari
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdollah Hojhabrimanesh
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sohrabi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Ayaz
- Burn Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Akrami
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
27
|
Xie CL, Kang SS, Cho KM, Park KH, Lee DH. Isoflavone-enriched soybean ( Glycine max) leaves prevents ovariectomy-induced obesity by enhancing fatty acid oxidation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Jeong YH, Hur HJ, Jeon EJ, Park SJ, Hwang JT, Lee AS, Lee KW, Sung MJ. Honokiol Improves Liver Steatosis in Ovariectomized Mice. Molecules 2018; 23:molecules23010194. [PMID: 29342107 PMCID: PMC6017725 DOI: 10.3390/molecules23010194] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease, and is associated with the development of metabolic syndrome. Postmenopausal women with estrogen deficiency are at a higher risk of progression to NAFLD. Estrogen has a protective effect against the progression of the disease. Currently, there are no safe and effective treatments for these liver diseases in postmenopausal women. Honokiol (Ho), a bioactive natural product derived from Magnolia spp, has anti-inflammatory, anti-angiogenic, and anti-oxidative properties. In our study, we investigated the beneficial effects of Ho on NAFLD in ovariectomized (OVX) mice. We divided the mice into four groups, as follows: SHAM, OVX, OVX+β-estradiol (0.4 mg/kg of bodyweight), and OVX+Ho (50 mg/kg of diet). Mice were fed diets with/without Ho for 12 weeks. The bodyweight, epidermal fat, and weights of liver tissue were lower in the OVX group than in the other groups. Ho improved hepatic steatosis and reduced proinflammatory cytokine levels. Moreover, Ho markedly downregulated plasma lipid levels. Our results indicate that Ho ameliorated OVX-induced fatty liver and inflammation, as well as associated lipid metabolism. These findings suggest that Ho may be hepatoprotective against NAFLD in postmenopausal women.
Collapse
Affiliation(s)
- Yeon-Hui Jeong
- Division of Nutrition and Diet, Korea Food Research Institute, Jeollabuk-Do 55365, Korea.
| | - Haeng Jeon Hur
- Division of Nutrition and Diet, Korea Food Research Institute, Jeollabuk-Do 55365, Korea.
| | - Eun-Joo Jeon
- Division of Nutrition and Diet, Korea Food Research Institute, Jeollabuk-Do 55365, Korea.
| | - Su-Jin Park
- Division of Nutrition and Diet, Korea Food Research Institute, Jeollabuk-Do 55365, Korea.
| | - Jin Taek Hwang
- Division of Nutrition and Diet, Korea Food Research Institute, Jeollabuk-Do 55365, Korea.
| | - Ae Sin Lee
- Division of Functional Food Research, Korea Food Research Institute, Jeollabuk-Do 55365, Korea.
| | - Kyong Won Lee
- Division of Functional Food Research, Korea Food Research Institute, Jeollabuk-Do 55365, Korea.
| | - Mi Jeong Sung
- Division of Nutrition and Diet, Korea Food Research Institute, Jeollabuk-Do 55365, Korea.
| |
Collapse
|
29
|
Estrogen–gut microbiome axis: Physiological and clinical implications. Maturitas 2017; 103:45-53. [DOI: 10.1016/j.maturitas.2017.06.025] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022]
|
30
|
Liu H, Zhong H, Leng L, Jiang Z. Effects of soy isoflavone on hepatic steatosis in high fat-induced rats. J Clin Biochem Nutr 2017; 61:85-90. [PMID: 28955124 PMCID: PMC5612816 DOI: 10.3164/jcbn.16-98] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022] Open
Abstract
Soy isoflavone has benefits for metabolic syndrome but the mechanism is not completely understood. This study was designed to determine the effects of soy isoflavone on hepatic fat accumulation in non-alcoholic fatty liver disease (NAFLD) rats induced by high fat diet (HFD). Sprague-Dawley rats were administrated with a normal fat diet (control), HFD (NAFLD model), HFD with 10 or 20 mg/kg soy isoflavone daily for 12 weeks. Hepatic and serum lipid contents, liver histopathological examination, serum alanine transaminase (ALT), protein and mRNA expression of sterol regulatory element binding protein (SREBP)-1c, fatty acid synthase (FAS), peroxisome proliferator-activated receptor (PPAR) α were assayed respectively. Our study found that soy isoflavone reduced HFD-induced lipid accumulation in liver, serum ALT and improved liver lobule structure. In addition, the expression of SREBP-1c and FAS was lower, whereas protein level of PPARα was higher in two soy isoflavone groups than that of the HFD group. Collectively, these results demonstrate that soy isoflavone is capable of alleviating hepatic steatosis and delaying the progression of NAFLD via inhibiting lipogenesis and promoting fatty acid oxidation in liver.
Collapse
Affiliation(s)
- Huanhuan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Huijia Zhong
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liang Leng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhuoqin Jiang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
31
|
Hussain H, Green IR. A patent review of the therapeutic potential of isoflavones (2012-2016). Expert Opin Ther Pat 2017; 27:1135-1146. [DOI: 10.1080/13543776.2017.1339791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hidayat Hussain
- UoN Chair of Oman’s Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa, Sultanate of Oman
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Ivan R. Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
32
|
Liu H, Zhong H, Yin Y, Jiang Z. Genistein has beneficial effects on hepatic steatosis in high fat-high sucrose diet-treated rats. Biomed Pharmacother 2017; 91:964-969. [PMID: 28514835 DOI: 10.1016/j.biopha.2017.04.130] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/25/2017] [Accepted: 04/30/2017] [Indexed: 02/07/2023] Open
Abstract
Genistein, a kind of phytoestrogen abundant in soybeans, is beneficial for alleviating non-alcoholic fatty liver disease (NAFLD), but the specific mechanism was not clearly understood. This study was designed to determine the effect of genistein on NAFLD and explore the possible mechanism. 36 male Sprague-Dawley rats were divided into 4 groups: the control group, high fat-high sucrose diet (HFS) group, HFS with 4mg/kg body weight genistein, and HFS with 8mg/kg body weight genistein. 12 weeks later, serum and hepatic lipid profiles, liver histopathological examination were characterized. The protein levels of liver AMP-activated protein kinase (AMPK), phosphorylation of AMPK (p-AMPK), acetyl-CoA carboxylase (ACC), phosphorylation of ACC (p-ACC) and sterol regulatory element binding protein 1 (SREBP-1) were determined by western blot. mRNA expressions of fatty acid synthase gene (FAS) and glycerol-3-phosphate acyltransferase (GPAT), peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyl transfer enzyme-1 (CPT-1) and acyl-CoA oxidase (ACO) were measured by reverse transcription polymerase chain reaction (RT-PCR). Results showed that genistein effectively improved serum and hepatic lipid metabolism and diminished fat accumulation in liver. And the protein level of hepatic p-AMPK and p-ACC were increased, but SREBP-1 was decreased by genistein. Meanwhile, the mRNA levels of FAS and GPAT were lower, but PPARα, CPT-1, ACO were higher in rats treated with genistein compared with HFS group. Collectively, genistein can improve hepatic steatosis via activating AMPK, thus promoting fatty acid oxidation and inhibiting lipid synthesis in liver.
Collapse
Affiliation(s)
- Huanhuan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Huijia Zhong
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yimin Yin
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Zhuoqin Jiang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|