1
|
Matawali A, Yeap JW, Sulaiman SF, Tan ML. The effects of ketone bodies and ketogenesis on the PI3K/AKT/mTOR signaling pathway: A systematic review. Nutr Res 2025; 139:16-49. [PMID: 40381609 DOI: 10.1016/j.nutres.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 05/20/2025]
Abstract
Ketogenesis and the PI3K/AKT/mTOR pathway are linked to metabolic imbalance and disease progression. While ketone metabolism and mTOR inhibition are mechanistically connected, their functional relationship across disease models remains unclear. Although ketogenesis can be induced by ketone ingestion, ketogenic diet, or fasting, their individual effects on this pathway require further clarification. This study systematically reviews the relationship between ketogenesis and PI3K/AKT/mTOR signaling, following PRISMA guidelines across 3 databases. Eligible studies that met the selection criteria were evaluated using the risk of bias tools. In most studies involving the ketogenic diet or ketone bodies, suppression of the signaling pathway may lead to positive outcomes in terms of survival rate, lifespan, improved metabolic homeostasis, enhanced neurovascular function and suppressed progression of tumors. By contrast, β-hydroxybutyrate supplementation is associated with the up-regulation of AKT and downstream markers. It may exert an anabolic activity by activating the mTOR signaling pathway in muscle atrophy models and is associated with muscle recovery. Although fasting increases p-AKT expression, this may not necessarily indicate activation of the downstream mTOR signaling cascade, as it could result from an insulin response or regulatory feedback mechanisms. Regulation of the mTOR signaling by ketogenesis may be tissue-specific. Inhibition of PI3K/AKT/mTOR in ketogenesis-induced circumstances may justify the importance of a ketogenic-based diet regimen in combating metabolic diseases. However, future studies should consider standardizing factors such as the duration of fasting, timing, composition of the ketogenic diet and target tissues as these factors may affect study outcomes.
Collapse
Affiliation(s)
- Azlinah Matawali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia; Preparatory Centre for Science and Technology, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jia Wen Yeap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | | - Mei Lan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia; Preparatory Centre for Science and Technology, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
2
|
Tahir S, Abdo A, Mobashar A, Shabbir A, Najam K, Ibrahim A, Hussain K, Jardan YAB, Ibenmoussa S, Younous YA. Potential antihyperlipidemic effects of myrcenol and curzerene in high-fat fed rats. BMC Pharmacol Toxicol 2025; 26:9. [PMID: 39825436 PMCID: PMC11742224 DOI: 10.1186/s40360-025-00838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
The study evaluated the anti-hyperlipidemic effects of myrcenol and curzerene on a high fat diet induced hyperlipidemia rat model. Thirty male albino rats were fed on a high-fat diet for four months. The HFD-induced hyperperlipidemia rats were treated with rosuvastatin (10 mg/kg), curzerene (130 mg/kg) and myrcenol (100 mg/kg) for four weeks. Blood samples were collected for further analysis. Aorta and heart were harvested for histopathological evaluation. Hepatic lipase and HMG-CoA reductase were determined by ELISA. FST and Y-maze tests were performed to assess the stress level in hyperlipidemia rats. The phytochemical compounds (Curzerene and Myrcenol) and the standard drug (Rosuvastatin) resulted in decreased body weight as well as reduced levels of LDL, TG, TC, AST and ALT as compared to the diseased group. Additionally, the treated groups displayed improved HDL levels and less depressed behavior. The ELISA results revealed that the Curzerene and myrcenol had significantly increased the protein concentration of hepatic lipase than the diseased group whereas both compounds significantly lowered the HMG-CoA reductase concentrations compared to the diseased group. The findings suggested that myrcenol and curzerene had the potential to be therapeutic agents for managing hyperlipidemia and reducing the risk of heart-related conditions associated with high lipid levels.
Collapse
Affiliation(s)
- Sana Tahir
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Abdullah Abdo
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Aisha Mobashar
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan.
- Faculty of Health Sciences, Equator University of Science and Technology, Masaka, Uganda.
| | - Arham Shabbir
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Komal Najam
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Aisha Ibrahim
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Khalid Hussain
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, 34000, France
| | | |
Collapse
|
3
|
Ko K, Bandara SR, Zhou W, Svenningsson L, Porras-Gómez M, Kambar N, Dreher-Threlkeld J, Topgaard D, Hernández-Saavedra D, Anakk S, Leal C. Diet-Induced Obesity Modulates Close-Packing of Triacylglycerols in Lipid Droplets of Adipose Tissue. J Am Chem Soc 2024; 146:34796-34810. [PMID: 39644234 DOI: 10.1021/jacs.4c13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Adipose-derived lipid droplets (LDs) are rich in triacylglycerols (TAGs), which regulate essential cellular processes, such as energy storage. Although TAG accumulation and LD expansion in adipocytes occur during obesity, how LDs dynamically package TAGs in response to excessive nutrients remains elusive. Here, we found that LD lipidomes display a remarkable increase in TAG acyl chain saturation under calorie-dense diets, turning them conducive to close-packing. Using high-resolution X-ray diffraction, solid-state NMR, and imaging, we show that beyond size expansion LDs from mice under varied obesogenic diets govern fat accumulation by packing TAGs in different crystalline polymorphs. Consistently, LDs and tissue stiffen for high-calorie-fed mice with more than a 2-fold increase in elastic moduli compared to normal diet. Our data suggest that in addition to expanding, adipocyte LDs undergo structural remodeling by close-packing rigid and highly saturated TAGs in response to caloric overload, as opposed to liquid TAGs in a low-calorie diet. This work provides insights into how lipid packing within LDs can allow for the rapid and optimal expansion of fat during the initial stages of obesity.
Collapse
Affiliation(s)
- Kyungwon Ko
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sarith R Bandara
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Weinan Zhou
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Leo Svenningsson
- Division of Physical Chemistry, Lund University, Lund 22100, Sweden
| | - Marilyn Porras-Gómez
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nurila Kambar
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Julia Dreher-Threlkeld
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Daniel Topgaard
- Division of Physical Chemistry, Lund University, Lund 22100, Sweden
| | - Diego Hernández-Saavedra
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sayeepriyadarshini Anakk
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Cecília Leal
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Aguirre-Maldonado I, Herrera-López EE, López-Zenteno F, Ramírez-Nava JC, López-Hernández NA, Arellanes-Robledo J, Del Pozo-Yauner L, García-Román R, Montero H, Alexander-Aguilera A, Noyola-Díaz JM, Camacho J, Pérez-Carreón JI. Intriguing hepatoprotective effects of sucrose on hepatocellular carcinoma pathogenesis. Sci Rep 2024; 14:23689. [PMID: 39390131 PMCID: PMC11467258 DOI: 10.1038/s41598-024-74991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Chronic liver disease is closely linked to dietary intake factors, such as high consumption of simple carbohydrates including sucrose. In this study, the influence of sucrose on the development of hepatocellular carcinoma (HCC), the most common primary liver malignancy, was explored. Using the hepatocarcinogen diethylnitrosamine (DEN) to induce HCC in the rat, we co-administered sucrose with DEN. The co-administration significantly modified body, liver and pancreas weight, as well as, serum fatty acids and triglycerides. DEN caused liver structural alteration, fibrosis, and tumor formation; surprisingly, co-administration with sucrose restored hepatic lipids, improved liver architecture, and reduced fibrosis and tumor development. Sucrose intake negatively regulated tumor markers and cell proliferation, and reduced the expression of genes associated with lipid metabolism and oxidative stress response. These findings highlight a hepatoprotective effect of sucrose during DEN-induced hepatocarcinogenesis, underlining an intriguing role of high sucrose consumption during HCC development and providing new insights as well as possible pathways of cellular protection under sucrose intake on hepatocarcinogenesis.
Collapse
Affiliation(s)
- Isaac Aguirre-Maldonado
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Alcaldía Tlalpan, 14610, Ciudad de México, Mexico
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Ema Elvira Herrera-López
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Alcaldía Tlalpan, 14610, Ciudad de México, Mexico
| | - Fernando López-Zenteno
- Instituto de Investigación en Ciencias de la Salud de la SEMAR, Ciudad de México, Mexico
| | | | - Norma Arely López-Hernández
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Alcaldía Tlalpan, 14610, Ciudad de México, Mexico
| | - Jaime Arellanes-Robledo
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Alcaldía Tlalpan, 14610, Ciudad de México, Mexico
- Dirección Adjunta de Investigación Humanística y Científica, Consejo Nacional de Humanidades Ciencias y Tecnologías, Ciudad de México, Mexico
| | - Luis Del Pozo-Yauner
- Department of Pathology, College of Medicine, University of South Alabama, Alabama, USA
| | - Rebeca García-Román
- Instituto de Salud Pública, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Hilda Montero
- Instituto de Salud Pública, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | - Juana Martha Noyola-Díaz
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Julio Isael Pérez-Carreón
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Alcaldía Tlalpan, 14610, Ciudad de México, Mexico.
| |
Collapse
|
5
|
Montero-Vallejo R, Maya-Miles D, Ampuero J, Martín F, Romero-Gómez M, Gallego-Durán R. Novel insights into metabolic-associated steatotic liver disease preclinical models. Liver Int 2024; 44:644-662. [PMID: 38291855 DOI: 10.1111/liv.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD) encompasses a wide spectrum of metabolic conditions associated with an excess of fat accumulation in the liver, ranging from simple hepatic steatosis to cirrhosis and hepatocellular carcinoma. Finding appropriate tools to study its development and progression is essential to address essential unmet therapeutic and staging needs. This review discusses advantages and shortcomings of different dietary, chemical and genetic factors that can be used to mimic this disease and its progression in mice from a hepatic and metabolic point of view. Also, this review will highlight some additional factors and considerations that could have a strong impact on the outcomes of our model to end up providing recommendations and a checklist to facilitate the selection of the appropriate MASLD preclinical model based on clinical aims.
Collapse
Affiliation(s)
- Rocío Montero-Vallejo
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Douglas Maya-Miles
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Franz Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University Pablo Olavide-University of Seville-CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Rocío Gallego-Durán
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| |
Collapse
|
6
|
Jiménez-Franco A, Castañé H, Martínez-Navidad C, Placed-Gallego C, Hernández-Aguilera A, Fernández-Arroyo S, Samarra I, Canela-Capdevila M, Arenas M, Zorzano A, Hernández-Alvarez MI, Castillo DD, Paris M, Menendez JA, Camps J, Joven J. Metabolic adaptations in severe obesity: Insights from circulating oxylipins before and after weight loss. Clin Nutr 2024; 43:246-258. [PMID: 38101315 DOI: 10.1016/j.clnu.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The relationship between lipid mediators and severe obesity remains unclear. Our study investigates the impact of severe obesity on plasma concentrations of oxylipins and fatty acids and explores the consequences of weight loss. METHODS In the clinical trial identifier NCT05554224 study, 116 patients with severe obesity and 63 overweight/obese healthy controls matched for age and sex (≈2:1) provided plasma. To assess the effect of surgically induced weight loss, we requested paired plasma samples from 44 patients undergoing laparoscopic sleeve gastrectomy one year after the procedure. Oxylipins were measured using ultra-high-pressure liquid chromatography coupled to a triple quadrupole mass spectrometer via semi-targeted lipidomics. Cytokines and markers of interorgan crosstalk were measured using enzyme-linked immunosorbent assays. RESULTS We observed significantly elevated levels of circulating fatty acids and oxylipins in patients with severe obesity compared to their metabolically healthier overweight/obese counterparts. Our findings indicated that sex and liver disease were not confounding factors, but we observed weak correlations in plasma with circulating adipokines, suggesting the influence of adipose tissue. Importantly, while weight loss restored the balance in circulating fatty acids, it did not fully normalize the oxylipin profile. Before surgery, oxylipins derived from lipoxygenase activity, such as 12-HETE, 11-HDoHE, 14-HDoHE, and 12-HEPE, were predominant. However, one year following laparoscopic sleeve gastrectomy, we observed a complex shift in the oxylipin profile, favoring species from the cyclooxygenase pathway, particularly proinflammatory prostanoids like TXB2, PGE2, PGD2, and 12-HHTrE. This transformation appears to be linked to a reduction in adiposity, underscoring the role of lipid turnover in the development of metabolic disorders associated with severe obesity. CONCLUSIONS Despite the reduction in fatty acid levels associated with weight loss, the oxylipin profile shifts towards a predominance of more proinflammatory species. These observations underscore the significance of seeking mechanistic approaches to address severe obesity and emphasize the importance of closely monitoring the metabolic adaptations after weight loss.
Collapse
Affiliation(s)
- Andrea Jiménez-Franco
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Cristian Martínez-Navidad
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Cristina Placed-Gallego
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Anna Hernández-Aguilera
- Department of Pathology, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | | | - Iris Samarra
- Center for Omics Sciences, EURECAT-Technology Center of Catalonia, Reus, Spain
| | - Marta Canela-Capdevila
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; Department of Radiation Oncology, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Meritxell Arenas
- Department of Radiation Oncology, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Antonio Zorzano
- Department de Bioquímica i Biomedicina Molecular, Facultat de Biología, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - María Isabel Hernández-Alvarez
- Department de Bioquímica i Biomedicina Molecular, Facultat de Biología, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - Daniel Del Castillo
- Servei de Cirurgia, Hospital Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili. Avinguda, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Paris
- Servei de Cirurgia, Hospital Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili. Avinguda, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
| | - Javier A Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, Spain; Girona Biomedical Research Institute, Girona, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.
| |
Collapse
|
7
|
Gomes MEP, Didomizio LMJ, Sinzato YK, Paula VG, Souza MR, Gallego FQ, Barco VS, Volpato GT, Damasceno DC. Influence of maternal periuterine and periovarian fat on reproductive performance and fetal growth in rats. AN ACAD BRAS CIENC 2023; 95:e20230079. [PMID: 38055444 DOI: 10.1590/0001-3765202320230079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/20/2023] [Indexed: 12/08/2023] Open
Abstract
We aimed to evaluate how high-fat diet consumption can interfere with rat reproductive performance and fetal development. High-fat diet (HFD) was initiated in 30-day-old rats, distributed into two groups (n=7 animals/group): Rats receiving a standard diet and rats receiving HFD. At adulthood, the rats were mated, and on day 21 of pregnancy, the females were anesthetized, decapitated, and submitted to laparotomy to obtain visceral and periovarian adipose tissue. The uterine horns were exposed for analysis of maternal reproductive performance. The fetuses and placentas were weighed and analyzed. Pearson's correlation test was used, and p<0.05 was considered significant. There was a significant positive correlation (HFD consumption x increased periovarian fat) and a negative correlation with the implantation, live fetus numbers and lower litter weight. Furthermore, the increased relative weight of periuterine fat was related to the lower number of live fetuses and litter weight. Regarding the fetal weight classification, there was a negative correlation between the relative weight of periovarian fat and the percentage of fetuses appropriate for gestational age and large for gestational age. Therefore, our findings show that HFD maternal intake negatively influenced on reproductive performance and fetal growth.
Collapse
Affiliation(s)
- Maria Eduarda P Gomes
- Programa de Pós-Graduação em Tocoginecologia, Universidade Estadual Paulista, Faculdade de Medicina, Laboratório de Pesquisa Experimental em Ginecologia e Obstetricia, Av. Prof. Mário Rubens Guimarães Montenegro, s/n, 18618-687 Botucatu, SP, Brazil
| | - Luigi M J Didomizio
- Programa de Pós-Graduação em Tocoginecologia, Universidade Estadual Paulista, Faculdade de Medicina, Laboratório de Pesquisa Experimental em Ginecologia e Obstetricia, Av. Prof. Mário Rubens Guimarães Montenegro, s/n, 18618-687 Botucatu, SP, Brazil
- Universidade Santo Amaro, Escola de Medicina, Rua Isabel Schmidt, 349, 04743-030 Santo Amaro, SP, Brazil
| | - Yuri K Sinzato
- Programa de Pós-Graduação em Tocoginecologia, Universidade Estadual Paulista, Faculdade de Medicina, Laboratório de Pesquisa Experimental em Ginecologia e Obstetricia, Av. Prof. Mário Rubens Guimarães Montenegro, s/n, 18618-687 Botucatu, SP, Brazil
| | - Verônyca G Paula
- Programa de Pós-Graduação em Tocoginecologia, Universidade Estadual Paulista, Faculdade de Medicina, Laboratório de Pesquisa Experimental em Ginecologia e Obstetricia, Av. Prof. Mário Rubens Guimarães Montenegro, s/n, 18618-687 Botucatu, SP, Brazil
| | - Maysa R Souza
- Programa de Pós-Graduação em Tocoginecologia, Universidade Estadual Paulista, Faculdade de Medicina, Laboratório de Pesquisa Experimental em Ginecologia e Obstetricia, Av. Prof. Mário Rubens Guimarães Montenegro, s/n, 18618-687 Botucatu, SP, Brazil
- Universidade Federal do Mato Grosso, Instituto de Ciências Biológicas e da Saúde, Laboratório de Fisiologia de Sistemas e Toxicologia Reprodutiva, Av. Valdon Varjão, 6390, 78605-091 Barra do Garças, MT, Brazil
| | - Franciane Q Gallego
- Programa de Pós-Graduação em Tocoginecologia, Universidade Estadual Paulista, Faculdade de Medicina, Laboratório de Pesquisa Experimental em Ginecologia e Obstetricia, Av. Prof. Mário Rubens Guimarães Montenegro, s/n, 18618-687 Botucatu, SP, Brazil
| | - Vinícius S Barco
- Programa de Pós-Graduação em Tocoginecologia, Universidade Estadual Paulista, Faculdade de Medicina, Laboratório de Pesquisa Experimental em Ginecologia e Obstetricia, Av. Prof. Mário Rubens Guimarães Montenegro, s/n, 18618-687 Botucatu, SP, Brazil
| | - Gustavo T Volpato
- Universidade Federal do Mato Grosso, Instituto de Ciências Biológicas e da Saúde, Laboratório de Fisiologia de Sistemas e Toxicologia Reprodutiva, Av. Valdon Varjão, 6390, 78605-091 Barra do Garças, MT, Brazil
| | - Débora Cristina Damasceno
- Programa de Pós-Graduação em Tocoginecologia, Universidade Estadual Paulista, Faculdade de Medicina, Laboratório de Pesquisa Experimental em Ginecologia e Obstetricia, Av. Prof. Mário Rubens Guimarães Montenegro, s/n, 18618-687 Botucatu, SP, Brazil
| |
Collapse
|
8
|
Li H, Cao Z, Wang L, Li J, Cheng X, Tang Y, Xing M, Yao P. Chronic high-fat diet induces galectin-3 and TLR4 to activate NLRP3 inflammasome in NASH. J Nutr Biochem 2023; 112:109217. [PMID: 36402251 DOI: 10.1016/j.jnutbio.2022.109217] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 05/01/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022]
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasome activation triggers inflammation progression in some metabolism disorders, frequently accompanying the up-regulation of galectin-3 (Gal-3). However, the precise mechanisms of Gal-3 activating NLRP3 inflammasome remain unclear in nonalcoholic steatohepatitis (NASH). Here, male C57BL/6J mice were fed by high-fat diet (HFD) for 32 weeks to induce NASH and then the hepatic damage, cytokines, Gal-3 and TLR4 expression, and NLRP3 inflammasome activation were examined. Such indicators were similarly determined when HepG2 cells were co-incubated with palmitic acid (PA, 200 μM), β-lactose, and TAK-242, or pre-transfected with TLR4. Immunofluorescence, immunohistochemistry, and co-immunoprecipitation were conducted to confirm the potential interaction between Gal-3 and TLR4. To further identify the inflammatory regulation roles of Gal-3 and its terminals in TLR4/NLRP3, HepG2 cells were transfected with Gal-3 and its variants. Chronic HFD induced sustained hepatic steatosis and inflammatory injury, with increased inflammatory cytokines, Gal-3 and TLR4 expression, and NLRP3 inflammasome activation. Similar changes were found in PA-dosed HepG2 cells, which were rescued by β-lactose but deteriorated with TLR4 overexpression. However, TAK-242 treatment decreased AST, ALT, cytokines, and normalized NLRP3, caspase-1, and ASC expression. Furthermore, TLR4 was pulled down when Gal-3 was enriched. Only full-length Gal-3 and its carbohydrate recognition domain (CRD) promoted cytokines, TLR4 expression, and NLRP3 inflammasome activation. Thus, gal-3 may induce chronic HFD-derived NASH progression by activating TLR4-mediating NLRP3 inflammasome via its CRD, which sheds new light on candidate target for the treatment and prevention of NASH inflammation despite further research for its precise roles in the future.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Li
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xueer Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyou Xing
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Baiges-Gaya G, Rodríguez-Tomàs E, Castañé H, Jiménez-Franco A, Amigó N, Camps J, Joven J. Combining Dietary Intervention with Metformin Treatment Enhances Non-Alcoholic Steatohepatitis Remission in Mice Fed a High-Fat High-Sucrose Diet. Biomolecules 2022; 12:biom12121787. [PMID: 36551216 PMCID: PMC9775246 DOI: 10.3390/biom12121787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are serious health concerns for which lifestyle interventions are the only effective first-line treatment. Dietary interventions are effective in body weight reduction, but not in improving insulin sensitivity and hepatic lipid mobilization. Conversely, metformin increases insulin sensitivity and promotes the inhibition of de novo hepatic lipogenesis. In this study, we evaluated the metformin effectiveness in NASH prevention and treatment, when combined with dietary intervention in male mice fed a high-fat high-sucrose diet (HFHSD). Eighty 5-week-old C57BL/6J male mice were fed a chow or HFHSD diet and sacrificed at 20 or 40 weeks. The HFHSD-fed mice developed NASH after 20 weeks. Lipoprotein and lipidomic analyses showed that the changes associated with diet were not prevented by metformin administration. HFHSD-fed mice subject to dietary intervention combined with metformin showed a 19.6% body weight reduction compared to 9.8% in those mice subjected to dietary intervention alone. Lower hepatic steatosis scores were induced. We conclude that metformin should not be considered a preventive option for NAFLD, but it is effective in the treatment of this disorder when combined with dietary intervention.
Collapse
Affiliation(s)
- Gerard Baiges-Gaya
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
| | - Elisabet Rodríguez-Tomàs
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
| | - Helena Castañé
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
| | - Andrea Jiménez-Franco
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
| | - Núria Amigó
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Biosfer Teslab, 43201 Reus, Spain
| | - Jordi Camps
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
- Correspondence: (J.C.); (J.J.)
| | - Jorge Joven
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, 43003 Tarragona, Spain
- Correspondence: (J.C.); (J.J.)
| |
Collapse
|
10
|
da Cruz LL, Vesentini G, Sinzato YK, Villaverde AISB, Volpato GT, Damasceno DC. Effects of high-fat diet-induced diabetes on autophagy in the murine liver: A systematic review and meta-analysis. Life Sci 2022; 309:121012. [PMID: 36179817 DOI: 10.1016/j.lfs.2022.121012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 12/09/2022]
Abstract
AIMS We conducted a meta-analysis to investigate whether diabetes induced by a high-fat diet (HFD) has the potential to alter the process of autophagy in the murine liver. METHODS A systematic literature search was performed with electronic databases (PubMed, EMBASE, Web of Science). Study design, population, intervention, outcome, and risk of bias were analyzed. Given the availability of studies, a quantitative meta-analysis including 23 studies was performed. KEY FINDINGS The search found 5754 articles, with 48 matching the eligibility criteria, comprising of 1033 animals. The meta-analysis showed that diabetic murines fed with HFD presented an absence of p62 degradation (SMD 4.63, 95 % CI 2.02 to 7.24, p = 0.0005; I2 = 77 %), higher expression of p-mTOR/mTOR (SMD 5.20, 95 % CI 1.00 to 9.39, p = 0.01; I2 = 78 %), and a decreased p-AMPK/AMPK ratio (SMD -2.02, 95 % CI -3.96 to -0.09, p = 0.04; I2 = 85 %) when compared to nondiabetic murines. When associated with streptozotocin, the animals presented decreased ATG-7 and LC3-II. The meta-regression results showed a decrease in autophagy responses due to increased glycemic levels, fat content, and long-term exposure to HFD, and advanced animal age. The common and species-specific protein responses were also consistent with the inhibition of autophagy. SIGNIFICANCE The normal process of autophagy mechanisms in the liver is less competent after HFD consumption. The destabilization of (auto)phagolysosomes contributes to the perpetuation of diabetes, metabolic dysfunction-associated fatty liver disease, and cell death.
Collapse
Affiliation(s)
- Larissa Lopes da Cruz
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil; Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Giovana Vesentini
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil.
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Ana Izabel Silva Balbin Villaverde
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| |
Collapse
|
11
|
Ma Y, Ji Y, Xu L, Li Z, Ge S. Obesity aggravated hippocampal-dependent cognitive impairment after sleeve gastrectomy in C57/BL6J mice via SIRT1/CREB/BDNF pathway. Exp Brain Res 2022; 240:2897-2906. [PMID: 36114835 DOI: 10.1007/s00221-022-06465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is characterized by cognitive impairments following anesthesia/surgery, but the role of obesity and the underlying mechanisms are not known. We investigated the impact of obesity on POCD. Eighty male C57BL/6 J mice were assigned randomly to two groups fed a normal chow diet (ND, n = 40) or a high-fat diet (HD, n = 40) for 20 weeks. Then, they were divided randomly into eight subgroups of 10: ND control (NDC), ND with surgery (NDS), HD control (HDC), HD with surgery (HDS); NDS + DMSO (NDS + DS), NDS + SRT1720 (NDS + SRT), HDS + DMSO (HDS + DS), and HDS + SRT1720 (HDS + SRT). Body weight, blood glucose level, and serum lipid levels were measured. Staining methods on liver tissues were used to determine hepatic steatosis. A POCD model was established by sleeve gastrectomy (SG) under isoflurane anesthesia. Cognitive function was assessed using the Morris water maze test (MWMT). Expression of sirtuin1 (SIRT1), phosphorylated cAMP-responsive element binding protein (p-CREB), CREB and brain-derived neurotrophic factor (BDNF) in the hippocampus were measured. High-fat diet-fed mice for 20 weeks could establish an obesity model with hyperlipidemia and hepatic steatosis. Cognitive impairment was significantly worse in the HDC and HDS groups than that in the NDC and NDS groups, respectively. Hippocampal expression of SIRT1, p-CREB, and BDNF in the HDS group was significantly lower than that of the HDC group. SRT1720 (SIRT1 activator) pretreatment could attenuate cognitive impairment by upregulating SIRT1 expression. These data suggest that obesity exacerbated postoperative hippocampal-dependent cognitive impairment via a SIRT1 pathway, and SRT1720 pretreatment could alleviate it.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yelong Ji
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Li Xu
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Zheng Li
- Clinical Science Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shengjin Ge
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
12
|
Lluch A, Veiga SR, Latorre J, Moreno-Navarrete JM, Bonifaci N, Nguyen VD, Zhou Y, Horing M, Liebisch G, Olkkonen VM, Llobet-Navas D, Thomas G, Rodriguez-Barrueco R, Fernández-Real JM, Kozma SC, Ortega FJ. A compound directed against S6K1 hampers fat mass expansion and mitigates diet-induced hepatosteatosis. JCI Insight 2022; 7:150461. [PMID: 35737463 PMCID: PMC9431684 DOI: 10.1172/jci.insight.150461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
The ribosomal protein S6 kinase 1 (S6K1) is a relevant effector downstream of the mammalian target of rapamycin complex 1 (mTORC1), best known for its role in the control of lipid homeostasis. Consistent with this, mice lacking the S6k1 gene have a defect in their ability to induce the commitment of fat precursor cells to the adipogenic lineage, which contributes to a significant reduction of fat mass. Here, we assess the therapeutic blockage of S6K1 in diet-induced obese mice challenged with LY2584702 tosylate, a specific oral S6K1 inhibitor initially developed for the treatment of solid tumors. We show that diminished S6K1 activity hampers fat mass expansion and ameliorates dyslipidemia and hepatic steatosis, while modifying transcriptome-wide gene expression programs relevant for adipose and liver function. Accordingly, decreased mTORC1 signaling in fat (but increased in the liver) segregated with defective epithelial-mesenchymal transition and the impaired expression of Cd36 (coding for a fatty acid translocase) and Lgals1 (Galectin 1) in both tissues. All these factors combined align with reduced adipocyte size and improved lipidomic signatures in the liver, while hepatic steatosis and hypertriglyceridemia were improved in treatments lasting either 3 months or 6 weeks.
Collapse
Affiliation(s)
- Aina Lluch
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Sonia R Veiga
- Department of Aging & Metabolism, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | - Núria Bonifaci
- Breast Cancer and Systems Biology Unit, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Van Dien Nguyen
- Division of Infection and Immunity, Cardiff University School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Marcus Horing
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Vesa M Olkkonen
- Biomedicum, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - David Llobet-Navas
- Institute of Genetic Medicine, Newcastle University, Newastle, United Kingdom
| | - George Thomas
- Laboratory of Cancer Metabolism, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | | | - José M Fernández-Real
- Department of Endocrinology, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Sara C Kozma
- Laboratory of Cancer Metabolism, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Francisco J Ortega
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
13
|
Castañé H, Iftimie S, Baiges-Gaya G, Rodríguez-Tomàs E, Jiménez-Franco A, López-Azcona AF, Garrido P, Castro A, Camps J, Joven J. Machine learning and semi-targeted lipidomics identify distinct serum lipid signatures in hospitalized COVID-19-positive and COVID-19-negative patients. Metabolism 2022; 131:155197. [PMID: 35381232 PMCID: PMC8976580 DOI: 10.1016/j.metabol.2022.155197] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lipids are involved in the interaction between viral infection and the host metabolic and immunological responses. Several studies comparing the lipidome of COVID-19-positive hospitalized patients vs. healthy subjects have already been reported. It is largely unknown, however, whether these differences are specific to this disease. The present study compared the lipidomic signature of hospitalized COVID-19-positive patients with that of healthy subjects, as well as with COVID-19-negative patients hospitalized for other infectious/inflammatory diseases. METHODS We analyzed the lipidomic signature of 126 COVID-19-positive patients, 45 COVID-19-negative patients hospitalized with other infectious/inflammatory diseases and 50 healthy volunteers. A semi-targeted lipidomics analysis was performed using liquid chromatography coupled to mass spectrometry. Two-hundred and eighty-three lipid species were identified and quantified. Results were interpreted by machine learning tools. RESULTS We identified acylcarnitines, lysophosphatidylethanolamines, arachidonic acid and oxylipins as the most altered species in COVID-19-positive patients compared to healthy volunteers. However, we found similar alterations in COVID-19-negative patients who had other causes of inflammation. Conversely, lysophosphatidylcholine 22:6-sn2, phosphatidylcholine 36:1 and secondary bile acids were the parameters that had the greatest capacity to discriminate between COVID-19-positive and COVID-19-negative patients. CONCLUSION This study shows that COVID-19 infection shares many lipid alterations with other infectious/inflammatory diseases, and which differentiate them from the healthy population. The most notable alterations were observed in oxylipins, while alterations in bile acids and glycerophospholipis best distinguished between COVID-19-positive and COVID-19-negative patients. Our results highlight the value of integrating lipidomics with machine learning algorithms to explore the pathophysiology of COVID-19 and, consequently, improve clinical decision making.
Collapse
Affiliation(s)
- Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Simona Iftimie
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Gerard Baiges-Gaya
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Elisabet Rodríguez-Tomàs
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Andrea Jiménez-Franco
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Ana Felisa López-Azcona
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Pedro Garrido
- Intensive Care Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Antoni Castro
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
14
|
Bassot A, Prip-Buus C, Alves A, Berdeaux O, Perrier J, Lenoir V, Ji-Cao J, Berger MA, Loizon E, Cabaret S, Panthu B, Rieusset J, Morio B. Loss and gain of function of Grp75 or mitofusin 2 distinctly alter cholesterol metabolism, but all promote triglyceride accumulation in hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159030. [PMID: 34419589 DOI: 10.1016/j.bbalip.2021.159030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022]
Abstract
In the liver, contact sites between the endoplasmic reticulum (ER) and mitochondria (named MAMs) may be crucial hubs for the regulation of lipid metabolism, thus contributing to the exacerbation or prevention of fatty liver. We hypothesized that tether proteins located at MAMs could play a key role in preventing triglyceride accumulation in hepatocytes and nonalcoholic fatty liver disease (NAFLD) occurrence. To test this, we explored the role of two key partners in building MAM integrity and functionality, the glucose-regulated protein 75 (Grp75) and mitofusin 2 (Mfn2), which liver contents are altered in obesity and NAFLD. Grp75 or Mfn2 expression was either silenced using siRNA or overexpressed with adenoviruses in Huh7 cells. Silencing of Grp75 and Mfn2 resulted in decreased ER-mitochondria interactions, mitochondrial network fusion state and mitochondrial oxidative capacity, while overexpression of the two proteins induced mirror impacts on these parameters. Furthermore, Grp75 or Mfn2 silencing decreased cellular cholesterol content and enhanced triglyceride secretion in ApoB100 lipoproteins, while their overexpression led to reverse effects. Cellular phosphatidylcholine/phosphatidylethanolamine ratio was decreased only upon overexpression of the proteins, potentially contributing to altered ApoB100 assembly and secretion. Despite the opposite differences, both silencing and overexpression of Grp75 or Mfn2 induced triglyceride storage, although a fatty acid challenge was required to express the alteration upon protein silencing. Among the mechanisms potentially involved in this phenotype, ER stress was closely associated with altered triglyceride metabolism after Grp75 or Mfn2 overexpression, while blunted mitochondrial FA oxidation capacity may be the main defect causing triglyceride accumulation upon Grp75 or Mfn2 silencing. Further studies are required to decipher the link between modulation of Grp75 or Mfn2 expression, change in MAM integrity and alteration of cholesterol content of the cell. In conclusion, Grp75 or Mfn2 silencing and overexpression in Huh7 cells contribute to altering MAM integrity and cholesterol storage in opposite directions, but all promote triglyceride accumulation through distinct cellular pathways. This study also highlights that besides Mfn2, Grp75 could play a central role in hepatic lipid and cholesterol metabolism in obesity and NAFLD.
Collapse
Affiliation(s)
- Arthur Bassot
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Carina Prip-Buus
- Institut Cochin, Département d'Endocrinologie, Métabolisme et Diabète, INSERM U1016/CNRS UMR8104/Université de Paris, 75014 Paris, France.
| | - Anaïs Alves
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Olivier Berdeaux
- ChemoSens Platform, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, Université Bourgogne Franche-Comté, Agrosup Dijon, F-21000 Dijon, France.
| | - Johan Perrier
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Véronique Lenoir
- Institut Cochin, Département d'Endocrinologie, Métabolisme et Diabète, INSERM U1016/CNRS UMR8104/Université de Paris, 75014 Paris, France.
| | - Jingwei Ji-Cao
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Marie-Agnès Berger
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Emmanuelle Loizon
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Stephanie Cabaret
- ChemoSens Platform, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, Université Bourgogne Franche-Comté, Agrosup Dijon, F-21000 Dijon, France.
| | - Baptiste Panthu
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Jennifer Rieusset
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Béatrice Morio
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| |
Collapse
|
15
|
Eng JM, Estall JL. Diet-Induced Models of Non-Alcoholic Fatty Liver Disease: Food for Thought on Sugar, Fat, and Cholesterol. Cells 2021; 10:cells10071805. [PMID: 34359974 PMCID: PMC8303413 DOI: 10.3390/cells10071805] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects approximately 1 in 4 people worldwide and is a major burden to health care systems. A major concern in NAFLD research is lack of confidence in pre-clinical animal models, raising questions regarding translation to humans. Recently, there has been renewed interest in creating dietary models of NAFLD with higher similarity to human diets in hopes to better recapitulate disease pathology. This review summarizes recent research comparing individual roles of major dietary components to NAFLD and addresses common misconceptions surrounding frequently used diet-based NAFLD models. We discuss the effects of glucose, fructose, and sucrose on the liver, and how solid vs. liquid sugar differ in promoting disease. We consider studies on dosages of fat and cholesterol needed to promote NAFLD versus NASH, and discuss important considerations when choosing control diets, mouse strains, and diet duration. Lastly, we provide our recommendations on amount and type of sugar, fat, and cholesterol to include when modelling diet-induced NAFLD/NASH in mice.
Collapse
Affiliation(s)
- James M. Eng
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada;
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jennifer L. Estall
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada;
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Correspondence: ; Tel.: +1-(514)-987-5688
| |
Collapse
|
16
|
On the Role of Paraoxonase-1 and Chemokine Ligand 2 (C-C motif) in Metabolic Alterations Linked to Inflammation and Disease. A 2021 Update. Biomolecules 2021; 11:biom11070971. [PMID: 34356595 PMCID: PMC8301931 DOI: 10.3390/biom11070971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023] Open
Abstract
Infectious and many non-infectious diseases share common molecular mechanisms. Among them, oxidative stress and the subsequent inflammatory reaction are of particular note. Metabolic disorders induced by external agents, be they bacterial or viral pathogens, excessive calorie intake, poor-quality nutrients, or environmental factors produce an imbalance between the production of free radicals and endogenous antioxidant systems; the consequence being the oxidation of lipids, proteins, and nucleic acids. Oxidation and inflammation are closely related, and whether oxidative stress and inflammation represent the causes or consequences of cellular pathology, both produce metabolic alterations that influence the pathogenesis of the disease. In this review, we highlight two key molecules in the regulation of these processes: Paraoxonase-1 (PON1) and chemokine (C-C motif) ligand 2 (CCL2). PON1 is an enzyme bound to high-density lipoproteins. It breaks down lipid peroxides in lipoproteins and cells, participates in the protection conferred by HDL against different infectious agents, and is considered part of the innate immune system. With PON1 deficiency, CCL2 production increases, inducing migration and infiltration of immune cells in target tissues and disturbing normal metabolic function. This disruption involves pathways controlling cellular homeostasis as well as metabolically-driven chronic inflammatory states. Hence, an understanding of these relationships would help improve treatments and, as well, identify new therapeutic targets.
Collapse
|