1
|
Jia L, Wang R, Huang Z, Sun N, Sun H, Wang H, Lu F, Liu Y. Phosphatidylcholine ameliorates lipid accumulation and liver injury in high-fat diet mice by modulating bile acid metabolism and gut microbiota. Int J Food Sci Nutr 2025; 76:165-178. [PMID: 39632393 DOI: 10.1080/09637486.2024.2437469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Phosphatidylcholine (PC) has garnered considerable attention due to its involvement in a wide array of crucial biological functions. However, there is still much to active explore regarding the precise mechanisms that underlie PC's actions in the context of high-fat diet. In this study, we found that both PC intervention and treatment significantly mitigated lipid accumulation, liver damage, and body weight gaining triggered by the high-fat diet. Untargeted and targeted metabolomic analyses uncovered substantial effects of PC on bile acid metabolism, especially led to a substantial reduction in elevated levels of free bile acids. 16S rRNA gene sequencing revealed that PC modulated the gut microbiota structures and compositions in high-fat diet mice, particularly exhibiting a positive association with Pseudoflavonifractor abundance, and a negative correlation with Olsenella, Parasutterella, and Allobaculum abundance. Our study suggested that PC held promise as a potential candidate for alleviating lipid metabolism injury, liver disease or obesity.
Collapse
Affiliation(s)
- Longgang Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Ruijia Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Zhiqi Huang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Nana Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Hui Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| |
Collapse
|
2
|
Wang Q, Cao Y, Jia L. Lipidomics-based investigation of its impact on the pathogenesis of coronary atherosclerosis: a Mendelian randomization study. Hereditas 2025; 162:13. [PMID: 39893493 PMCID: PMC11787735 DOI: 10.1186/s41065-025-00367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Considerable attention has been devoted to investigating the association between lipid metabolites and cardiovascular diseases, particularly coronary atherosclerosis. METHODS A two-sample MR framework was used to investigate the relationship between lipid metabolites and the risk of coronary atherosclerosis. Two GWAS datasets were examined to take intersections of SNPs from 51,589 cases and 343,079 controls, and 14,334 cases and 346,860 controls to determine genetic susceptibility to coronary atherosclerosis. Random-effects inverse variance weighted (IVW) MR analyses were performed by a series of sensitivity assessments to measure the robustness of our findings and to detect any violations of MR assumptions. RESULTS Through IVW, MR-Egger and weighted median regression methods, we inferred that these six lipid metabolites: cholesterol levels, sterol ester (27:1/18:2) levels, triacylglycerol (52:4) levels, triacylglycerol (52:5) levels, diacylglycerol (18:1_18.2) levels, triacylglycerol (53:4), could directly impact the development of atherosclerosis. CONCLUSION In conclusion, our study comprehensively illustrates a causal relationship between lipid metabolites and the risk of coronary atherosclerosis. Furthermore, cholesterol levels, sterol ester (27:1/18:2) levels, triacylglycerol (52:4) levels, triacylglycerol (52:5) levels, diacylglycerol (18:1_18.2) levels, and triacylglycerol (53:4) levels are positively correlated with the risk of coronary atherosclerosis. These six lipid metabolites have the potential as new predictors of the risk of atherosclerosis, providing new insights into the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Ministry of Education of China, Liaoning University of Traditional Chinese Medicine, 79 Chongshan Road, Huanggu District, Shenyang, 110847, Liaoning Province, China
| | - Yuan Cao
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Ministry of Education of China, Liaoning University of Traditional Chinese Medicine, 79 Chongshan Road, Huanggu District, Shenyang, 110847, Liaoning Province, China
| | - Lianqun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Ministry of Education of China, Liaoning University of Traditional Chinese Medicine, 79 Chongshan Road, Huanggu District, Shenyang, 110847, Liaoning Province, China.
| |
Collapse
|
3
|
Abdulrahim AO, Doddapaneni NSP, Salman N, Giridharan A, Thomas J, Sharma K, Abboud E, Rochill K, Shreelakshmi B, Gupta V, Lakkimsetti M, Mowo-Wale A, Ali N. The gut-heart axis: a review of gut microbiota, dysbiosis, and cardiovascular disease development. Ann Med Surg (Lond) 2025; 87:177-191. [PMID: 40109640 PMCID: PMC11918638 DOI: 10.1097/ms9.0000000000002789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/20/2024] [Indexed: 03/22/2025] Open
Abstract
Background Cardiovascular diseases (CVDs) are a major cause of morbidity and mortality worldwide and there are strong links existing between gut health and cardiovascular health. Gut microbial diversity determines gut health. Dysbiosis, described as altered gut microbiota, causes bacterial translocations and abnormal gut byproducts resulting in systemic inflammation. Objective To review the current literature on the relationships between gut microbiota, dysbiosis, and CVD development, and explore therapeutic methods to prevent dysbiosis and support cardiovascular health. Summary Dysbiosis increases levels of pro-inflammatory substances while reducing those of anti-inflammatory substances. This accumulative inflammatory effect negatively modulates the immune system and promotes vascular dysfunction and atherosclerosis. High Firmicutes to Bacteroidetes ratios, high trimethylamine-n-oxide to short-chain fatty acid ratios, high indole sulfate levels, low cardiac output, and polypharmacy are all associated with worse cardiovascular outcomes. Supplementation with prebiotics and probiotics potentially alleviates some CVD risk. Blood and stool samples may be used in clinical practice to quantify and qualify gut bacterial ratios and byproducts, assess patients' risk for adverse cardiovascular outcomes, and track their gut health progress. Further research is required to set population-based cutoffs for normal and abnormal gut microbiota and byproduct ratios.
Collapse
Affiliation(s)
| | | | - Nadhra Salman
- Department of Internal Medicine, Baqai Medical University, Karachi, Pakistan
| | | | | | - Kavya Sharma
- Maharishi Markandeshwar Medical College and Hospital, Himachal Pradesh, India
| | - Elias Abboud
- Faculty of Medicine, University of Saint Joseph, Beirut, Lebanon
| | | | - B Shreelakshmi
- Navodaya Medical College Hospital & Research Centre, Karnataka, India
| | | | | | | | - Noor Ali
- Dubai Medical College, Dubai, United Arab Emirates
| |
Collapse
|
4
|
Khan TJ, Semenkovich CF, Zayed MA. De novo lipid synthesis in cardiovascular tissue and disease. Atherosclerosis 2025; 400:119066. [PMID: 39616863 DOI: 10.1016/j.atherosclerosis.2024.119066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Most tissues have the capacity for endogenous lipid synthesis. A crucial foundational pathway for lipid synthesis is de novo lipid synthesis (DNL), a ubiquitous and complex metabolic process that occurs at high levels in the liver, adipose and brain tissue. Under normal physiological conditions, DNL is vital in converting excess carbohydrates into fatty acids. DNL is linked to other pathways, including the endogenous synthesis of phospholipids and sphingolipids. However, abnormal lipid synthesis can contribute to various pathologies and clinical conditions. Experimental studies involving dietary restriction and in vivo genetic modifications provide compelling evidence demonstrating the significance of lipid synthesis in maintaining normal cardiovascular tissue function. Similarly, clinical investigations suggest altered lipid synthesis can harm cardiac and arterial tissues, thereby influencing cardiovascular disease (CVD) development and progression. Consequently, there is increased interest in exploring pharmacological interventions that target lipid synthesis metabolic pathways as potential strategies to alleviate CVD. Here we review the physiological and pathological impact of endogenous lipid synthesis and its implications for CVD. Since lipid synthesis can be targeted pharmacologically, enhancing our understanding of the molecular and biochemical mechanisms underlying lipid generation and cardiovascular function may prompt new insights into CVD and its treatment.
Collapse
Affiliation(s)
- Tariq J Khan
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Clay F Semenkovich
- Washington University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, St. Louis, MO, USA; Washington University School of Medicine, Department of Cell Biology and Physiology, St. Louis, MO, USA
| | - Mohamed A Zayed
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA; Washington University School of Medicine, Department of Surgery, Division of Surgical Sciences, St. Louis, MO, USA; Washington University School of Medicine, Department of Radiology, St. Louis, MO, USA; Washington University School of Medicine, Division of Molecular Cell Biology, St. Louis, MO, USA; Washington University, McKelvey School of Engineering, Department of Biomedical Engineering, St. Louis, MO, USA; Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA.
| |
Collapse
|
5
|
Wang B, Wang S, Wu Z, He J, Lin H, Zhang W. UPLC-MS based lipidomics analysis on optimization of soybean phosphatidylethanolamine extraction. Food Chem X 2024; 23:101578. [PMID: 39036473 PMCID: PMC11260036 DOI: 10.1016/j.fochx.2024.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Soybean-derived phosphatidylethanolamine (PE) is a valuable phospholipid component yet its high-purity form is costly and its molecular structure is poorly understood. The present study combined solvent extraction and cryopurification to purify PE. The optimal extraction conditions were as follows: material-liquid ratio 1:15 (g/mL), ethanol base concentration 100:4 (Vanhydrous ethanol /V25% ammonia), extraction temperature 40 °C, time 60 min, extraction twice. The cryopurification conditions were: material-liquid ratio 1:60, ethanol base concentration 100:6 (Vanhydrous ethanol/V25% ammonia), freezing temperature - 20 °C, time 20 h. UPLC-QTOF-MS/MS analysis revealed phospholipid composition of raw material, crude product, and purified product. The results showed that the purity of PE in the purified products was 76.74%, and the yield was 72.43% under optimal conditions. 181 phospholipid molecules were quantified. The study successfully explored high-purity PE preparation method and the composition of PE product. It provides a basis for the subsequent exploration of its biofunction and potential applications.
Collapse
Affiliation(s)
- Boya Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, China
| | - Siqi Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, China
| | - Zongyuan Wu
- School of Food Science and Engineering, Wuhan Polytechnic University, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), China
- MOE Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), China
| | - Junbo He
- School of Food Science and Engineering, Wuhan Polytechnic University, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), China
- MOE Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), China
| | - Hong Lin
- School of Food Science and Engineering, Wuhan Polytechnic University, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), China
- MOE Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), China
| | - Weinong Zhang
- School of Food Science and Engineering, Wuhan Polytechnic University, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), China
- MOE Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), China
| |
Collapse
|
6
|
Zhang H, Wang C, Sun H, Zhou T, Ma C, Han X, Zhang T, Xia J. Glutamine supplementation alleviated aortic atherosclerosis in mice model and in vitro. Proteomics 2024; 24:e2300179. [PMID: 37679095 DOI: 10.1002/pmic.202300179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
This study aimed to clarify the role of glutamine in atherosclerosis and its participating mechanism. Forty C57BL/6J mice were divided into wild control (wild Con), ApoE- /- control (ApoE- /- Con), glutamine + ApoE- /- control (Glut + ApoE- /- Con), ApoE- /- high fat diet (ApoE- /- HFD), and glutamine + ApoE- /- HFD (Glut + ApoE- /- HFD) groups. The degree of atherosclerosis, western blotting, and multiomics were detected at 18 weeks. An in vitro study was also performed. Glutamine treatment significantly decreased the degree of aortic atherosclerosis (p = 0.03). O-GlcNAcylation (O-GlcNAc), IL-1β, IL-1α, and pyruvate kinase M2 (PKM2) in the ApoE- /- HFD group were significantly higher than those in the ApoE- /- Con group (p < 0.05). These differences were attenuated by glutamine treatment (p < 0.05), and aggravated by O-GlcNA transferase (OGT) overexpression in the in vitro study (p < 0.05). Multiomics showed that the ApoE- /- HFD group had higher levels of oxidative stress regulatory molecules (guanine deaminase [GUAD], xanthine dehydrogenase [XDH]), proinflammatory regulatory molecules (myristic acid and myristoleic acid), and stress granules regulatory molecules (caprin-1 and deoxyribose-phosphate aldolase [DERA]) (p < 0.05). These differences were attenuated by glutamine treatment (p < 0.05). We conclude that glutamine supplementation might alleviate atherosclerosis through downregulation of O-GlcNAc, glycolysis, oxidative stress, and proinflammatory pathway.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Cardiology, National Clinical Research Centre for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chunxiu Wang
- Department of Evidence-Based Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haichen Sun
- Surgical Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tian Zhou
- Department of Cardiology, National Clinical Research Centre for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chang Ma
- Department of Cardiology, National Clinical Research Centre for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xuexue Han
- Department of Cardiology, National Clinical Research Centre for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianxing Zhang
- Department of Cardiology, National Clinical Research Centre for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jinggang Xia
- Department of Cardiology, National Clinical Research Centre for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Wu X, Jia W. Multimodal deep learning as a next challenge in nutrition research: tailoring fermented dairy products based on cytidine diphosphate-diacylglycerol synthase-mediated lipid metabolism. Crit Rev Food Sci Nutr 2023; 64:12272-12283. [PMID: 37615630 DOI: 10.1080/10408398.2023.2248633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Deep learning is evolving in nutritional epidemiology to address challenges including precise nutrition and data-driven disease modeling. Fermented dairy products consumption as the implementation of specific dietary priority contributes to a lower risk of all-cause mortality, cardiovascular disease, and obesity. Various lipid types play different roles in cardiometabolic health and fermentation process changes the lipid profile in dairy products. Leveraging the power of multiple biological datasets can provide mechanistic insights into how proteins impact lipid pathways, and establish connections among fermentation-lipid biomarkers-protein. The recent leap of deep learning has been performed in food category recognition, agro-food freshness detection, and food flavor prediction and regulation. The proposed multimodal deep learning method includes four steps: (i) Forming data matrices based on data generated from different omics layers. (ii) Decomposing high-dimensional omics data according to self-attention mechanism. (iii) Constructing View Correlation Discovery Network to learn the cross-omics correlations and integrate different omics datasets. (iv) Depicting a biological network for lipid metabolism-centered quantitative multi-omics data analysis. Relying on the cytidine diphosphate-diacylglycerol synthase-mediated lipid metabolism regulates the glycerophospholipid composition of fermented dairy effectively. Innovative processing strategies including ohmic heating and pulsed electric field improve the sensory qualities and nutritional characteristics of the products.
Collapse
Affiliation(s)
- Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| |
Collapse
|
8
|
Liu C, Song Z, Li Z, Boon MR, Schönke M, Rensen PCN, Wang Y. Dietary choline increases brown adipose tissue activation markers and improves cholesterol metabolism in female APOE*3-Leiden.CETP mice. Int J Obes (Lond) 2023; 47:236-243. [PMID: 36732416 DOI: 10.1038/s41366-023-01269-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Studies in mice have recently linked increased dietary choline consumption to increased incidence of obesity-related metabolic diseases, while several clinical trials have reported an anti-obesity effect of high dietary choline intake. Since the underlying mechanisms by which choline affects obesity are incompletely understood, the aim of the present study was to investigate the role of dietary choline supplementation in adiposity. METHODS Female APOE*3-Leiden.CETP mice, a well-established model for human-like lipoprotein metabolism and cardiometabolic diseases, were fed a Western-type diet supplemented with or without choline (1.2%, w/w) for up to 16 weeks. RESULTS Dietary choline reduced body fat mass gain, prevented adipocyte enlargement, and attenuated adipose tissue inflammation. Besides, choline ameliorated liver steatosis and damage, associated with an upregulation of hepatic genes involved in fatty acid oxidation. Moreover, choline reduced plasma cholesterol, as explained by a reduction of plasma non-HDL cholesterol. Mechanistically, choline reduced hepatic VLDL-cholesterol secretion and enhanced the selective uptake of fatty acids from triglyceride-rich lipoprotein (TRL)-like particles by brown adipose tissue (BAT), consequently accelerating the clearance of the cholesterol-enriched TRL remnants by the liver. CONCLUSIONS In APOE*3-Leiden.CETP mice, dietary choline reduces body fat by enhancing TRL-derived fatty acids by BAT, resulting in accelerated TRL turnover to improve hypercholesterolemia. These data provide a mechanistic basis for the observation in human intervention trials that high choline intake is linked with reduced body weight.
Collapse
Affiliation(s)
- Cong Liu
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Zikuan Song
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhuang Li
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Milena Schönke
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Med-X institute, Center for Immunological and Metabolic Diseases, and Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Yanan Wang
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- Med-X institute, Center for Immunological and Metabolic Diseases, and Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
9
|
Saejung C, Lomthaisong K, Kotthale P. Alternative microbial-based functional ingredient source for lycopene, beta-carotene, and polyunsaturated fatty acids. Heliyon 2023; 9:e13828. [PMID: 36873505 PMCID: PMC9981927 DOI: 10.1016/j.heliyon.2023.e13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The acquisition of carotenoids and polyunsaturated fatty acids (PUFAs) from plants and animals for use as functional ingredients raises concerns regarding productivity and cost; utilization of microorganisms as alternative sources is an option. We proposed to evaluate the production of carotenoids and PUFAs by Rhodopseudomonas faecalis PA2 using different vegetable oils (rice bran oil, palm oil, coconut oil, and soybean oil) as carbon source, different concentrations of yeast extract as nitrogen source at different cultivation time to ensure the best production. Cultivation with soybean oil as source of carbon led to the most significant changes in the fatty acid profile. Compared to the initial condition, the strain cultivated in the optimal conditions (4% soybean oil, 0.35% yeast extract, and 14 days of incubation) showed an increase in μmax, biomass, carotenoid productivity, and microbial lipids by 102.5%, 52.7%, 33.82%, and 34.78%, respectively. The unsaturated fatty acids content was raised with additional types of PUFAs; omega-3 [alpha-linolenic acid and eicosapentaenoic acid] and omega-6 [linoleic acid and eicosatrienoic acid] fatty acids were identified. The results of ultra high-performance liquid chromatography-electrospray ionization-quadrupole time of flight-mass spectrometry (UHPLC-ESI-QTOF-MS/MS) indicated the molecular formula and mass of bacterial metabolites were identical to those of lycopene and beta-carotene. The untargeted metabolomics revealed functional lipids and several physiologically bioactive compounds. The outcome provides scientific reference regarding carotenoids, PUFAs, and useful metabolites that have not yet been reported in the species Rhodopseudomonas faecalis for further use as a microbial-based functional ingredient.
Collapse
Affiliation(s)
- Chewapat Saejung
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Khomsorn Lomthaisong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prawphan Kotthale
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
10
|
Zhen J, Zhou Z, He M, Han HX, Lv EH, Wen PB, Liu X, Wang YT, Cai XC, Tian JQ, Zhang MY, Xiao L, Kang XX. The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases. Front Endocrinol (Lausanne) 2023; 14:1085041. [PMID: 36824355 PMCID: PMC9941174 DOI: 10.3389/fendo.2023.1085041] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Morbidity and mortality of cardiovascular diseases (CVDs) are exceedingly high worldwide. Researchers have found that the occurrence and development of CVDs are closely related to intestinal microecology. Imbalances in intestinal microecology caused by changes in the composition of the intestinal microbiota will eventually alter intestinal metabolites, thus transforming the host physiological state from healthy mode to pathological mode. Trimethylamine N-oxide (TMAO) is produced from the metabolism of dietary choline and L-carnitine by intestinal microbiota, and many studies have shown that this important product inhibits cholesterol metabolism, induces platelet aggregation and thrombosis, and promotes atherosclerosis. TMAO is directly or indirectly involved in the pathogenesis of CVDs and is an important risk factor affecting the occurrence and even prognosis of CVDs. This review presents the biological and chemical characteristics of TMAO, and the process of TMAO produced by gut microbiota. In particular, the review focuses on summarizing how the increase of gut microbial metabolite TMAO affects CVDs including atherosclerosis, heart failure, hypertension, arrhythmia, coronary artery disease, and other CVD-related diseases. Understanding the mechanism of how increases in TMAO promotes CVDs will potentially facilitate the identification and development of targeted therapy for CVDs.
Collapse
Affiliation(s)
- Jing Zhen
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Zhou Zhou
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng He
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hai-Xiang Han
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - En-Hui Lv
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peng-Bo Wen
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Liu
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan-Ting Wang
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xun-Chao Cai
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Jia-Qi Tian
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Ying Zhang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Xiao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Xing-Xing Kang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
11
|
Zhang L, Xiong L, Fan L, Diao H, Tang M, Luo E, Guo W, Yang X, Xing S. Vascular lipidomics analysis reveales increased levels of phosphocholine and lysophosphocholine in atherosclerotic mice. Nutr Metab (Lond) 2023; 20:1. [PMID: 36600244 PMCID: PMC9811766 DOI: 10.1186/s12986-022-00723-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Atherosclerosis (AS) is the major cause of cardiovascular disease, and dyslipidemia is a principal determinant of the initiation and progression of AS. Numerous works have analyzed the lipid signature of blood, but scarce information on the lipidome of vascular tissue is available. This study investigated the lipid profile in the aorta of ApoE-/- mice. METHOD ApoE-/- mice were randomly divided into two groups: (1) the normal diet (ND) group and (2) the high-fat diet (HFD) group. After feeding for 8 weeks, the plasma low-density lipoprotein (LDL), total cholesterol (TC), and triglyceride (TGs) levels were measured. UHPLC-Q Exactive plus MS was used to assess the lipid profile using both positive and negative ionization modes. RESULTS LDL and TC levels were significantly increased in HFD mice, and lipid deposition, plaque area and collagen fiber levels were increased in HFD group. In addition, a total of 131 differential lipids were characterized, including 57 lipids with levels that were increased in the HFD group and 74 with levels that were decreased. Further analysis revealed that the levels of several differentially expressed phosphocholines (PCs) and lysophosphocholines (LPCs) were significantly increased. These PCs included PC (38:3), PC (36:4), PC (36:3), PC (36:2), PC (36:1), PC (34:1e), PC (34:1), PC (32:1), PC (18:0/18:1), and PC (38:5), and the LPCs included LPC (18:1), LPC (18:0) and LPC (16:0). CONCLUSION Our findings indicate the presence of a comprehensive lipid profile in the vascular tissue of atherosclerotic mice, particularly involving PC and LPC, which exhibited significantly increased levels in AS.
Collapse
Affiliation(s)
- Li Zhang
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China ,grid.16821.3c0000 0004 0368 8293Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336 China
| | - Liling Xiong
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Li Fan
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Haoyang Diao
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Mi Tang
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Erdan Luo
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Wenmei Guo
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Xiao Yang
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Shasha Xing
- grid.54549.390000 0004 0369 4060Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 China
| |
Collapse
|
12
|
Dai D, He C, Wang S, Wang M, Guo N, Song P. Toward Personalized Interventions for Psoriasis Vulgaris: Molecular Subtyping of Patients by Using a Metabolomics Approach. Front Mol Biosci 2022; 9:945917. [PMID: 35928224 PMCID: PMC9343857 DOI: 10.3389/fmolb.2022.945917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Aim: Psoriasis vulgaris (PV) is a complicated autoimmune disease characterized by erythema of the skin and a lack of available cures. PV is associated with an increased risk of metabolic syndrome and cardiovascular disease, which are both mediated by the interaction between systemic inflammation and aberrant metabolism. However, whether there are differences in the lipid metabolism between different levels of severity of PV remains elusive. Hence, we explored the molecular evidence for the subtyping of PV according to alterations in lipid metabolism using serum metabolomics, with the idea that such subtyping may contribute to the development of personalized treatment. Methods: Patients with PV were recruited at a dermatology clinic and classified based on the presence of metabolic comorbidities and their Psoriasis Area and Severity Index (PASI) from January 2019 to November 2019. Age- and sex-matched healthy controls were recruited from the preventive health department of the same institution for comparison. We performed targeted metabolomic analyses of serum samples and determined the correlation between metabolite composition and PASI scores. Results: A total of 123 participants, 88 patients with PV and 35 healthy subjects, were enrolled in this study. The patients with PV were assigned to a “PVM group” (PV with metabolic comorbidities) or a “PV group” (PV without metabolic comorbidities) and further subdivided into a “mild PV” (MP, PASI <10) and a “severe PV” (SP, PASI ≥10) groups. Compared with the matched healthy controls, levels of 27 metabolites in the MP subgroup and 28 metabolites in the SP subgroup were found to be altered. Among these, SM (d16:0/17:1) and SM (d19:1/20:0) were positively correlated with the PASI in the MP subgroup, while Cer (d18:1/18:0), PC (18:0/22:4), and PC (20:0/22:4) were positively correlated with the PASI in the SP subgroup. In the PVM group, levels of 17 metabolites were increased, especially ceramides and phosphatidylcholine, compared with matched patients from the PV group. In addition, the correlation analysis indicated that Cer (d18:1/18:0) and SM (d16:1/16:1) were not only correlated with PASI but also has strongly positive correlations with biochemical indicators. Conclusion: The results of this study indicate that patients with PV at different severity levels have distinct metabolic profiles, and that metabolic disorders complicate the disease development. These findings will help us understand the pathological progression and establish strategies for the precision treatment of PV.
Collapse
Affiliation(s)
- Dan Dai
- Department of Dermatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunyan He
- Department of Dermatology, Hubei Provincial Hospital of TCM, Wuhan, China
| | - Shuo Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mei Wang
- Leiden University-European Center for Chinese Medicine and Natural Compounds, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- SU BioMedicine, BioPartner Center 3, Leiden, Netherlands
- *Correspondence: Mei Wang, ; Na Guo, ; Ping Song,
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Mei Wang, ; Na Guo, ; Ping Song,
| | - Ping Song
- Department of Dermatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Mei Wang, ; Na Guo, ; Ping Song,
| |
Collapse
|
13
|
Jing L, Zhang H, Xiang Q, Shen L, Guo X, Zhai C, Hu H. Targeting Trimethylamine N-Oxide: A New Therapeutic Strategy for Alleviating Atherosclerosis. Front Cardiovasc Med 2022; 9:864600. [PMID: 35770223 PMCID: PMC9235870 DOI: 10.3389/fcvm.2022.864600] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis (AS) is one of the most common cardiovascular diseases (CVDs), and there is currently no effective drug to reverse its pathogenesis. Trimethylamine N-oxide (TMAO) is a metabolite of the gut flora with the potential to act as a new risk factor for CVD. Many studies have shown that TMAO is involved in the occurrence and development of atherosclerotic diseases through various mechanisms; however, the targeted therapy for TMAO remains controversial. This article summarizes the vital progress made in relation to evaluations on TMAO and AS in recent years and highlights novel probable approaches for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Lele Jing
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Honghong Zhang
- School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiannan Xiang
- School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liang Shen
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaoxia Guo
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Changlin Zhai
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Huilin Hu
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Huilin Hu
| |
Collapse
|
14
|
Abstract
Given the worldwide epidemic of diet-related chronic diseases, evidence-based dietary recommendations are fundamentally important for health promotion. Despite the importance of the human gut microbiota for the physiological effects of diet and chronic disease etiology, national dietary guidelines around the world are just beginning to capitalize on scientific breakthroughs in the microbiome field. In this review, we discuss contemporary nutritional recommendations from a microbiome science perspective, focusing on mechanistic evidence that established host-microbe interactions as mediators of the physiological effects of diet. We apply this knowledge to inform discussions of nutrition controversies, advance innovative dietary strategies, and propose an experimental framework that integrates the microbiome into nutrition research. The congruence of key paradigms in the nutrition and microbiome disciplines validates current recommendations in dietary guidelines, and the systematic incorporation of microbiome science into nutrition research has the potential to further improve and innovate healthy eating.
Collapse
|
15
|
Ventura R, Martínez-Ruiz I, Hernández-Alvarez MI. Phospholipid Membrane Transport and Associated Diseases. Biomedicines 2022; 10:biomedicines10051201. [PMID: 35625937 PMCID: PMC9138374 DOI: 10.3390/biomedicines10051201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Phospholipids are the basic structure block of eukaryotic membranes, in both the outer and inner membranes, which delimit cell organelles. Phospholipids can also be damaged by oxidative stress produced by mitochondria, for instance, becoming oxidized phospholipids. These damaged phospholipids have been related to prevalent diseases such as atherosclerosis or non-alcoholic steatohepatitis (NASH) because they alter gene expression and induce cellular stress and apoptosis. One of the main sites of phospholipid synthesis is the endoplasmic reticulum (ER). ER association with other organelles through membrane contact sites (MCS) provides a close apposition for lipid transport. Additionally, an important advance in this small cytosolic gap are lipid transfer proteins (LTPs), which accelerate and modulate the distribution of phospholipids in other organelles. In this regard, LTPs can be established as an essential point within phospholipid circulation, as relevant data show impaired phospholipid transport when LTPs are defected. This review will focus on phospholipid function, metabolism, non-vesicular transport, and associated diseases.
Collapse
Affiliation(s)
- Raúl Ventura
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (R.V.); (I.M.-R.)
| | - Inma Martínez-Ruiz
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (R.V.); (I.M.-R.)
| | - María Isabel Hernández-Alvarez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (R.V.); (I.M.-R.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- IBUB Universitat de Barcelona—Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
16
|
Alam MJ, Puppala V, Uppulapu SK, Das B, Banerjee SK. Human microbiome and cardiovascular diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:231-279. [PMID: 36280321 DOI: 10.1016/bs.pmbts.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Van Parys A, Brække MS, Karlsson T, Vinknes KJ, Tell GS, Haugsgjerd TR, Ueland PM, Øyen J, Dierkes J, Nygård O, Lysne V. Assessment of Dietary Choline Intake, Contributing Food Items, and Associations with One-Carbon and Lipid Metabolites in Middle-Aged and Elderly Adults: The Hordaland Health Study. J Nutr 2021; 152:513-524. [PMID: 34643705 PMCID: PMC8826836 DOI: 10.1093/jn/nxab367] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Choline is an essential nutrient for humans and is involved in various physiologic functions. Through its metabolite betaine, it is closely connected to the one-carbon metabolism, and the fat-soluble choline form phosphatidylcholine is essential for VLDL synthesis and secretion in the liver connecting choline to the lipid metabolism. Dietary recommendations for choline are not available in the Nordic countries primarily due to data scarcity. OBJECTIVES The aim of this study was to investigate the dietary intake of total choline and individual choline forms, dietary sources, and the association of total choline intake with circulating one-carbon metabolites and lipids. METHODS We included 5746 participants in the Hordaland Health Study, a survey including community-dwelling adults born in 1925-1927 (mean age 72 y, 55% women) and 1950-1951 (mean age 48 y, 57% women). Dietary data were obtained using a 169-item FFQ, and choline content was calculated using the USDA Database for Choline Content of Common Foods, release 2. Metabolites of the one-carbon and lipid metabolism were measured in a nonfasting blood sample obtained at baseline, and the association with total choline intake was assessed using polynomial splines. RESULTS The geometric mean (95% prediction interval) energy-adjusted total choline intake was 260 (170, 389) mg/d, with phosphatidylcholine being the main form (44%). The major food items providing dietary choline were eggs, low-fat milk, potatoes, and leafy vegetables. Dietary total choline was inversely associated with circulating concentrations of total homocysteine, glycine, and serine and positively associated with choline, methionine, cystathionine, cysteine, trimethyllysine, trimethylamine-N-oxide, and dimethylglycine. A weak association was observed between choline intake and serum lipids. CONCLUSIONS Phosphatidylcholine was the most consumed choline form in community-dwelling adults in Norway. Our findings suggest that choline intake is associated with the concentration of most metabolites involved in the one-carbon and lipid metabolism.
Collapse
Affiliation(s)
| | - Maria Sandvik Brække
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Therese Karlsson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Teresa R Haugsgjerd
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | | | - Jutta Dierkes
- Mohn Nutrition Research Laboratory, University of Bergen, Bergen, Norway,Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway,Department of Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ottar Nygård
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway,Mohn Nutrition Research Laboratory, University of Bergen, Bergen, Norway,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway,Mohn Nutrition Research Laboratory, University of Bergen, Bergen, Norway,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|