1
|
Adams MS, Enichen E, Demmig-Adams B. Reframing Diabetes Prevention: From Body Shaming to Metabolic Reprogramming. Am J Lifestyle Med 2025; 19:168-191. [PMID: 39981552 PMCID: PMC11836583 DOI: 10.1177/15598276231182655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
This review integrates new developments in psychology with updated physiological insight on the complex relationships among chronic psychological stress (arising from weight stigmatization and body shaming), food composition, physical activity and metabolic health for the example of diabetes. We address how visual measures of health, such as body mass index (BMI) and waist-to-hip ratio, do not adequately capture metabolic health and can instead contribute to weight stigmatization, chronic stress, and system-wide impairment of metabolic health. We also emphasize the importance of food composition over calorie counting. We summarize how chronic stress interacts with nutritional deficiencies and physical inactivity to disrupt the stress response, immune response, gut microbiome, and function of fat depots. We specifically address how interactions among lifestyle factors and the gut microbiome regulate whether fat stored around the waist has a negative or positive effect on metabolic health. We aim to provide a resource and updated framework for diabetes prevention and health promotion by (i) highlighting metabolic imbalances triggered by lifestyle changes during the transition to industrialized society and (ii) detailing the potential to support metabolic health through access to modest, but comprehensive lifestyle adjustments.
Collapse
Affiliation(s)
- Melanie S Adams
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO, USA
| | | | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
2
|
Lela L, Carlucci V, Kioussi C, Choi J, Stevens JF, Milella L, Russo D. Humulus lupulus L.: Evaluation of Phytochemical Profile and Activation of Bitter Taste Receptors to Regulate Appetite and Satiety in Intestinal Secretin Tumor Cell Line (STC-1 Cells). Mol Nutr Food Res 2024; 68:e2400559. [PMID: 39388530 DOI: 10.1002/mnfr.202400559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Indexed: 10/12/2024]
Abstract
SCOPE Inflorescences of the female hop plant (Humulus lupulus L.) contain biologically active compounds, most of which have a bitter taste. Given the rising global obesity rates, there is much increasing interest in bitter taste receptors (TAS2Rs). Intestinal TAS2Rs can have beneficial effects on obesity when activated by bitter agonists. This study aims to investigate the mechanism of action of a hydroalcoholic hop extract in promoting hormone secretion that reduces the sense of hunger at the intestinal level through the interaction with TAS2Rs. METHODS AND RESULTS The results demonstrate that the hop extract is a rich source of bitter compounds (mainly α-, β-acids) that stimulate the secretion of anorexigenic peptides (glucagon-like peptide 1 [GLP-1], cholecystokinin [CCK]) in a calcium-dependent manner while reducing levels of hunger-related hormones like ghrelin. This effect is mediated through interaction with TAS2Rs, particularly Tas2r138 and Tas2r120, and through the activation of downstream signaling cascades. Knockdown of these receptors using siRNA transfection and inhibition of Trpm5, Plcβ-2, and other calcium channels significantly reduces the hop-induced calcium response as well as GLP-1 and CCK secretion. CONCLUSIONS This study provides a potential application of H. lupulus extract for the formulation of food supplements with satiating activity capable of preventing or combating obesity.
Collapse
Affiliation(s)
- Ludovica Lela
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Vittorio Carlucci
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Jan F Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Luigi Milella
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Daniela Russo
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
- Spinoff Bioactiplant, via dell'Ateneo Lucano 10, Potenza, 85100, Italy
| |
Collapse
|
3
|
Trius-Soler M, Moreno JJ. Bitter taste receptors: Key target to understand the effects of polyphenols on glucose and body weight homeostasis. Pathophysiological and pharmacological implications. Biochem Pharmacol 2024; 228:116192. [PMID: 38583811 DOI: 10.1016/j.bcp.2024.116192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Experimental and clinical research has reported beneficial effects of polyphenol intake on high prevalent diseases such as type 2 diabetes and obesity. These phytochemicals are ligands of taste 2 receptors (T2Rs) that have been recently located in a variety of organs and extra-oral tissues. Therefore, the interaction between polyphenol and T2Rs in brain structures can play a direct effect on appetite/satiety regulation and food intake. T2Rs are also expressed along the digestive tract, and their interaction with polyphenols can induce the release of gastrointestinal hormones (e.g., ghrelin, GLP-1, CCK) influencing appetite, gastrointestinal functionally, and glycemia control. Intestinal microbiota can also influence on network effects of polyphenols-T2Rs interaction and vice versa, impacting innate immune responses and consequently on gut functionally. Furthermore, polyphenols binding to T2Rs present important effects on adipose tissue metabolism. Interestingly, T2R polymorphism could, at least partially, explain the inter-individual variability of the effects of polyphenols on glucose and body weight homeostasis. Together, these factors can contribute to understand the beneficial effects of polyphenol-rich diets but also might aid in identifying new pharmacological pathway targets for the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Marta Trius-Soler
- Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juan José Moreno
- Department of Nutrition, Food Science and Gastronomy, XIA, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute for Nutrition and Food Safety Research, University of Barcelona, Barcelona, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Lela L, Ponticelli M, Carlucci V, Stevens JF, Faraone I, Tzvetkov NT, Milella L. Insight into the Interaction of Humulus lupulus L. Specialized Metabolites and Gastrointestinal Bitter Taste Receptors: In Vitro Study in STC-1 Cells and Molecular Docking. JOURNAL OF NATURAL PRODUCTS 2024; 87:2021-2033. [PMID: 39126694 DOI: 10.1021/acs.jnatprod.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Bitter taste receptors, also known as taste 2 receptors (T2R), are expressed throughout the body and are involved in regulating different physiological processes. T2R expression in the intestinal tract regulates orexigenic and anorexigenic peptide secretion, thus becoming potential a potential target for controlling food intake and the prevalence of obesity and overweight. The present study aims to investigate the implication of hop bitter compounds such as α-acids, β-acids, and xanthohumol in the secretion of anorexigenic hormones and T2R expression in intestinal STC-1 cells. The tested bitter compounds induced the secretion of the anorexigenic hormones glucagon-like peptide 1 and cholecystokinin concurrently with a selective increase of murine Tas2r expression. Xanthohumol and α-acids selectively increase Tas2r138 and Tas2r130-Tas2r138 expression, respectively, in STC-1 cells, while β-acids increased the expression of all bitter receptors studied, including Tas2r119, Tas2r105, Tas2r138, Tas2r120, and Tas2r130. Increased intracellular calcium levels confirmed this activity. As all investigated bitter molecules increased Tas2r138 expression, computational studies were performed on Tas2r138 and its human orthologue T2R38 for the first time. Molecular docking experiments showed that all molecules might be able to bind both bitter receptors, providing an excellent basis for applying hop bitter molecules as lead compounds to further design gastrointestinal-permeable T2R agonists.
Collapse
Affiliation(s)
- Ludovica Lela
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Ponticelli
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Institute of Molecular Biology "Roumen Tsanev", Department of Biochemical Pharmacology & Drug Design, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Vittorio Carlucci
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Jan F Stevens
- Department of Chemistry and the Linus Pauling Institute, Oregon State University, 117 Weniger Hall, Corvallis, Oregon 97331, United States
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Immacolata Faraone
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Innovative Startup Farmis s.r.l., Via Nicola Vaccaro 40, 85100 Potenza, Italy
| | - Nikolay T Tzvetkov
- Institute of Molecular Biology "Roumen Tsanev", Department of Biochemical Pharmacology & Drug Design, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Luigi Milella
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
5
|
Caffrey EB, Sonnenburg JL, Devkota S. Our extended microbiome: The human-relevant metabolites and biology of fermented foods. Cell Metab 2024; 36:684-701. [PMID: 38569469 DOI: 10.1016/j.cmet.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
One of the key modes of microbial metabolism occurring in the gut microbiome is fermentation. This energy-yielding process transforms common macromolecules like polysaccharides and amino acids into a wide variety of chemicals, many of which are relevant to microbe-microbe and microbe-host interactions. Analogous transformations occur during the production of fermented foods, resulting in an abundance of bioactive metabolites. In foods, the products of fermentation can influence food safety and preservation, nutrient availability, and palatability and, once consumed, may impact immune and metabolic status, disease expression, and severity. Human signaling pathways perceive and respond to many of the currently known fermented food metabolites, though expansive chemical novelty remains to be defined. Here we discuss several aspects of fermented food-associated microbes and metabolites, including a condensed history, current understanding of their interactions with hosts and host-resident microbes, connections with commercial probiotics, and opportunities for future research on human health and disease and food sustainability.
Collapse
Affiliation(s)
- Elisa B Caffrey
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA.
| | - Suzanne Devkota
- F. Widjaja Foundation Inflammatory Bowel Diseases Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Nakayama R, Nishi D, Sato M, Ito A, Uchiyama K, Higuchi Y, Takahashi H, Ohinata K. The Effect of the Rice Endosperm Protein Hydrolysate on the Subjective Negative Mood Status in Healthy Humans: A Randomized, Double-Blind, and Placebo-Controlled Clinical Trial. Nutrients 2023; 15:3491. [PMID: 37571427 PMCID: PMC10421398 DOI: 10.3390/nu15153491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The rice endosperm protein (REP) hydrolysate containing the following rice endosperm protein derived oligopeptides QQFLPEGQSQSQK, LPEGQSQSQK, and pEQFLPEGQSQSQK (a N-terminal pyroglutamate residue-modified peptide) reportedly showed an antidepressant-like effect in an animal model. We investigated the effect of the REP hydrolysate on healthy humans who self-reported mental fatigue with subjectively low vigor. Seventy-six participants (age: 20-64 years) were randomly allocated to two groups. The influence of the REP hydrolysate on the mood state was evaluated in two studies: single intake (Study 1) and repeated intake over 4 weeks (Study 2). A salivary stress marker, Chromogranin A (CgA), was measured in Study 1. The single intake of the REP hydrolysate significantly improved the Profile of Mood Status 2nd edition for adults (POMS 2) subscale of Tension-Anxiety. Additionally, the salivary CgA concentrations were remarkably reduced after the single intake of the REP hydrolysate. Though a single intake of the REP hydrolysate did not significantly influence the other subscales and the TMD of the POMS 2 and the Euthymia Scale, both the subjective and objective results supported the possible effect of the REP hydrolysate on reducing anxiety and nervousness. No significant positive effects on the subjective mood state (Euthymia Scale and POMS 2) and sleep quality (Insomnia Severity Index) were observed in the trial setting employed for Study 2. In conclusion, a single intake of REP hydrolysate might help relax the subjective feelings of tension and anxiety. The effectiveness of repeated REP hydrolysate intake needs to be tested in a different clinical setting.
Collapse
Affiliation(s)
- Ryoko Nakayama
- Rice Research Institute, Kameda Seika Co., Ltd., Niigata 950-0198, Niigata, Japan
| | - Daisuke Nishi
- Department of Mental Health, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Masaru Sato
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu 292-0818, Chiba, Japan;
| | - Akira Ito
- Rice Research Institute, Kameda Seika Co., Ltd., Niigata 950-0198, Niigata, Japan
| | - Kimiko Uchiyama
- Rice Research Institute, Kameda Seika Co., Ltd., Niigata 950-0198, Niigata, Japan
| | - Yuki Higuchi
- Rice Research Institute, Kameda Seika Co., Ltd., Niigata 950-0198, Niigata, Japan
| | - Hajime Takahashi
- Rice Research Institute, Kameda Seika Co., Ltd., Niigata 950-0198, Niigata, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Kyoto, Japan;
| |
Collapse
|
7
|
Bitarafan V, Fitzgerald PCE, Poppitt SD, Ingram JR, Feinle-Bisset C. Effects of intraduodenal or intragastric administration of a bitter hop extract (Humulus lupulus L.), on upper gut motility, gut hormone secretion and energy intake in healthy-weight men. Appetite 2023; 184:106490. [PMID: 36781111 DOI: 10.1016/j.appet.2023.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Gastrointestinal functions, particularly pyloric motility and the gut hormones, cholecystokinin and peptide YY, contribute to the regulation of acute energy intake. Bitter tastants modulate these functions, but may, in higher doses, induce GI symptoms. The aim of this study was to evaluate the effects of both dose and delivery location of a bitter hop extract (BHE) on antropyloroduodenal pressures, plasma cholecystokinin and peptide YY, appetite perceptions, gastrointestinal symptoms and energy intake in healthy-weight men. The study consisted of two consecutive parts, with part A including n = 15, and part B n = 11, healthy, lean men (BMI 22.6 ± 1.1 kg/m2, aged 25 ± 3 years). In randomised, double-blind fashion, participants received in part A, BHE in doses of either 100 mg ("ID-BHE-100") or 250 mg ("ID-BHE-250"), or vehicle (canola oil; "ID-control") intraduodenally, or in part B, 250 mg BHE ("IG-BHE-250") or vehicle ("IG-control") intragastrically. Antropyloroduodenal pressures, hormones, appetite and symptoms were measured for 180 min, energy intake from a standardised buffet-meal was quantified subsequently. ID-BHE-250, but not ID-BHE-100, had modest, and transient, effects to stimulate pyloric pressures during the first 90 min (P < 0.05), and peptide YY from t = 60 min (P < 0.05), but did not affect antral or duodenal pressures, cholecystokinin, appetite, gastrointestinal symptoms or energy intake. IG-BHE-250 had no detectable effects. In conclusion, BHE, when administered intraduodenally, in the selected higher dose, modestly affected some appetite-related gastrointestinal functions, but had no detectable effects when given in the lower dose or intragastrically. Thus, BHE, at none of the doses or routes of administration tested, has appetite- or energy intake-suppressant effects.
Collapse
Affiliation(s)
- Vida Bitarafan
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Penelope C E Fitzgerald
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - John R Ingram
- New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Christine Feinle-Bisset
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
8
|
Saito M, Okamatsu-Ogura Y. Thermogenic Brown Fat in Humans: Implications in Energy Homeostasis, Obesity and Metabolic Disorders. World J Mens Health 2023:41.e26. [PMID: 36792089 DOI: 10.5534/wjmh.220224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/08/2022] [Indexed: 01/27/2023] Open
Abstract
In mammals including humans, there are two types of adipose tissue, white and brown adipose tissues (BATs). White adipose tissue is the primary site of energy storage, while BAT is a specialized tissue for non-shivering thermogenesis to dissipate energy as heat. Although BAT research has long been limited mostly in small rodents, the rediscovery of metabolically active BAT in adult humans has dramatically promoted the translational studies on BAT in health and diseases. It is now established that BAT, through its thermogenic and energy dissipating activities, plays a role in the regulation of body temperature, whole-body energy expenditure, and body fatness. Moreover, increasing evidence has demonstrated that BAT secretes various paracrine and endocrine factors, which influence other peripheral tissues and control systemic metabolic homeostasis, suggesting BAT as a metabolic regulator, other than for thermogenesis. In fact, clinical studies have revealed an association of BAT not only with metabolic disorders such as insulin resistance, diabetes, dyslipidemia, and fatty liver, but also with cardiovascular diseases including hypertension and atherosclerosis. Thus, BAT is an intriguing tissue combating obesity and related metabolic diseases. In this review, we summarize current knowledge on human BAT, focusing its patho-physiological roles in energy homeostasis, obesity and related metabolic disorders. The effects of aging and sex on BAT are also discussed.
Collapse
Affiliation(s)
- Masayuki Saito
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Kanatome A, Takara T, Umeda S, Ano Y. Effects of matured hop bitter acids on heart rate variability and cognitive performance: A randomized placebo-controlled crossover trial. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
10
|
Kong H, Yu L, Li C, Ban X, Gu Z, Liu L, Li Z. Perspectives on evaluating health effects of starch: Beyond postprandial glycemic response. Carbohydr Polym 2022; 292:119621. [DOI: 10.1016/j.carbpol.2022.119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
|
11
|
The Role and Regulatory Mechanism of Brown Adipose Tissue Activation in Diet-Induced Thermogenesis in Health and Diseases. Int J Mol Sci 2022; 23:ijms23169448. [PMID: 36012714 PMCID: PMC9408971 DOI: 10.3390/ijms23169448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Brown adipose tissue (BAT) has been considered a vital organ in response to non-shivering adaptive thermogenesis, which could be activated during cold exposure through the sympathetic nervous system (SNS) or under postprandial conditions contributing to diet-induced thermogenesis (DIT). Humans prefer to live within their thermal comfort or neutral zone with minimal energy expenditure created by wearing clothing, making shelters, or using an air conditioner to regulate their ambient temperature; thereby, DIT would become an important mechanism to counter-regulate energy intake and lipid accumulation. In addition, there has been a long interest in the intriguing possibility that a defect in DIT predisposes one to obesity and other metabolic diseases. Due to the recent advances in methodology to evaluate the functional activity of BAT and DIT, this updated review will focus on the role and regulatory mechanism of BAT biology in DIT in health and diseases and whether these mechanisms are applicable to humans.
Collapse
|
12
|
Walker EG, Lo KR, Pahl MC, Shin HS, Lang C, Wohlers MW, Poppitt SD, Sutton KH, Ingram JR. An extract of hops (Humulus lupulus L.) modulates gut peptide hormone secretion and reduces energy intake in healthy-weight men: a randomized, crossover clinical trial. Am J Clin Nutr 2022; 115:925-940. [PMID: 35102364 DOI: 10.1093/ajcn/nqab418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Gastrointestinal enteroendocrine cells express chemosensory bitter taste receptors that may play an important role in regulating energy intake (EI) and gut function. OBJECTIVES To determine the effect of a bitter hop extract (Humulus lupulus L.) on acute EI, appetite, and hormonal responses. METHODS Nineteen healthy-weight men completed a randomized 3-treatment, double-blind, crossover study with a 1-wk washout between treatments. Treatments comprised either placebo or 500 mg of hop extract administered in delayed-release capsules (duodenal) at 11:00 h or quick-release capsules (gastric) at 11:30 h. Ad libitum EI was recorded at the lunch (12:00 h) and afternoon snack (14:00 h), with blood samples taken and subjective ratings of appetite, gastrointestinal (GI) discomfort, vitality, meal palatability, and mood assessed throughout the day. RESULTS Total ad libitum EI was reduced following both the gastric (4473 kJ; 95% CI: 3811, 5134; P = 0.006) and duodenal (4439 kJ; 95% CI: 3777, 5102; P = 0.004) hop treatments compared with the placebo (5383 kJ; 95% CI: 4722, 6045). Gastric and duodenal treatments stimulated prelunch ghrelin secretion and postprandial cholecystokinin, glucagon-like peptide 1, and peptide YY responses compared with placebo. In contrast, postprandial insulin, glucose-dependent insulinotropic peptide, and pancreatic polypeptide responses were reduced in gastric and duodenal treatments without affecting glycemia. In addition, gastric and duodenal treatments produced small but significant increases in subjective measures of GI discomfort (e.g., nausea, bloating, abdominal discomfort) with mild to severe adverse GI symptoms reported in the gastric treatment only. However, no significant treatment effects were observed for any subjective measures of appetite or meal palatability. CONCLUSIONS Both gastric and duodenal delivery of a hop extract modulates the release of hormones involved in appetite and glycemic regulation, providing a potential "bitter brake" on EI in healthy-weight men.
Collapse
Affiliation(s)
- Edward G Walker
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Kim R Lo
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Malcolm C Pahl
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Hyun S Shin
- Human Nutrition Unit; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Claudia Lang
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Mark W Wohlers
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Sally D Poppitt
- Human Nutrition Unit; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kevin H Sutton
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - John R Ingram
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
13
|
Abstract
Cross-talk between peripheral tissues is essential to ensure the coordination of nutrient intake with disposition during the feeding period, thereby preventing metabolic disease. This mini-review considers the interactions between the key peripheral tissues that constitute the metabolic clock, each of which is considered in a separate mini-review in this collation of articles published in Endocrinology in 2020 and 2021, by Martchenko et al (Circadian rhythms and the gastrointestinal tract: relationship to metabolism and gut hormones); Alvarez et al (The microbiome as a circadian coordinator of metabolism); Seshadri and Doucette (Circadian regulation of the pancreatic beta cell); McCommis et al (The importance of keeping time in the liver); Oosterman et al (The circadian clock, shift work, and tissue-specific insulin resistance); and Heyde et al (Contributions of white and brown adipose tissues to the circadian regulation of energy metabolism). The use of positive- and negative-feedback signals, both hormonal and metabolic, between these tissues ensures that peripheral metabolic pathways are synchronized with the timing of food intake, thus optimizing nutrient disposition and preventing metabolic disease. Collectively, these articles highlight the critical role played by the circadian clock in maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8Canada
- Correspondence: P. L. Brubaker, PhD, Departments of Physiology and Medicine, University of Toronto, Medical Sciences Bldg, Rm 3366, 1 King’s College Cir, Toronto, ON M5S 1A8, Canada.
| | | |
Collapse
|
14
|
Wang Z, Zeng M, Wang Z, Qin F, Wang Y, Chen J, Christian M, He Z. Food phenolics stimulate adipocyte browning via regulating gut microecology. Crit Rev Food Sci Nutr 2021:1-27. [PMID: 34738509 DOI: 10.1080/10408398.2021.1997905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fat browning has piqued the interest of researchers as a potential target for treating obesity and related metabolic disorders. Recruitment of brown adipocytes leads to enhanced energy dissipation and reduced adiposity, thus facilitating the maintenance of metabolic homeostasis. Evidence is increasing to support the crucial roles of polyphenols and gut microecology in turning fat "brown". However, it is not clear whether the intestinal microecology is involved in polyphenol-mediated regulation of adipose browning, so this concept is worthy of exploration. In this review, we summarize the current knowledge, mostly from studies with murine models, supporting the concept that the effects of food phenolics on brown fat activation and white fat browning can be attributed to their regulatory actions on gut microecology, including microbial community profile, gut metabolites, and gut-derived hormones. Furthermore, the potential underlying pathways involved are also discussed. Basically, understanding gut microecology paves the way to determine the underlying roles and mechanisms of food phenolics in adipose browning.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yongzhi Wang
- Food and Beverage Department of Damin Food (Zhangzhou) Co., Ltd, Zhangzhou, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Suchacki KJ, Stimson RH. Nutritional Regulation of Human Brown Adipose Tissue. Nutrients 2021; 13:nu13061748. [PMID: 34063868 PMCID: PMC8224032 DOI: 10.3390/nu13061748] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
The recent identification of brown adipose tissue in adult humans offers a new strategy to increase energy expenditure to treat obesity and associated metabolic disease. While white adipose tissue (WAT) is primarily for energy storage, brown adipose tissue (BAT) is a thermogenic organ that increases energy expenditure to generate heat. BAT is activated upon cold exposure and improves insulin sensitivity and lipid clearance, highlighting its beneficial role in metabolic health in humans. This review provides an overview of BAT physiology in conditions of overnutrition (obesity and associated metabolic disease), undernutrition and in conditions of altered fat distribution such as lipodystrophy. We review the impact of exercise, dietary macronutrients and bioactive compounds on BAT activity. Finally, we discuss the therapeutic potential of dietary manipulations or supplementation to increase energy expenditure and BAT thermogenesis. We conclude that chronic nutritional interventions may represent a useful nonpharmacological means to enhance BAT mass and activity to aid weight loss and/or improve metabolic health.
Collapse
|
16
|
Rezaie P, Bitarafan V, Horowitz M, Feinle-Bisset C. Effects of Bitter Substances on GI Function, Energy Intake and Glycaemia-Do Preclinical Findings Translate to Outcomes in Humans? Nutrients 2021; 13:1317. [PMID: 33923589 PMCID: PMC8072924 DOI: 10.3390/nu13041317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Bitter substances are contained in many plants, are often toxic and can be present in spoiled food. Thus, the capacity to detect bitter taste has classically been viewed to have evolved primarily to signal the presence of toxins and thereby avoid their consumption. The recognition, based on preclinical studies (i.e., studies in cell cultures or experimental animals), that bitter substances may have potent effects to stimulate the secretion of gastrointestinal (GI) hormones and modulate gut motility, via activation of bitter taste receptors located in the GI tract, reduce food intake and lower postprandial blood glucose, has sparked considerable interest in their potential use in the management or prevention of obesity and/or type 2 diabetes. However, it remains to be established whether findings from preclinical studies can be translated to health outcomes, including weight loss and improved long-term glycaemic control. This review examines information relating to the effects of bitter substances on the secretion of key gut hormones, gastric motility, food intake and blood glucose in preclinical studies, as well as the evidence from clinical studies, as to whether findings from animal studies translate to humans. Finally, the evidence that bitter substances have the capacity to reduce body weight and/or improve glycaemic control in obesity and/or type 2 diabetes, and potentially represent a novel strategy for the management, or prevention, of obesity and type 2 diabetes, is explored.
Collapse
Affiliation(s)
| | | | | | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5005, Australia; (P.R.); (V.B.); (M.H.)
| |
Collapse
|
17
|
Bitter taste receptor activation by hop-derived bitter components induces gastrointestinal hormone production in enteroendocrine cells. Biochem Biophys Res Commun 2020; 533:704-709. [PMID: 33160623 DOI: 10.1016/j.bbrc.2020.10.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Matured hop bitter acids (MHBA) are bitter acid oxides derived from hops, widely consumed as food ingredients to add bitterness and flavor in beers. Previous studies have suggested a potential gut-brain mechanism in which MHBA simulates enteroendocrine cells to produce cholecystokinin (CCK), a gastrointestinal hormone which activates autonomic nerves, resulting in body fat reduction and cognitive improvement; however, the MHBA recognition site on enteroendocrine cells has not been fully elucidated. In this study, we report that MHBA is recognized by specific human and mouse bitter taste receptors (human TAS2R1, 8, 10 and mouse Tas2r119, 130, 105) using a heterologous receptor expression system in human embryonic kidney 293T cells. In addition, knockdown of each of these receptors using siRNA transfection partially but significantly suppressed an MHBA-induced calcium response and CCK production in enteroendocrine cells. Furthermore, blocking one of the essential taste signaling components, transient receptor potential cation channel subfamily M member 5, remarkably inhibited the MHBA-induced calcium response and CCK production in enteroendocrine cells. Our results demonstrate that specific bitter taste receptor activation by MHBA drives downstream calcium response and CCK production in enteroendocrine cells. These findings reveal a mechanism by which food ingredients derived from hops in beer activate the gut-brain axis for the first time.
Collapse
|
18
|
Effects of the Non-Alcoholic Fraction of Beer on Abdominal Fat, Osteoporosis, and Body Hydration in Women. Molecules 2020; 25:molecules25173910. [PMID: 32867219 PMCID: PMC7503904 DOI: 10.3390/molecules25173910] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
Several studies have shown that binge drinking of alcoholic beverages leads to non-desirable outcomes, which have become a serious threat to public health. However, the bioactive compounds in some alcohol-containing beverages might mitigate the negative effects of alcohol. In beer, the variety and concentration of bioactive compounds in the non-alcoholic fraction suggests that its consumption at moderate levels may not only be harmless but could also positively contribute to an improvement of certain physiological states and be also useful in the prevention of different chronic diseases. The present review focuses on the effects of non-alcoholic components of beer on abdominal fat, osteoporosis, and body hydration in women, conditions selected for their relevance to health and aging. Although beer drinking is commonly believed to cause abdominal fat deposition, the available literature indicates this outcome is inconsistent in women. Additionally, the non-alcoholic beer fraction might improve bone health in postmenopausal women, and the effects of beer on body hydration, although still unconfirmed seem promising. Most of the health benefits of beer are due to its bioactive compounds, mainly polyphenols, which are the most studied. As alcohol-free beer also contains these compounds, it may well offer a healthy alternative to beer consumers.
Collapse
|
19
|
Iniguez AB, Zhu MJ. Hop bioactive compounds in prevention of nutrition-related noncommunicable diseases. Crit Rev Food Sci Nutr 2020; 61:1900-1913. [PMID: 32462886 DOI: 10.1080/10408398.2020.1767537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nutrition-related noncommunicable diseases (NR-NCDs) such as cardiovascular disease and type 2 diabetes both negatively impact the quality of life of many individuals and generate a substantial burden on society, demonstrating a need for intervention. Phytochemicals are investigated as a potential approach for combating NR-NCDs, and those found in hops have gained increased attention in recent decades. Hops, the strobile of the plant Humulus lupulus, are grown primarily for the brewing industry as they confer taste and increased shelf-life. The bitter acids represent the main compounds of interest for improving beer quality. Additionally, bitter acids as well as the prenylated chalcone xanthohumol, exhibit a wide range of health beneficial properties. This review summarizes those beneficial effects of bitter acids and xanthohumol on NR-NCDs, including inflammatory and immune diseases, obesity and metabolic disorders, as well as cancer prevention.
Collapse
Affiliation(s)
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
20
|
Egberts JH, Raza GS, Wilgus C, Teyssen S, Kiehne K, Herzig KH. Release of Cholecystokinin from Rat Intestinal Mucosal Cells and the Enteroendocrine Cell Line STC-1 in Response to Maleic and Succinic Acid, Fermentation Products of Alcoholic Beverages. Int J Mol Sci 2020; 21:ijms21020589. [PMID: 31963306 PMCID: PMC7013850 DOI: 10.3390/ijms21020589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Alcoholic beverages stimulate pancreatic enzyme secretions by inducing cholecystokinin (CCK) release. CCK is the major stimulatory hormone of pancreatic exocrine secretions, secreted from enteroendocrine I-cells of the intestine. Fermentation products of alcoholic beverages, such as maleic and succinic acids, influence gastric acid secretions. We hypothesize that maleic and succinic acids stimulate pancreatic exocrine secretions during beer and wine ingestion by increasing CCK secretions. Therefore, the effects of maleic and succinic acids on CCK release were studied in duodenal mucosal cells and the enteroendocrine cell line STC-1. Mucosal cells were perfused for 30 min with 5 min sampling intervals, STC-1 cells were studied under static incubation for 15 min, and supernatants were collected for CCK measurements. Succinate and maleate-induced CCK release were investigated. Succinate and maleate doses dependently stimulated CCK secretions from mucosal cells and STC-1 cells. Diltiazem, a calcium channel blocker, significantly inhibited succinate and maleate-induced CCK secretions from mucosal cells and STC-1 cells. Maleate and succinate did not show cytotoxicity in STC-1 cells. Our results indicate that succinate and maleate are novel CCK-releasing factors in fermented alcoholic beverages and could contribute to pancreatic exocrine secretions and their pathophysiology.
Collapse
Affiliation(s)
- Jan-Hendrik Egberts
- University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (J.-H.E.); (C.W.); (K.K.)
| | - Ghulam Shere Raza
- Research Unit of Biomedicine, University of Oulu, 90014 Oulu, Finland;
| | - Cornelia Wilgus
- University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (J.-H.E.); (C.W.); (K.K.)
| | | | - Karlheinz Kiehne
- University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (J.-H.E.); (C.W.); (K.K.)
| | - Karl-Heinz Herzig
- University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (J.-H.E.); (C.W.); (K.K.)
- Research Unit of Biomedicine, University of Oulu, 90014 Oulu, Finland;
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Medical Research Center Oulu and Oulu University Hospital, 90014 Oulu, Finland
- Correspondence:
| |
Collapse
|
21
|
Ayabe T, Fukuda T, Ano Y. Improving Effects of Hop-Derived Bitter Acids in Beer on Cognitive Functions: A New Strategy for Vagus Nerve Stimulation. Biomolecules 2020; 10:E131. [PMID: 31940997 PMCID: PMC7022854 DOI: 10.3390/biom10010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Dementia and cognitive decline are global public health problems. Moderate consumption of alcoholic beverages reduces the risk of dementia and cognitive decline. For instance, resveratrol, a polyphenolic compound found in red wine, has been well studied and reported to prevent dementia and cognitive decline. However, the effects of specific beer constituents on cognitive function have not been investigated in as much detail. In the present review, we discuss the latest reports on the effects and underlying mechanisms of hop-derived bitter acids found in beer. Iso-α-acids (IAAs), the main bitter components of beer, enhance hippocampus-dependent memory and prefrontal cortex-associated cognitive function via dopamine neurotransmission activation. Matured hop bitter acids (MHBAs), oxidized components with β-carbonyl moieties derived from aged hops, also enhance memory functions via norepinephrine neurotransmission-mediated mechanisms. Furthermore, the effects of both IAAs and MHBAs are attenuated by vagotomy, suggesting that these bitter acids enhance cognitive function via vagus nerve stimulation. Moreover, supplementation with IAAs attenuates neuroinflammation and cognitive impairments in various rodent models of neurodegeneration including Alzheimer's disease. Daily supplementation with hop-derived bitter acids (e.g., 35 mg/day of MHBAs) may be a safe and effective strategy to stimulate the vagus nerve and thus enhance cognitive function.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan; (T.F.); (Y.A.)
| | | | | |
Collapse
|
22
|
Fukuda T, Obara K, Saito J, Umeda S, Ano Y. Effects of Hop Bitter Acids, Bitter Components in Beer, on Cognition in Healthy Adults: A Randomized Controlled Trial. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:206-212. [PMID: 31808686 DOI: 10.1021/acs.jafc.9b06660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The present study aimed to investigate the effects of matured hop bitter acids (MHBAs) on human cognition, mental fatigue, and mood state. In this randomized double-blind placebo-controlled study, 60 healthy adults (age 45-64 years) with self-awareness of cognitive decline were randomly divided into 2 groups and received either orally administered MHBAs (35 mg/day) or placebo for 12 weeks. Cognitive functions and mental states were assessed using neuropsychological tests or questionnaires at baseline and weeks 6 and 12 of the intervention. The change in verbal fluency score at week 6 compared with that at baseline was significantly higher in the MHBAs-treated group compared with that in the placebo group (P = 0.034), and Stroop test score at week 12 was significantly lower in the MHBAs-treated group compared with the placebo group (P = 0.019). Furthermore, subjective fatigue and anxiety at week 12 were significantly improved in the MHBAs-treated group (P = 0.008 and 0.043, respectively) compared with the placebo group. This is the first study to evaluate the effects of bitter ingredients in beer on cognition, subjective mood, and mental fatigue in a clinical trial. Our findings suggest that hop-derived bitter acids might be beneficial for cognition and mood state.
Collapse
Affiliation(s)
- Takafumi Fukuda
- Research Laboratories for Health Science & Food Technologies , Kirin Holdings Company, Ltd. , Fukuura , Kanazawa-ku, Yokohama 236-0004 , Japan
| | - Kuniaki Obara
- Research Laboratories for Health Science & Food Technologies , Kirin Holdings Company, Ltd. , Fukuura , Kanazawa-ku, Yokohama 236-0004 , Japan
| | - Jiro Saito
- Medical Station Clinics , Takaban , Meguro-ku, Tokyo 152-0004 , Japan
| | - Satoshi Umeda
- Department of Psychology , Keio University , Mita , Minato-ku, Tokyo 108-8345 , Japan
| | - Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies , Kirin Holdings Company, Ltd. , Fukuura , Kanazawa-ku, Yokohama 236-0004 , Japan
| |
Collapse
|
23
|
Saito M, Matsushita M, Yoneshiro T, Okamatsu-Ogura Y. Brown Adipose Tissue, Diet-Induced Thermogenesis, and Thermogenic Food Ingredients: From Mice to Men. Front Endocrinol (Lausanne) 2020; 11:222. [PMID: 32373072 PMCID: PMC7186310 DOI: 10.3389/fendo.2020.00222] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022] Open
Abstract
Since the recent rediscovery of brown adipose tissue (BAT) in adult humans, this thermogenic tissue has been attracting increasing interest. The inverse relationship between BAT activity and body fatness suggests that BAT, because of its energy dissipating activity, is protective against body fat accumulation. Cold exposure activates and recruits BAT, resulting in increased energy expenditure and decreased body fatness. The stimulatory effects of cold exposure are mediated through transient receptor potential (TRP) channels and the sympathetic nervous system (SNS). Most TRP members also function as chemesthetic receptors for various food ingredients, and indeed, agonists of TRP vanilloid 1 such as capsaicin and its analog capsinoids mimic the effects of cold exposure to decrease body fatness through the activation and recruitment of BAT. The antiobesity effect of other food ingredients including tea catechins may be attributable, at least in part, to the activation of the TRP-SNS-BAT axis. BAT is also involved in the facultative thermogenesis induced by meal intake, referred to as diet-induced thermogenesis (DIT), which is a significant component of the total energy expenditure in our daily lives. Emerging evidence suggests a crucial role for the SNS in BAT-associated DIT, particularly during the early phase, but several gut-derived humoral factors may also participate in meal-induced BAT activation. One intriguing factor is bile acids, which activate BAT directly through Takeda G-protein receptor 5 (TGR5) in brown adipocytes. Given the apparent beneficial effects of some TRP agonists and bile acids on whole-body substrate and energy metabolism, the TRP/TGR5-BAT axis represents a promising target for combating obesity and related metabolic disorders in humans.
Collapse
Affiliation(s)
- Masayuki Saito
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- *Correspondence: Masayuki Saito
| | | | - Takeshi Yoneshiro
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
24
|
Santacruz-Hidalgo F, Viscarra-Sanchez E. Hormonal signaling factors produced by brown adipose tissue as regulators of metabolism of carbohydrates and lipids. BIONATURA 2019. [DOI: 10.21931/rb/2019.04.02.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Brown adipose tissue is one of the principal generators of heat in the body; due to the activation of many hormones and receptors, it takes a fundamental role in thermogenesis. However recent studies have proved that this is not its only function. Brown adipose tissue could also act as an endocrine organ, which means that it releases chemical substances to the blood and regulate some activities in the organism. This cell communication process is momentous, since allowing cells to exchange physicochemical information with the environment and other cells in the body could be a relevant field of study in treatments of obesity, diabetes and other diseases related with body weight. This paper offers an overview of different transcriptional factors, endocrine regulation and therapeutic applications of the brown fat tissue, and also the distinctions that it has with white adipose tissue and beige adipose tissue.
Collapse
Affiliation(s)
| | - Eliana Viscarra-Sanchez
- School of Biology Science and Applications, Yachay Tech University of Technology and Research, Ecuador
| |
Collapse
|