1
|
Jia Y, Zhou X, Liu Y, Liu X, Ren F, Liu H. Novel Insights Into Naringenin: A Multifaceted Exploration of Production, Synthesis, Health Effects, Nanodelivery Systems, and Molecular Simulation. Mol Nutr Food Res 2025:e70066. [PMID: 40223444 DOI: 10.1002/mnfr.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/18/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Naringenin, a flavonoid widely present in citrus fruits, has garnered considerable attention due to its diverse biological activities and health-promoting benefits. As research on naringenin advances, the application scope of naringenin has significantly expanded. This paper provides a systematic overview of the production and synthesis methods of naringenin, focusing especially on the application of green extraction techniques and the strategies for constructing microbial metabolic engineering. Naringenin not only achieves its diverse biological activities including antioxidant, antiinflammatory, and glucolipid metabolism regulation through multiple mechanisms but also modulates the balance of gut microbiota, thereby mediating synergistic health effects via the host-microbial metabolic axis. Given the low oral bioavailability of naringenin, various nanodelivery systems have been developed to improve its bioavailability. Meanwhile, molecular simulation techniques elucidate the binding conformation characteristics with receptors at the molecular level, providing novel insights into its mechanisms of action. In conclusion, this review seeks to offer a theoretical basis and future directions for further research and application of naringenin.
Collapse
Affiliation(s)
- Yuanqiang Jia
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Xinjing Zhou
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yanan Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | | | - Feiyue Ren
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Hongzhi Liu
- Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Durgawale TP, Arjun UVNV, Shanmugarajan TS, Kannan SP, Prasad PD, Usman MRM, Reddy KTK, Sultana R, Alshehri MA, Rab SO, Suliman M, Emran TB. Cellular stress response and neuroprotection of flavonoids in neurodegenerative diseases: Clinical insights into targeted therapy and molecular signaling pathways. Brain Res 2025; 1847:149310. [PMID: 39537124 DOI: 10.1016/j.brainres.2024.149310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases (NDs) are caused by the gradual decline of neuronal structure and function, which presents significant challenges in treatment. Cellular stress responses significantly impact the pathophysiology of these disorders, often exacerbating neuronal damage. Plant-derived flavonoids have demonstrated potential as neuroprotective agents due to their potent anti-inflammatory, anti-apoptotic, and antioxidant properties. This review provides an in-depth analysis of the molecular processes and clinical insights that cause the neuroprotective properties of flavonoids in NDs. By controlling essential signaling pathways such as Nrf2/ARE, MAPK, and PI3K/Akt, flavonoids can lower cellular stress and improve neuronal survival. The study discusses the challenges of implementing these discoveries in clinical practice and emphasizes the therapeutic potential of specific flavonoids and their derivatives. Flavonoids are identified as potential therapeutic agents for NDs, potentially slowing progression by regulating cellular stress and improving neuroprotection despite their potential medicinal uses and clinical challenges. The study designed a strategy to identify literature published in prestigious journals, utilizing search results from PubMed, Scopus, and WOS. We selected and investigated original studies, review articles, and research reports published until 2024. It suggests future research and therapeutic approaches to effectively utilize the neuroprotective properties of flavonoids.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Baishakhi Sutradhar
- Department of Microbiology, Gono University (Bishwabidyalay), Nolam, Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Trupti Pratik Durgawale
- Department of Pharmaceutical Chemistry, KVV's Krishna Institute of Pharmacy, Karad, Maharashtra, India
| | - Uppuluri Varuna Naga Venkata Arjun
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - Thukani Sathanantham Shanmugarajan
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - Shruthi Paramasivam Kannan
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - P Dharani Prasad
- Department of Pharmacology, Mohan Babu University, MB School of Pharmaceutical Sciences, (Erstwhile, Sree Vidyaniketan College of Pharmacy), Tirupati, Andhra Pradesh 517102, India
| | - Md Rageeb Md Usman
- Department of Pharmacognosy, Smt. Sharadchandrika Suresh Patil College of Pharmacy, Chopda, Maharashtra, India
| | - Konatham Teja Kumar Reddy
- Department of Pharmacy, University College of Technology, Osmania University, Amberpet, Hyderabad, Telangana 500007, India
| | - Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College and Research Centre, Yenepoya (deemed to be University), Mangalore, Karnataka, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
3
|
Solanki S, Vig H, Khatri N, Singh BP, Khan MS, Devgun M, Wal P, Wal A. Naringenin: A Promising Immunomodulator for Anti-inflammatory, Neuroprotective and Anti-cancer Applications. Antiinflamm Antiallergy Agents Med Chem 2025; 24:1-25. [PMID: 39076091 DOI: 10.2174/0118715230320007240708074939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Inflammatory, immune, and neurodegenerative diseases constitute a category of persistent and debilitating conditions affecting millions worldwide, with intertwined pathophysiological pathways. Recent research has spotlighted naturally occurring compounds like naringenin for potential therapeutic applications across multiple ailments. OBJECTIVES This review offers an encompassing exploration of naringenin's anti-inflammatory, immune-protective, and neuroprotective mechanisms, elucidating its pharmacological targets, signal transduction pathways, safety profile, and insights from clinical investigations. METHODS Data for this review were amassed through the scrutiny of various published studies via search engines such as PubMed and Google Scholar. Content from reputable publishers including Bentham Science, Taylor and Francis, Nature, PLOS ONE, among others, was referenced. RESULTS Naringenin exhibits substantial anti-inflammatory effects by restraining the NF-κB signaling pathway. It activates Nrf2, renowned for its anti-inflammatory properties, inducing the release of hemeoxynase-1 by macrophages. Furthermore, naringenin treatment downregulates the expression of Th1 cytokines and inflammatory mediators. It also impedes xanthine oxidase, counteracts reactive oxygen species (ROS), scavenges superoxide radicals, mitigates the accessibility of oxygen-induced K+ erythrocytes, and reduces lipid peroxidation. Naringenin's antioxidant prowess holds promise for addressing neurological conditions. CONCLUSION Extensive research has been undertaken to establish the anti-inflammatory, immunomodulatory, and neuroprotective attributes of naringenin across various medical domains, lending credence to its pharmacological utility. The principal obstacle to naringenin's adoption as a therapeutic agent remains the dearth of in vivo data. Efforts should focus on rendering naringenin delivery patient-friendly, economically viable, and technologically advanced.
Collapse
Affiliation(s)
- Sarita Solanki
- Department of Pharmacy, University of Kota, Kota Rajasthan, India
| | - Himangi Vig
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH 19 Bhauti Kanpur, Uttar Pradesh, India
| | - Nidhi Khatri
- Department of Pharmacy, University of Kota, Kota Rajasthan, India
| | | | | | - Manish Devgun
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH 19 Bhauti Kanpur, Uttar Pradesh, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH 19 Bhauti Kanpur, Uttar Pradesh, India
| |
Collapse
|
4
|
Bhatt D, Washimkar KR, Kumar S, Mugale MN, Pal A, Bawankule DU. Naringin and chloroquine combination mitigates chloroquine-resistant parasite-induced malaria pathogenesis by attenuating the inflammatory response. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155943. [PMID: 39154528 DOI: 10.1016/j.phymed.2024.155943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Malaria, characterised by inflammation and multi-organ complications, needs novel chemotherapeutics due to the rise of drug-resistant malaria parasites, which is a serious health issue. Naringin (NGN), a flavanone glycoside (naringenin 7-O-neohesperidose), has a broad spectrum of pharmacological activities but its effect against malaria, alone and in combination, was not deeply investigated. PURPOSE To assess the pharmacological efficacy of NGN alone and in combination with chloroquine (CQ) against a Plasmodium strain resistant to CQ and to elucidate its potential mode of action. METHODS The anti-inflammatory potential of NGN was assessed in mouse microglial cells stimulated with hemozoin by analyzing inflammatory cytokines production. The anti-plasmodial potential of NGN was subsequently tested alone and in combination with CQ against the K1 strain of Plasmodium using the fixed ratio combination method. Further, we evaluated NGN's antimalarial efficacy against the CQ-resistant Plasmodium yoelii nigeriensis N67 strain (P. yoelii), both alone and in combination with CQ, by measuring parasitemia and survival rates. To comprehend the impact of NGN on malaria-induced inflammation in mice, we measured pro-inflammatory cytokines elevated by activated NF-кB signalling. These findings were supported by mRNA and immunohistochemical analyses of malaria-infected mice's liver and brain tissues. RESULTS Our study demonstrated that NGN displayed anti-plasmodial activity, which was further augmented when combined with CQ. At 50 µM, NGN significantly reduced the elevation of pro-inflammatory cytokines in synthetic hemozoin-stimulated microglial cells. Compared to P. yoelii-infected mice, NGN (12.5 mg kg-1) significantly reduced parasitemia in mice, resulting in a survival period of up to 13 days. Survival improved by up to 20 days when NGN and CQ were given in combination. NGN, as revealed by immunohistochemical examination of brain and liver tissues, interfered with the NF-кB pathway, potentially reducing the elevation of pro-inflammatory cytokines (TNF-α, IL-1β, IL-18, IFN-γ, and IL-6). This was supported by the overexpression of inflammation-regulatory genes (TGFβ, Nrf2, HO-1, and iNOS) and the downregulation of inflammation-stimulating genes (NF-κB, NLRP3, and caspase-1). Histopathological analysis demonstrated the potential of NGN to restore liver and brain tissues to normal. The substantial decrease in the expression and production of ICAM-1 protein in the brain tissue implies the beneficial effects of NGN, pointing towards its potential for mitigating brain pathology. CONCLUSION The findings of this study revealed NGN as a promising drug-like candidate for the management of CQ-resistant parasite-induced malaria pathogenesis for adjunctive therapy in combination with standard antimalarial drugs through its modulation of the NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Divya Bhatt
- In vivo Testing facility, Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Kaveri R Washimkar
- AcSIR, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, Uttar Pradesh, India
| | - Saurabh Kumar
- In vivo Testing facility, Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Madhav N Mugale
- AcSIR, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, Uttar Pradesh, India
| | - Anirban Pal
- In vivo Testing facility, Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; AcSIR, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Dnyaneshwar U Bawankule
- In vivo Testing facility, Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; AcSIR, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Wang Y, Wang J, Zhou T, Chen Z, Wang W, Liu B, Li Y. Investigating the potential mechanism and therapeutic effects of SLXG for cholesterol gallstone treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155886. [PMID: 39059092 DOI: 10.1016/j.phymed.2024.155886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/30/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Shugan Lidan Xiaoshi Granules (SLXG) is a traditional Chinese medicine (TCM) formulation frequently employed to prevent and treat cholesterol gallstones. SLXG is formulated based on the Chaihu Shugan Formula found in an ancient Chinese medical book, a traditional remedy in China for centuries, and has demonstrated successful treatment of numerous patients with gallbladder stones. PURPOSE This research sought to clarify the therapeutic impact and molecular mechanisms of SLXG and its active components in the treatment of cholesterol gallbladder stones. METHODS The study employed network pharmacology, UPLC-HRMS transcriptome sequencing, animal model experiments, molecular docking, and Surface Plasmon Resonance (SPR) to explore the molecular mechanisms of SLXG and its relationship with Traditional Chinese Medicines (TCMs) and potential targets. Furthermore, PPI network analysis, along with GO and KEGG enrichment analyses, were performed to explore the potential mechanisms through which SLXG and its active ingredient, naringenin, prevent and treat cholesterol gallstones. The mechanism of action was further elucidated using an animal model for gallbladder stone formation. RESULTS The study employed a network pharmacology and UPLC-HRMS to investigate the active compounds of SLXG for the treatment of cholesterol gallbladder stones, and subsequently constructed a network of therapeutic targets of SLXG. The results from gene enrichment analyses indicated that SLXG targets the metabolic pathway of bile secretion and the cholesterol metabolism pathway in addressing cholesterol gallbladder stones. The molecular docking results confirmed the interaction between the genes enriched in the pathways and the active ingredients in SLXG. Transcriptome sequencing results demonstrated that SLXG exerts its therapeutic effect on gallstones by regulating cholesterol and bile acid synthesis and metabolism. Furthermore, animal model experiments and SPR provided evidence that SLXG and its active ingredient, naringenin, exert therapeutic effects on cholesterol gallbladder stones by targeting the genes HMGCR, SOAT2, and UGT1A1, and influencing substances associated with cholesterol synthesis and metabolism. CONCLUSIONS Using systematic network pharmacology methods combined with in vivo validation experiments, we uncovered the fundamental pharmacological effects and potential mechanisms of SLXG and its active ingredient, naringenin, in the treatment of cholesterol gallstones. This research underscores the valuable role that traditional remedies can play in addressing medical challenges and suggests a promising direction for further exploration of natural treatments for the disease.
Collapse
Affiliation(s)
- Yang Wang
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, PR China; Institute of Interventional Oncology, Shandong University, Jinan, PR China
| | - Jiaxing Wang
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, PR China; Institute of Interventional Oncology, Shandong University, Jinan, PR China
| | - Tong Zhou
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, PR China; Institute of Interventional Oncology, Shandong University, Jinan, PR China
| | - Zitong Chen
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, PR China; Institute of Interventional Oncology, Shandong University, Jinan, PR China
| | - Wujie Wang
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, PR China; Institute of Interventional Oncology, Shandong University, Jinan, PR China
| | - Bin Liu
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, PR China; Institute of Interventional Oncology, Shandong University, Jinan, PR China
| | - Yuliang Li
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, PR China; Institute of Interventional Oncology, Shandong University, Jinan, PR China.
| |
Collapse
|
6
|
Liu Z, Liu W, Han M, Wang M, Li Y, Yao Y, Duan Y. A comprehensive review of natural product-derived compounds acting on P2X7R: The promising therapeutic drugs in disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155334. [PMID: 38554573 DOI: 10.1016/j.phymed.2023.155334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 04/01/2024]
Abstract
BACKGROUND The P2X7 receptor (P2X7R) is known to play a significant role in regulating various pathological processes associated with immune regulation, neuroprotection, and inflammatory responses. It has emerged as a potential target for the treatment of diseases. In addition to chemically synthesized small molecule compounds, natural products have gained attention as an important source for discovering compounds that act on the P2X7R. PURPOSE To explore the research progress made in the field of natural product-derived compounds that act on the P2X7R. METHODS The methods employed in this review involved conducting a thorough search of databases, include PubMed, Web of Science and WIKTROP, to identify studies on natural product-derived compounds that interact with P2X7R. The selected studies were then analyzed to categorize the compounds based on their action on the receptor and to evaluate their therapeutic applications, chemical properties, and pharmacological actions. RESULTS The natural product-derived compounds acting on P2X7R can be classified into three categories: P2X7R antagonists, compounds inhibiting P2X7R expression, and compounds regulating the signaling pathway associated with P2X7R. Moreover, highlight the therapeutic applications, chemical properties and pharmacological actions of these compounds, and indicate areas that require further in-depth study. Finally, discuss the challenges of the natural products-derived compounds exploration, although utilizing compounds from natural products for new drug research offers unique advantages, problems related to solubility, content, and extraction processes still exist. CONCLUSION The detailed information in this review will facilitate further development of P2X7R antagonists and potential therapeutic strategies for P2X7R-associated disorders.
Collapse
Affiliation(s)
- Zhenling Liu
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Wenjin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingzhu Wang
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongfang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Pingyuan Laboratory (Zhengzhou University), Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongtao Duan
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
7
|
Rai R, Jat D, Mishra SK. Naringenin mitigates aluminum toxicity-induced learning memory impairments and neurodegeneration through amelioration of oxidative stress. J Biochem Mol Toxicol 2024; 38:e23717. [PMID: 38742857 DOI: 10.1002/jbt.23717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Aluminum chloride (AlCl3) is a potent neurotoxic substance known to cause memory impairment and oxidative stress-dependent neurodegeneration. Naringenin (NAR) is a dietary flavonoid with potent antioxidant and anti-inflammatory properties which was implemented against AlCl3-induced neurotoxicity to ascertain its neuroprotective efficacy. Experimental neurotoxicity in mice was induced by exposure of AlCl3 (10 mg/kg, p.o.) followed by treatment with NAR (10 mg/kg, p.o.) for a total of 63 days. Assessed the morphometric, learning memory dysfunction (novel object recognition, T- and Y-maze tests), neuronal oxidative stress, and histopathological alteration in different regions of the brain, mainly cortex, hippocampus, thalamus, and cerebellum. AlCl3 significantly suppressed the spatial learning and memory power which were notably improved by administration of NAR. The levels of oxidative stress parameters nitric oxide, advanced oxidation of protein products, protein carbonylation, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, reduced glutathione, and the activity of acetylcholine esterase were altered 1.5-3 folds by AlCl3 significantly. Treatment of NAR remarkably restored the level of oxidative stress parameters and maintained the antioxidant defense system. AlCl3 suppressed the expression of neuronal proliferation marker NeuN that was restored by NAR treatment which may be a plausible mechanism. NAR showed therapeutic efficacy as a natural supplement against aluminum-intoxicated memory impairments and histopathological alteration through a mechanism involving an antioxidant defense system and neuronal proliferation.
Collapse
Affiliation(s)
- Ravina Rai
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Deepali Jat
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | | |
Collapse
|
8
|
Liu Z, Sun M, Jin C, Sun X, Feng F, Niu X, Wang B, Zhang Y, Wang J. Naringenin confers protection against experimental autoimmune encephalomyelitis through modulating the gut-brain axis: A multiomics analysis. J Nutr Biochem 2023; 122:109448. [PMID: 37741298 DOI: 10.1016/j.jnutbio.2023.109448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system that involves the immune system attacking the protective covering of nerve fibers. This disease can be influenced by both environmental and genetic factors. Evidence has highlighted the critical role of the intestinal microbiota in MS and its animal model, experimental autoimmune encephalomyelitis (EAE). The composition of gut microflora is mainly determined by dietary components, which, in turn, modulate host homeostasis. A diet rich in naringenin at 0.5% can effectively mitigate the severity of EAE in mice. However, there is little direct data on the impact of naringenin at optimal doses on EAE development, as well as its intestinal microbiota and metabolites. Our study revealed that 2.0% naringenin resulted in the lowest clinical score and pathological changes in EAE mice, and altered the gene expression profiles associated with inflammation and immunity in spinal cord tissue. We then used untargeted metabolomics and 16S rRNA gene sequences to identify metabolites and intestinal microbiota, respectively. Naringenin supplementation enriched gut microbiota in EAE mice, including increasing the abundance of Paraprevotellaceae and Comamonadaceae, while decreasing the abundance of Deltaproteobacteria, RF39, and Desulfovibrionaceae. Furthermore, the changes in gut microbiota affected the production of metabolites in the feces and brain, suggesting a role in regulating the gut-brain axis. Finally, we conducted a fecal transplantation experiment to validate that gut microbiota partly mediates the effect of naringenin on EAE alleviation. In conclusion, naringenin has potential immunomodulatory effects that are influenced to some extent by the gut microbiome.
Collapse
Affiliation(s)
- Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Mengyang Sun
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiaoying Sun
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Fangyu Feng
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xinli Niu
- School of Life Science, Henan University, Kaifeng, China
| | - Bin Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Yijie Zhang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China.
| |
Collapse
|
9
|
Karaca E, Yarim M. Naringenin stimulates aromatase expression and alleviates the clinical and histopathological findings of experimental autoimmune encephalomyelitis in C57bl6 mice. Histochem Cell Biol 2023; 160:477-490. [PMID: 37378907 DOI: 10.1007/s00418-023-02217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
This study was conducted to demonstrate the possible protective and therapeutic effects of naringenin, an estrogenically effective flavonoid, in experimental autoimmune encephalomyelitis (EAE), which is the rodent model of multiple sclerosis. For this purpose, 50 12-week-old C57BL6 male mice were divided into five groups; control, naringenin, EAE, prophylactic naringenin + EAE, and EAE + therapeutic naringenin. The EAE model was induced with myelin oligodendrocyte glycoprotein(35-55), and naringenin (50 mg/kg) was administered by oral gavage. The prophylactic and therapeutic effects of naringenin were examined according to clinical, histopathological, immunohistochemical, electron microscopic, and RT-PCR (aromatase, 3βHSD, estrogen receptors, and progesterone receptor expression) parameters. The acute EAE model was successfully induced, along with its clinical and histopathological findings. RT-PCR showed that expression of aromatase, 3βHSD, estrogen receptor-β, and progesterone receptor gene decreased, while estrogen receptor-α increased after EAE induction. Electron microscopic analysis showed mitochondrial damage and degenerative changes in myelinated axons and neurons in EAE, which could be behind the downregulation in the expressions of neurosteroid enzymes. Aromatase immunopositivity rates also decreased in EAE, while estrogen receptor α and β, and progesterone receptor immunopositivity rates increased. Naringenin improved aromatase immunopositivity rates and gene expression in both prophylactic and therapeutic use. Clinical and histopathological findings revealed that EAE findings were alleviated in both prophylactic and therapeutic groups, along with significantly decreased inflammatory cell infiltrations in the white matter of the spinal cords. In conclusion, naringenin could provide long-term beneficial effects even in prophylactic use due to stimulating aromatase expression, but it could not prevent or eliminate the EAE model's lesions completely.
Collapse
Affiliation(s)
- Efe Karaca
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, 55200, Atakum, Samsun, Turkey.
| | - Murat Yarim
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, 55200, Atakum, Samsun, Turkey
| |
Collapse
|
10
|
Xie Y, Jin C, Sang H, Liu W, Wang J. Ivermectin Protects Against Experimental Autoimmune Encephalomyelitis in Mice by Modulating the Th17/Treg Balance Involved in the IL-2/STAT5 Pathway. Inflammation 2023; 46:1626-1638. [PMID: 37227550 PMCID: PMC10209955 DOI: 10.1007/s10753-023-01829-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/26/2023]
Abstract
Multiple sclerosis (MS), a T-cell-mediated autoimmune disease that affects the central nervous system (CNS), is characterized by white matter demyelination, axon destruction, and oligodendrocyte degeneration. Ivermectin, an anti-parasitic drug, has anti-inflammatory, anti-tumor, and antiviral properties. However, to date, there are no in-depth studies on the effect of ivermectin on the function effector of T cells in murine experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Here, we conducted in vitro experiments and found that ivermectin inhibited the proliferation of total T cells (CD3+) and their subsets (CD4+ and CD8+ T cells) as well as T cells secreting the pro-inflammatory cytokines IFN-γ and IL-17A; ivermectin also increased IL-2 production and IL-2Rα (CD25) expression, which was accompanied by an increase in the frequency of CD4+CD25+Foxp3+ regulatory T cells (Treg). Importantly, ivermectin administration reduced the clinical symptoms of EAE mice by preventing the infiltration of inflammatory cells into the CNS. Additional mechanisms showed that ivermectin promoted Treg cells while inhibiting pro-inflammatory Th1 and Th17 cells and their IFN-γ and IL-17 secretion; ivermectin also upregulated IL-2 production from MOG35-55-stimulated peripheral lymphocytes. Finally, ivermectin decreased IFN-γ and IL-17A production and increased IL-2 level, CD25 expression, and STAT5 phosphorylation in the CNS. These results reveal a previously unknown etiopathophysiological mechanism by which ivermectin attenuates the pathogenesis of EAE, indicating that it may be a promising option for T-cell-mediated autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Yu Xie
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
| | - Hongzhen Sang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
| | - Wenhua Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China.
| |
Collapse
|
11
|
Cai J, Wen H, Zhou H, Zhang D, Lan D, Liu S, Li C, Dai X, Song T, Wang X, He Y, He Z, Tan J, Zhang J. Naringenin: A flavanone with anti-inflammatory and anti-infective properties. Biomed Pharmacother 2023; 164:114990. [PMID: 37315435 DOI: 10.1016/j.biopha.2023.114990] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Although a growing body of research has recently shown how crucial inflammation and infection are to all major diseases, several of the medications currently available on the market have various unfavourable side effects, necessitating the development of alternative therapeutic choices. Researchers are increasingly interested in alternative medications or active components derived from natural sources. Naringenin is a commonly consumed flavonoid found in many plants, and since it was discovered to have nutritional benefits, it has been utilized to treat inflammation and infections caused by particular bacteria or viruses. However, the absence of adequate clinical data and naringenin's poor solubility and stability severely restrict its usage as a medicinal agent. In this article, we discuss naringenin's effects and mechanisms of action on autoimmune-induced inflammation, bacterial infections, and viral infections based on recent research. We also present a few suggestions for enhancing naringenin's solubility, stability, and bioavailability. This paper emphasizes the potential use of naringenin as an anti-inflammatory and anti-infective agent and the next prophylactic substance for the treatment of various inflammatory and infectious diseases, even though some mechanisms of action are still unclear, and offers some theoretical support for its clinical application.
Collapse
Affiliation(s)
- Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Hongli Wen
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China.
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi 563000, China.
| | - Dongfeng Lan
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Songpo Liu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Chunyang Li
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Xiaofang Dai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
12
|
Adetunji JA, Fasae KD, Awe AI, Paimo OK, Adegoke AM, Akintunde JK, Sekhoacha MP. The protective roles of citrus flavonoids, naringenin, and naringin on endothelial cell dysfunction in diseases. Heliyon 2023; 9:e17166. [PMID: 37484296 PMCID: PMC10361329 DOI: 10.1016/j.heliyon.2023.e17166] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
The endothelial cells (ECs) make up the inner lining of blood vessels, acting as a barrier separating the blood and the tissues in several organs. ECs maintain endothelium integrity by controlling the constriction and relaxation of the vasculature, blood fluidity, adhesion, and migration. These actions of ECs are efficiently coordinated via an intricate signaling network connecting receptors, and a wide range of cellular macromolecules. ECs are naturally quiescent i.e.; they are not stimulated and do not proliferate. Upon infection or disease, ECs become activated, and this alteration is pivotal in the pathogenesis of a spectrum of human neurological, cardiovascular, diabetic, cancerous, and viral diseases. Considering the central position that ECs play in disease pathogenesis, therapeutic options have been targeted at improving ECs integrity, assembly, functioning, and health. The dietary intake of flavonoids present in citrus fruits has been associated with a reduced risk of endothelium dysfunction. Naringenin (NGN) and Naringin (NAR), major flavonoids in grapefruit, tomatoes, and oranges possess anti-inflammatory, antioxidant properties, and cell survival potentials, which improve the health of the vascular endothelium. In this review, we provide a comprehensive summary and present the advances in understanding of the mechanisms through which NGN and NAR modulate the biomarkers of vascular dysfunction and protect the endothelium against unresolved inflammation, oxidative stress, atherosclerosis, and angiogenesis. We also provide perspectives and suggest further studies that will help assess the efficacy of citrus flavonoids in the therapeutics of human vascular diseases.
Collapse
Affiliation(s)
- Joy A. Adetunji
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| | - Kehinde D. Fasae
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA
| | - Ayobami I. Awe
- Department of Biology, The Catholic University of America, Washington DC, USA
| | - Oluwatomiwa K. Paimo
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ayodeji M. Adegoke
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria
| | - Jacob K. Akintunde
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Mamello P. Sekhoacha
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
13
|
Xu X, Han C, Wang P, Zhou F. Natural products targeting cellular processes common in Parkinson's disease and multiple sclerosis. Front Neurol 2023; 14:1149963. [PMID: 36970529 PMCID: PMC10036594 DOI: 10.3389/fneur.2023.1149963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
The hallmarks of Parkinson's disease (PD) include the loss of dopaminergic neurons and formation of Lewy bodies, whereas multiple sclerosis (MS) is an autoimmune disorder with damaged myelin sheaths and axonal loss. Despite their distinct etiologies, mounting evidence in recent years suggests that neuroinflammation, oxidative stress, and infiltration of the blood-brain barrier (BBB) all play crucial roles in both diseases. It is also recognized that therapeutic advances against one neurodegenerative disorder are likely useful in targeting the other. As current drugs in clinical settings exhibit low efficacy and toxic side effects with long-term usages, the use of natural products (NPs) as treatment modalities has attracted growing attention. This mini-review summarizes the applications of natural compounds to targeting diverse cellular processes inherent in PD and MS, with the emphasis placed on their neuroprotective and immune-regulating potentials in cellular and animal models. By reviewing the many similarities between PD and MS and NPs according to their functions, it becomes evident that some NPs studied for one disease are likely repurposable for the other. A review from this perspective can provide insights into the search for and utilization of NPs in treating the similar cellular processes common in major neurodegenerative diseases.
Collapse
Affiliation(s)
- Xuxu Xu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shangdong, China
- Department of Neurology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Chaowei Han
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shangdong, China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shangdong, China
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shangdong, China
| |
Collapse
|
14
|
Zhao P, Lu Y, Wang Z. Naringenin attenuates cerebral ischemia/reperfusion injury by inhibiting oxidative stress and inflammatory response via the activation of SIRT1/FOXO1 signaling pathway in vitro. Acta Cir Bras 2023; 38:e380823. [PMID: 37132753 PMCID: PMC10158850 DOI: 10.1590/acb380823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/06/2023] [Indexed: 05/04/2023] Open
Abstract
PURPOSE To explore the protection of naringenin against oxygen-glucose deprivation/reperfusion (OGD/R)-induced HT22 cell injury, a cell model of cerebral ischemia/reperfusion (I/R) injury in vitro, focusing on SIRT1/FOXO1 signaling pathway. METHODS Cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, malondialdehyde (MDA) content, 4-hydroxynonenoic acid (4-HNE) level, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities were measured by commercial kits. Inflammatory cytokines levels were determined by enzyme-linked immunosorbent assay (ELISA). The protein expressions were monitored by Western blot analysis. RESULTS Naringenin significantly ameliorated OGD/R-induced cytotoxicity and apoptosis in HT22 cells. Meanwhile, naringenin promoted SIRT1 and FOXO1 protein expressions in OGD/R-subjected HT22 cells. In addition, naringenin attenuated OGD/R-induced cytotoxicity, apoptosis, oxidative stress (the increased ROS, MDA and 4-HNE levels, and the decreased SOD, GSH-Px and CAT activities) and inflammatory response (the increased tumor necrosis factor-α, interleukin [IL]-1β, and IL-6 levels and the decreased IL-10 level), which were blocked by the inhibition of the SIRT1/FOXO1 signaling pathway induced by SIRT1-siRNA transfection. CONCLUSIONS Naringenin protected HT22 cells against OGD/R injury depending on its antioxidant and anti-inflammatory activities via promoting the SIRT1/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Peng Zhao
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| | - Yi Lu
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| | - Zhiyun Wang
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| |
Collapse
|
15
|
The Flavonoid Naringenin Alleviates Collagen-Induced Arthritis through Curbing the Migration and Polarization of CD4 + T Lymphocyte Driven by Regulating Mitochondrial Fission. Int J Mol Sci 2022; 24:ijms24010279. [PMID: 36613721 PMCID: PMC9820519 DOI: 10.3390/ijms24010279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease. Due to local infiltration and damage to the joints, activated CD4+ T cells play a crucial role in the progression of RA. However, the exact regulatory mechanisms are perplexing, which makes the effective management of RA frustrating. This study aimed to investigate the effect of mitochondria fission on the polarization and migration of CD4+ T cells as well as the regulatory mechanism of NAR, so as to provide enlightenment on therapeutic targets and novel strategies for the treatment of RA. In this study, a collagen-induced arthritis (CIA) model was established, and rats were randomly given saline or naringenin (NAR, 10 mg/kg, 20 mg/kg, 50 mg/kg, i.p.) once a day, before being euthanized on the 42nd day of primary immunization. The pain-like behavior, articular index scores, account of synovial-infiltrated CD4+ T cells, and inflammatory factors were investigated in each group. In vitro, spleen CD4+ T lymphocytes were derived from each group. In addition, mitochondrial division inhibitor 1 (Mdivi-1) or NAR was added to the cell medium containing C-X-C motif chemokine ligand 12 (CXCL12) in order to induce CD4+ T lymphocytes, respectively. The polarization capacity of CD4+ T cells was evaluated through the immunofluorescence intensity of the F-actin and myosin light chain phosphorylated at Ser19 (pMLC S19), and the mitochondrial distribution was determined by co-localization analysis of the translocase of outer mitochondrial membrane 20 (TOM20, the mitochondrial marker) and intercellular adhesion molecule 1 (ICAM1, the uropod marker). The mitochondrial fission was investigated by detecting dynamin-related protein 1 (Drp1) and mitochondrial fission protein 1 (Fis1) using Western blot and immunofluorescence. This study revealed that high-dose NAR (50 mg/kg, i.p.) alleviated pain-like behavior and articular index scores, reduced the serum level of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), and accounted for CD4+ T lymphocytes that infiltrated into the synovial membrane of the CIA group. Meanwhile, NAR (50 mg/kg, i.p.) suppressed the polarization of spleen CD4+ T lymphocytes, reduced the redistribution of mitochondria in the uropod, and inhibited the expression of Drp1 and Fis1 in the CIA model. Furthermore, the in vitro experiments confirmed that NAR reduced mitochondrial fission, which in turn inhibited the CXCL12-induced polarization and migration of CD4+ T lymphocytes. Our results demonstrated that the flavonoid NAR was a promising drug for the treatment of RA, which could effectively interfere with mitochondrial fission, thus inhibiting the polarization and migration of CD4+ T cells in the synovial membrane.
Collapse
|
16
|
Ramasubramanian B, Reddy VS, Chellappan V, Ramakrishna S. Emerging Materials, Wearables, and Diagnostic Advancements in Therapeutic Treatment of Brain Diseases. BIOSENSORS 2022; 12:1176. [PMID: 36551143 PMCID: PMC9775999 DOI: 10.3390/bios12121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Among the most critical health issues, brain illnesses, such as neurodegenerative conditions and tumors, lower quality of life and have a significant economic impact. Implantable technology and nano-drug carriers have enormous promise for cerebral brain activity sensing and regulated therapeutic application in the treatment and detection of brain illnesses. Flexible materials are chosen for implantable devices because they help reduce biomechanical mismatch between the implanted device and brain tissue. Additionally, implanted biodegradable devices might lessen any autoimmune negative effects. The onerous subsequent operation for removing the implanted device is further lessened with biodegradability. This review expands on current developments in diagnostic technologies such as magnetic resonance imaging, computed tomography, mass spectroscopy, infrared spectroscopy, angiography, and electroencephalogram while providing an overview of prevalent brain diseases. As far as we are aware, there hasn't been a single review article that addresses all the prevalent brain illnesses. The reviewer also looks into the prospects for the future and offers suggestions for the direction of future developments in the treatment of brain diseases.
Collapse
Affiliation(s)
- Brindha Ramasubramanian
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Vundrala Sumedha Reddy
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| | - Vijila Chellappan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
17
|
Lu R, Yu RJ, Yang C, Wang Q, Xuan Y, Wang Z, He Z, Xu Y, Kou L, Zhao YZ, Yao Q, Xu SH. Evaluation of the hepatoprotective effect of naringenin loaded nanoparticles against acetaminophen overdose toxicity. Drug Deliv 2022; 29:3256-3269. [PMID: 36321805 PMCID: PMC9635473 DOI: 10.1080/10717544.2022.2139431] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Acute liver injury is a common clinical disease, which easily leads to liver failure and endangers life, seriously threatening human health. Naringenin is a natural flavonoid that holds therapeutic potential against various liver injuries; however it has poor water solubility and bioavailability. In this study, we aimed to develop naringenin-loaded bovine serum albumin nanoparticles (NGNPs) and to evaluate their hepatoprotective effect and underlying mechanisms against acetaminophen overdose toxicity. In vitro data indicated that NGNPs significantly increased the drug solubility and also more effectively protected the hepatocyte cells from oxidative damage during hydrogen peroxide exposure or lipopolysaccharide (LPS) stimulation. In vivo results confirmed that NGNPs showed an enhanced accumulation in the liver tissue. In the murine model of acetaminophen-induced hepatotoxicity, NGNPs could effectively alleviate the progression of acute liver injury by reducing drug overdose-induced levels of oxidative stress, inflammation and apoptosis in hepatocytes. In conclusion, NGNPs has strong hepatoprotective effects against acetaminophen induced acute liver injury.
Collapse
Affiliation(s)
- Ruijie Lu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Run-Jie Yu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunhui Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yunxia Xuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhimin He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Ying-Zheng Zhao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China,CONTACT Qing Yao Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, University Town, Chashan, Wenzhou 325000, Zhejiang, China
| | - Shi-Hao Xu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Shi-Hao Xu Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
18
|
Alimohammadi M, Mohammad RN, Rahimi A, Faramarzi F, Alizadeh-Navaei R, Rafiei A. The effect of immunomodulatory properties of naringenin on the inhibition of inflammation and oxidative stress in autoimmune disease models: a systematic review and meta-analysis of preclinical evidence. Inflamm Res 2022; 71:1127-1142. [PMID: 35804246 DOI: 10.1007/s00011-022-01599-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND/OBJECTIVE Naringenin is a member of the flavonoid family that can perform many biological processes to treat a wide range of inflammatory diseases and pathological conditions related to oxidative stress (OS). Naringenin immunomodulatory activities have been the subject of recent research as an effective alternative treatment for autoimmune disorders. The effects of naringenin on the levels of inflammatory biomarkers and OS factors in animal models of autoimmune disorders (ADs) were studied in this meta-analysis. METHODS Up until January 2022, electronic databases such as Cochrane Library and EMBASE, PubMed, Web of Science, and Scopus were used to conduct a comprehensive literature search in English language. To evaluate the effect of naringenin on inflammatory mediators, such as TNF-α, IL-6, IL-β, IFN-γ, NF-κB, and nitric oxide, and OS biomarkers, such as CAT, SOD, GPx, GSH and MDA, in AD models, we measured the quality assessment and heterogeneity test using the PRISMA checklist protocol and I2 statistic, respectively. A random-effects model was employed based on the heterogeneity test, and then pooled data were standardized as mean difference (SMD) with a 95% confident interval (CI). RESULTS We excluded all clinical trials, cell experiment studies, animal studies with different parameters, non-autoimmune disease models, and an inadequate series of studies for quantitative synthesis. Finally, from 627 potentially reports, 12 eligible studies were included in the meta-analysis. Data were collected from several groups. Of these, 153 were in the naringenin group and 149 were in the control group. Our meta-analysis of the pooled data for the parameters of inflammation and OS indicated that naringenin significantly reduced the levels of NF-κB (SMD - 3.77, 95% CI [- 6.03 to - 1.51]; I2 = 80.1%, p = 0.002), IFN-γ (SMD - 6.18, 95% CI [- 8.73 to - 3.62]; I2 = 53.7%, p = 0.115), and NO (SMD - 3.97, 95% CI [- 5.50 to - 2.45]; I2 = 73.4%, p = 0.005), IL-1β (SMD - 4.23, 95% CI [- 5.09 to - 3.37]; I2 = 0.0%, p = 0.462), IL-6 (SMD - 5.84, 95% CI [- 7.83 to - 3.85]; I2 = 86.5%, p < 0.001), and TNF-α (SMD - 5.10, 95% CI [- 6.34 to - 3.86]; I2 = 74.7%, p < 0.001). These findings also demonstrated the efficacy of naringenin on increasing the levels of CAT (SMD 4.19, 95% CI [1.33 to 7.06]; I2 = 79.9%, p = 0.007), GSH (SMD 4.58, 95% CI [1.64 to 7.51]; I2 = 90.5%, p < 0.001), and GPx (SMD 9.65, 95% CI [2.56 to 16.74]; I2 = 86.6%, p = 0.001) and decreasing the levels of MDA (SMD - 3.65, 95% CI [- 4.80 to - 2.51]; I2 = 69.4%, p = 0.001) than control groups. However, treatment with naringenin showed no statistically difference in SOD activity (SMD 1.89, 95% CI [- 1.11 to 4.89]; I2 = 93.6%, p < 0.001). CONCLUSION Overall, our findings revealed the immunomodulatory potential of naringenin as an alternative treatment on inhibition of inflammation and OS in several autoimmune-related diseases. Nevertheless, regarding the limitation of clinical trials, strong preclinical models and clinical settings in the future are needed that address the effects of naringenin on ADs. Before large-scale clinical studies, precise human pharmacokinetic investigations are required to determine the dosage ranges and evaluate the initial safety profile of naringenin.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rebar N Mohammad
- Medical Laboratory Analysis Department, College of Health Science, Cihan University of Sulaimaniya, Kurdistan region, Sulaymaniyah, Iraq
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faramarzi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
19
|
Liu Z, Niu X, Wang J. Naringenin as a natural immunomodulator against T cell-mediated autoimmune diseases: literature review and network-based pharmacology study. Crit Rev Food Sci Nutr 2022; 63:11026-11043. [PMID: 35776085 DOI: 10.1080/10408398.2022.2092054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
T cells, especially CD4+ T helper (Th) cells, play a vital role in the pathogenesis of specific autoimmune diseases. Naringenin, a citrus flavonoid, exhibits anti-inflammatory, anti-oxidant, and antitumor properties, which have been verified in animal autoimmune disease models. However, naringenin's possible effects and molecular mechanisms in T cell-mediated autoimmune diseases are unclear. This review summarizes the findings of previous studies and predicts the target of naringenin in T cell-mediated autoimmune disorders such as multiple sclerosis, inflammatory bowel disease, and rheumatoid arthritis through network pharmacology analysis. We performed DAVID enrichment analysis, protein-protein interaction analysis, and molecular docking to predict the positive effect of naringenin on T cell-mediated autoimmune disorders. Sixteen common genes were screened, among which the core genes were PTGS2, ESR1, CAT, CASP3, MAPK1, and AKT1. The possible molecular mechanism relates to HIF-1, estrogen, TNF, and NF-κB signaling pathways. Our findings have significance for future naringenin treatment of T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xinli Niu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| |
Collapse
|
20
|
Yao Z, Wu S, Zhang H, Feng X, Wang Z, Lin M. Chiral Determination of Naringenin by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry and Application in Citrus Peel and Pulp. Front Nutr 2022; 9:906859. [PMID: 35811974 PMCID: PMC9263565 DOI: 10.3389/fnut.2022.906859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
A chiral separation method of naringenin in citrus pulp and peel was established using ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) in this study. The liquid-phase conditions for separation were Chiralpak IG-3 column at 40°C, mobile phase of methanol, and 0.1% formic acid solution (85/15; v/v). Isovolumetric elution can complete the detection within 5 min. Considering the matrix effect, the matrix standard calibration curve was used for sample quantification. Quantitation was achieved by fitting a calibration curve using a standard matrix. The mean overall recoveries of the two enantiomers from orange pulp were 91.0–110.0% and orange peel were 85.3–110.3%, with relative standard deviations of 1.5–3.8 and 0.9–3.6% at the 0.5, 2.5, 50, and 250 μg/kg levels, respectively. The limit of quantification for all enantiomers in the citrus matrix did not exceed 0.5 μg/kg. Furthermore, the absolute configuration of the naringenin enantiomer was determined by combining experimental and predicted electron circular dichroism spectroscopy, and it was confirmed on a Chiralpak IG-3 column that the first eluting enantiomer was (S)-naringenin. The determination of chiral naringenin content in actual citrus samples showed that the naringenin content in hybrid citrus and citrus pulp was significantly higher than that in pomelo. The method established in this study can be used for the determination of naringenin enantiomers in citrus, which is beneficial to variety selection.
Collapse
Affiliation(s)
- Zhoulin Yao
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Zhoulin Yao
| | - Shaohui Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hu Zhang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xianju Feng
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, China
| | - Mei Lin
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Mei Lin
| |
Collapse
|
21
|
Heng AHS, Han CW, Abbott C, McColl SR, Comerford I. Chemokine-Driven Migration of Pro-Inflammatory CD4 + T Cells in CNS Autoimmune Disease. Front Immunol 2022; 13:817473. [PMID: 35250997 PMCID: PMC8889115 DOI: 10.3389/fimmu.2022.817473] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Pro-inflammatory CD4+ T helper (Th) cells drive the pathogenesis of many autoimmune conditions. Recent advances have modified views of the phenotype of pro-inflammatory Th cells in autoimmunity, extending the breadth of known Th cell subsets that operate as drivers of these responses. Heterogeneity and plasticity within Th1 and Th17 cells, and the discovery of subsets of Th cells dedicated to production of other pro-inflammatory cytokines such as GM-CSF have led to these advances. Here, we review recent progress in this area and focus specifically upon evidence for chemokine receptors that drive recruitment of these various pro-inflammatory Th cell subsets to sites of autoimmune inflammation in the CNS. We discuss expression of specific chemokine receptors by subsets of pro-inflammatory Th cells and highlight which receptors may be tractable targets of therapeutic interventions to limit pathogenic Th cell recruitment in autoimmunity.
Collapse
Affiliation(s)
- Aaron H S Heng
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caleb W Han
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caitlin Abbott
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Shaun R McColl
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Iain Comerford
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
22
|
Study on the Mechanism of Üstikuddus Sherbiti in Ischemic Cerebrovascular Diseases: Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5581864. [PMID: 35432563 PMCID: PMC9012636 DOI: 10.1155/2022/5581864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
This paper aims to study the potential biological mechanism of Üstikuddus Sherbiti (ÜS) in the treatment of ischemic cerebrovascular diseases (ICVD) by the network pharmacology method. Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to obtain effective constituents of ÜS by screening eligible oral utilization, drug similarity, and blood-brain barrier permeability threshold. By drug target prediction and stroke treatment target mining, 2 target data sets were analyzed to find intersection targets and the corresponding constituents were used as active constituents. An active constituent target network and an effective constituent target network were constructed by using Cytoscape 3.7.2 software. Degree parameters of the effective constituent target network were analyzed to find important effective constituents and targets. Through protein-protein interaction (PPI) analysis/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, potential signaling pathways of ÜS in ischemic stroke were found out. AutoDock was used for molecular docking verification. A total of 90 active constituents of ÜS were screened out. There were 10 active constituents against ICVD, including quercetin, luteolin, kaempferol, and naringenin, and 10 important targets for anticerebral ischemia, namely, PIK3CA, APP, PIK3R1, MAPK1, MAPK3, AKT1, PRKCD, Fyn, RAC1, and NF-κB1. Based on the protein interaction network, the important targets of ÜS were significantly enriched in PI3K-Akt signaling pathway, neuroactive ligand-receptor interaction pathway, Ras signaling pathway, etc. ÜS in ICVD has characteristics like multiple targets, multiple approaches, and multiple pathways. Results of molecular docking showed that the active components in ICVD had a good binding ability with the key targets. Its main biological mechanism may be related to the PI3K-Akt and Ras-MAPK centered signaling pathway. Our study demonstrated that ÜS exerted the effect of treating ICVD by regulating multiple targets and multiple channels with multiple components through the method of network pharmacology and molecular docking.
Collapse
|
23
|
Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. BIOLOGY 2022; 11:biology11020239. [PMID: 35205105 PMCID: PMC8869745 DOI: 10.3390/biology11020239] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The research outlined in this review paper discusses potential health benefits associated with a diet enriched with tomatoes and tomato products. This includes details of previous studies investigating the anticancer properties of tomatoes, protection against cardiovascular and neurodegenerative diseases and diabetes, maintenance of a healthy gut microbiome, and improved skin health, fertility, immune response, and exercise recovery. The specific parts of a tomato fruit that contribute these health benefits are also outlined. The potential disadvantages to a tomato-rich diet are detailed, especially the consumption of supplements that contain compounds found in tomatoes, such as lycopene. This review also discusses how the cultivation of tomato plants can affect the nutritional value of the fruit harvested. Different environmental growing conditions such as light intensity, growing media, and temperature are explained in terms of the impact they have on the quality of fruit, its nutrient content, and hence the potential health benefits acquired from eating the fruit. Abstract This review outlines the health benefits associated with the regular consumption of tomatoes and tomato products. The first section provides a detailed account of the horticultural techniques that can impact the quality of the fruit and its nutritional properties, including water availability, light intensity, temperature, and growing media. The next section provides information on the components of tomato that are likely to contribute to its health effects. The review then details some of the health benefits associated with tomato consumption, including anticancer properties, cardiovascular and neurodegenerative diseases and skin health. This review also discusses the impact tomatoes can have on the gut microbiome and associated health benefits, including reducing the risk of inflammatory bowel diseases. Other health benefits of eating tomatoes are also discussed in relation to effects on diabetes, the immune response, exercise recovery, and fertility. Finally, this review also addresses the negative effects that can occur as a result of overconsumption of tomato products and lycopene supplements.
Collapse
|
24
|
Yarim GF, Yarim M, Sozmen M, Gokceoglu A, Ertekin A, Kabak YB, Karaca E. Nobiletin attenuates inflammation via modulating proinflammatory and antiinflammatory cytokine expressions in an autoimmune encephalomyelitis mouse model. Fitoterapia 2021; 156:105099. [PMID: 34896483 DOI: 10.1016/j.fitote.2021.105099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022]
Abstract
The aim of this study is to investigate the potential preventive and therapeutic effects of nobiletin by evaluating the expression of cytokines associated with inflammatory reactions in an autoimmune encephalomyelitis mouse model. A total of 60 male C57BL/6 mice aged between 8 and 10 weeks were used. Mice were divided into six groups (n = 10 mice per group): control, EAE, low-prophylaxis, high-prophylaxis, low-treatment and high-treatment. Experimental autoimmune encephalomyelitis (EAE) was induced by myelin oligodendrocyte glycoprotein (MOG) and pertussis toxin. Nobiletin was administered in low (25 mg/kg) and high (50 mg/kg) doses, intraperitoneally. The prophylactic and therapeutic effects of nobiletin on brain tissue and spinal cord were evaluated by expression of interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), interferon gamma (IFNγ), IL-6, IL-10 and transforming growth factor-beta (TGF-β) using immunohistochemistry and real-time polymerase chain reaction (RT-PCR). Prophylactic and therapeutic use of nobiletin inhibited EAE-induced increase of TNF-α, IL-1β and IL-6 activities to alleviate inflammatory response in brain and spinal cord. Moreover, nobiletin supplement dramatically increased the IL-10, TGF-β and IFNγ expressions in prophylaxis and treatment groups compared with the EAE group in the brain and spinal cord. The results obtained from this study show that prophylactic and therapeutic nobiletin modulates expressions of proinflammatory and antiinflammatory cytokines in brain and spinal cord dose-dependent manner in EAE model. These data demonstrates that nobiletin has a potential to attenuate inflammation in EAE mouse model. These experimental findings need to be supported by clinical studies.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
- Brain/drug effects
- Brain/immunology
- Brain/pathology
- Cytokines/drug effects
- Cytokines/metabolism
- DNA, Complementary/biosynthesis
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Flavones/pharmacology
- Flavones/therapeutic use
- Immunohistochemistry
- Inflammation/drug therapy
- Inflammation/immunology
- Inflammation/prevention & control
- Male
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/prevention & control
- RNA/genetics
- RNA/isolation & purification
- Real-Time Polymerase Chain Reaction
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/pathology
Collapse
Affiliation(s)
- Gul Fatma Yarim
- Department of Biochemistry, Faculty of Veterinary Medicine, Ondokuz Mayis University, Atakum, 55200 Samsun, Turkey.
| | - Murat Yarim
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Atakum, 55200 Samsun, Turkey
| | - Mahmut Sozmen
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Atakum, 55200 Samsun, Turkey
| | - Ayris Gokceoglu
- Department of Biochemistry, Faculty of Veterinary Medicine, Ondokuz Mayis University, Atakum, 55200 Samsun, Turkey
| | - Ali Ertekin
- Department of Biochemistry, Faculty of Veterinary Medicine, Ondokuz Mayis University, Atakum, 55200 Samsun, Turkey
| | - Yonca Betil Kabak
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Atakum, 55200 Samsun, Turkey
| | - Efe Karaca
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Atakum, 55200 Samsun, Turkey
| |
Collapse
|
25
|
Wang Y, Li H, Li X, Wang C, Li Q, Xu M, Guan X, Lan Z, Ni Y, Zhang Y. Widely targeted metabolomics analysis of enriched secondary metabolites and determination of their corresponding antioxidant activities in Elaeagnus angustifolia var. orientalis (L.)Kuntze fruit juice enhanced by Bifidobacterium animalis subsp. Lactis HN-3 fermentation. Food Chem 2021; 374:131568. [PMID: 34815112 DOI: 10.1016/j.foodchem.2021.131568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 01/03/2023]
Abstract
Elaeagnus angustifolia var. orientalis (L.)Kuntze fruit contains a large number of naturally occurring molecules present as glycoside, methylated, and methyl ester conjugates, which should be hydolysed or transformed to become bioactive forms. For this purpose, Bifidobacterium animalis subsp. lactis HN-3 was selected to ferment Elaeagnus angustifolia var. orientalis (L.)Kuntze fruit juice (EOJ). After fermentation, the total phenolic content (TPC) and antioxidant capacity of the EOJ increased significantly compared to the non-fermented EOJ. Using widely-targeted metabolomics analysis, polyphenolic compounds involved in the flavonoid biosynthetic pathway were determined to be up-regulated in the fermented EOJ. In addition, the metabolites generated by 8 deglycosidation, 5 demethylation, 5 hydrogenation, and 28 other reactions were detected in higher concentrations in the fermented EOJ compared to the non-fermented EOJ. Interestingly, these up-regulated metabolites have higher antioxidant and other biological activities than their metabolic precursors, which provide a theoretical basis for the development of Bifidobacterium-fermented plant products with stronger functional activities.
Collapse
Affiliation(s)
- Yixuan Wang
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China
| | - Hui Li
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China
| | - Xiaozhen Li
- Shihezi Customs Comprehensive Laboratory, Urumqi Customs Technology Center, Road Tianshan, Shihezi Xinjiang Province 832099, China
| | - Chenxi Wang
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China
| | - Qianhong Li
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China
| | - Meng Xu
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China
| | - Xiangluo Guan
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China
| | - Zhenghui Lan
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China
| | - Yan Zhang
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi Xinjiang Province 832003, China.
| |
Collapse
|
26
|
Han L, Fu Q, Deng C, Luo L, Xiang T, Zhao H. Immunomodulatory potential of flavonoids for the treatment of autoimmune diseases and tumour. Scand J Immunol 2021. [DOI: 10.1111/sji.13106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Limin Han
- Department of Pathophysiology Zunyi Medical University Zunyi China
- Department of Endocrinology People’s Hospital of Changshou Chongqing Chongqing China
| | - Qiang Fu
- Organ Transplantation Center Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Chuan Deng
- Department of Neurology People’s Hospital of Changshou Chongqing Chongqing China
| | - Li Luo
- Department of Forensic Medicine Zunyi Medical University Zunyi China
| | - Tengxiao Xiang
- Department of Endocrinology People’s Hospital of Changshou Chongqing Chongqing China
| | - Hailong Zhao
- Department of Pathophysiology Zunyi Medical University Zunyi China
| |
Collapse
|
27
|
Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in their Pathogenesis. Int J Mol Sci 2021; 22:9290. [PMID: 34502198 PMCID: PMC8430571 DOI: 10.3390/ijms22179290] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Acetylcholinesterase (AChE) plays an important role in the pathogenesis of neurodegenerative diseases by influencing the inflammatory response, apoptosis, oxidative stress and aggregation of pathological proteins. There is a search for new compounds that can prevent the occurrence of neurodegenerative diseases and slow down their course. The aim of this review is to present the role of AChE in the pathomechanism of neurodegenerative diseases. In addition, this review aims to reveal the benefits of using AChE inhibitors to treat these diseases. The selected new AChE inhibitors were also assessed in terms of their potential use in the described disease entities. Designing and searching for new drugs targeting AChE may in the future allow the discovery of therapies that will be effective in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8bStreet, 20-090 Lublin, Poland;
| |
Collapse
|
28
|
Zhang M, Hu G, Shao N, Qin Y, Chen Q, Wang Y, Zhou P, Cai B. Thioredoxin-interacting protein (TXNIP) as a target for Alzheimer's disease: flavonoids and phenols. Inflammopharmacology 2021; 29:1317-1329. [PMID: 34350508 DOI: 10.1007/s10787-021-00861-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by amyloid plaques and tangles that have become the fifth leading cause of death worldwide. Previous studies have found that thioredoxin interacting protein (TXNIP) expression was increased during the development of AD neurons. TXNIP separates from the TXNIP-thioredoxin complex, and the TXNIP-NLRP3 complex assembles ASC and pro-caspase-1 to form the NLRP3 inflammasome, which triggers AD inflammation and apoptosis. CB-dock was used to explore whether 21 natural flavonoids and phenols target TXNIP based on references. Docking results showed that rutin, puerarin, baicalin, luteolin and quercetin are the most potent TXNIP inhibitors, and among them, rutin as the most effective flavonoid. And rosmarinic acid is the most potent TXNIP inhibitor of phenols. These phytochemicals could be helpful to find the lead compounds in designing and developing novel agents for Alzheimer's disease.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Guanhua Hu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Nan Shao
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yunpeng Qin
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Qian Chen
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yan Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China. .,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.
| | - Biao Cai
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China. .,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.
| |
Collapse
|
29
|
Dhanisha SS, Drishya S, Gangaraj KP, Rajesh MK, Guruvayoorappan C. Molecular Docking Studies of Naringenin and its Protective Efficacy against Methotrexate Induced Oxidative Tissue Injury. Anticancer Agents Med Chem 2021; 22:169-180. [PMID: 34225639 DOI: 10.2174/1871520621666210322102915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/11/2021] [Accepted: 02/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although Methotrexate (MTX) possesses a wide clinical spectrum of activity, its toxic side effects on normal cells and drug resistance often hamper its successful outcome. Naringenin (NG) one of the promising bioactive flavonoids that are extensively found in grapes, citrus fruits, and fruit arils of Pithecellobium dulce. OBJECTIVE Only a few experimental in vivo studies on the efficacy of NG against chemotherapeutic drugs have been carried out. Aiming to fill this gap, the present study was carried out to characterize and identify its possible therapeutic targets and also to explore its protective efficacy against MTX induced tissue damage. METHODS Oxidative stress was induced in mice with MTX (20 mg/kg B.wt) and animals were orally administered with 10 mg/kg B.wt NG for 10 consecutive days. On day 11, all animals were sacrificed, and hematological and serum biochemical parameters were analyzed. The antioxidant efficacy of NG against MTX was evaluated by quantifying tissue superoxide dismutase (SOD), glutatione peroxidase (GPx), reduced glutathione (GSH) and catalase along with oxidative stress markers [malondialdehyde (MDA) and nitric oxide (NO)]. Further, the histopathological analysis was performed to confirm the protective efficacy of FPD. In silico docking studies were also performed to exploring antioxidant enzyme-based targets. RESULTS Our results showed that concurrent administration of NG counteracted oxidative stress induced by MTX, as evidenced by increased expression of antioxidant markers, decreased expression of renal and hepatotoxicity serum marker enzymes (p <0.05). Molecular docking study was performed using Auto dock vina to understand the mechanism of ligand binding (S-NG and R-NG) with antioxidant enzymes. The binding affinity of S-NG with catalase, GPx, ALP, and SGPT was -10.1, -7.1, -7.1, and -7.3 kcal/mol respectively, whereas for R-NG was -10.8, -7.1, -7.6, and -7.4 kcal/mol respectively. Further, histopathological analysis affirmed the protective efficacy of NG against MTX induced hepatic and renal toxicities. CONCLUSION Treatment with NG significantly reduced MTX induced pancytopenia, renal, and hepatic toxicity.
Collapse
Affiliation(s)
- Suresh S Dhanisha
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Sudarsanan Drishya
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Karyath P Gangaraj
- Division of Crop improvement, ICAR-Central Plantation Crops Research Institute, Kasaragod 671124, Kerala, India
| | - Muliyar K Rajesh
- Division of Crop improvement, ICAR-Central Plantation Crops Research Institute, Kasaragod 671124, Kerala, India
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Trivandrum-695 011, Kerala, India
| |
Collapse
|