1
|
Yan W, Hua X, Zhang M, Qu Y, Yin L, Li Y, Jia X. Fabrication, digestion behavior and β-carotene bioaccessibility of emulsion-filled double-network gel: Effect of corn fiber gum/soy protein isolate ratio and surfactant types. Int J Biol Macromol 2024; 279:135296. [PMID: 39236966 DOI: 10.1016/j.ijbiomac.2024.135296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/18/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Emulsion fortified with β-carotene was added to corn fiber gum (CFG)/soy protein isolate (SPI) double network gel matrix to obtain emulsion-filled gels (EFG) via dual induction of laccase and glucono-δ-lactone. Protein digestion was accompanied by the release of β-carotene from gel matrix during in vitro digestion. The surfactant types and corn fiber gum/soy protein isolate ratio affected the β-carotene bioaccessibility via changing oil-water interfacial composition and emulsion particle size during in vitro digestion. As compared with Tween-20 EFGs, emulsion droplets released from SPI EFGs was more susceptible to flocculation, followed with coalescence due to proteolysis of interfacial SPI during gastric digestion. The resulting oil droplets with large particle size exhibited lower lipase adsorption, thus reducing the free fatty acid content and β-carotene bioaccessibility. The confocal laser scanning microscope (CLSM) observation confirmed that protein hydrolysate from gel matrix were adsorbed onto the oil-water interface competing with Tween-20 during intestinal digestion. For EFGs with higher CFG content, steric hindrance of CFG molecules and less emulsion release could inhibit droplet flocculation, thus enhancing β-carotene bioaccessibility.
Collapse
Affiliation(s)
- Wenjia Yan
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaohan Hua
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Minghao Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuanyuan Qu
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lijun Yin
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Xin Jia
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Wolosiewicz M, Balatskyi VV, Duda MK, Filip A, Ntambi JM, Navrulin VO, Dobrzyn P. SCD4 deficiency decreases cardiac steatosis and prevents cardiac remodeling in mice fed a high-fat diet. J Lipid Res 2024; 65:100612. [PMID: 39094772 PMCID: PMC11402454 DOI: 10.1016/j.jlr.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Stearoyl-CoA desaturase (SCD) is a lipogenic enzyme that catalyzes formation of the first double bond in the carbon chain of saturated fatty acids. Four isoforms of SCD have been identified in mice, the most poorly characterized of which is SCD4, which is cardiac-specific. In the present study, we investigated the role of SCD4 in systemic and cardiac metabolism. We used WT and global SCD4 KO mice that were fed standard laboratory chow or a high-fat diet (HFD). SCD4 deficiency reduced body adiposity and decreased hyperinsulinemia and hypercholesterolemia in HFD-fed mice. The loss of SCD4 preserved heart morphology in the HFD condition. Lipid accumulation decreased in the myocardium in SCD4-deficient mice and in HL-1 cardiomyocytes with knocked out Scd4 expression. This was associated with an increase in the rate of lipolysis and, more specifically, adipose triglyceride lipase (ATGL) activity. Possible mechanisms of ATGL activation by SCD4 deficiency include lower protein levels of the ATGL inhibitor G0/G1 switch protein 2 and greater activation by protein kinase A under lipid overload conditions. Moreover, we observed higher intracellular Ca2+ levels in HL-1 cells with silenced Scd4 expression. This may explain the activation of protein kinase A in response to higher Ca2+ levels. Additionally, the loss of SCD4 inhibited mitochondrial enlargement, NADH overactivation, and reactive oxygen species overproduction in the heart in HFD-fed mice. In conclusion, SCD4 deficiency activated lipolysis, resulting in a reduction of cardiac steatosis, prevented the induction of left ventricular hypertrophy, and reduced reactive oxygen species levels in the heart in HFD-fed mice.
Collapse
Affiliation(s)
- Marcin Wolosiewicz
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Monika K Duda
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Filip
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Viktor O Navrulin
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
3
|
Xiao X, Wu L, Deng J, Li J, Zhou Y, He S, Li F, Wang Y. Effects of insonification on repairing the renal injury of diabetic nephropathy rats. BMJ Open Diabetes Res Care 2024; 12:e004146. [PMID: 39025793 PMCID: PMC11261688 DOI: 10.1136/bmjdrc-2024-004146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
INTRODUCTION Prolonged hyperglycemia in diabetes mellitus can result in the development of diabetic nephropathy (DN) and increase the susceptibility to kidney failure. Low-intensity pulsed ultrasound (LIPUS) is a non-invasive modality that has demonstrated effective tissue repair capabilities. The objective of this study was to showcase the reparative potential of LIPUS on renal injury at both animal and cellular levels, while also determining the optimal pulse length (PL). RESEARCH DESIGN AND METHODS We established a rat model of DN, and subsequently subjected the rats' kidneys to ultrasound irradiation (PL=0.2 ms, 10 ms, 20 ms). Subsequently, we assessed the structural and functional changes in the kidneys. Additionally, we induced podocyte apoptosis and evaluated its occurrence following ultrasound irradiation. RESULTS Following irradiation, DN rats exhibited improved mesangial expansion and basement membrane thickening. Uric acid expression increased while urinary microalbumin, podocalyxin in urine, blood urea nitrogen, and serum creatinine levels decreased (p<0.05). These results suggest that the optimal PL was 0.2 ms. Using the optimal PL further demonstrated the reparative effect of LIPUS on DN, it was found that LIPUS could reduce podococyte apoptosis and alleviate kidney injury. Metabolomics revealed differences in metabolites including octanoic acid and seven others and western blot results showed a significant decrease in key enzymes related to lipolysis (p<0.05). Additionally, after irradiating podocytes with different PLs, we observed suppressed apoptosis (p<0.05), confirming the optimal PL as 0.2 ms. CONCLUSIONS LIPUS has been demonstrated to effectively restore renal structure and function in DN rats, with an optimal PL of 0.2 ms. The mechanism underlying the alleviation of DN by LIPUS is attributed to its ability to improve lipid metabolism disorder. These findings suggest that LIPUS may provide a novel perspective for future research in this field.
Collapse
Affiliation(s)
- Xinfang Xiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Liu Wu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Juan Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Junfen Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yiqing Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Sicheng He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Faqi Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Khan MM, Khan ZA, Khan MA. Metabolic complications of psychotropic medications in psychiatric disorders: Emerging role of de novo lipogenesis and therapeutic consideration. World J Psychiatry 2024; 14:767-783. [PMID: 38984346 PMCID: PMC11230099 DOI: 10.5498/wjp.v14.i6.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 06/19/2024] Open
Abstract
Although significant advances have been made in understanding the patho-physiology of psychiatric disorders (PDs), therapeutic advances have not been very convincing. While psychotropic medications can reduce classical symptoms in patients with PDs, their long-term use has been reported to induce or exaggerate various pre-existing metabolic abnormalities including diabetes, obesity and non-alcoholic fatty liver disease (NAFLD). The mechanism(s) underlying these metabolic abnormalities is not clear; however, lipid/fatty acid accumulation due to enhanced de novo lipogenesis (DNL) has been shown to reduce membrane fluidity, increase oxidative stress and inflammation leading to the development of the aforementioned metabolic abnormalities. Intriguingly, emerging evidence suggest that DNL dysregulation and fatty acid accumulation could be the major mechanisms associated with the development of obesity, diabetes and NAFLD after long-term treatment with psychotropic medications in patients with PDs. In support of this, several adjunctive drugs comprising of anti-oxidants and anti-inflammatory agents, that are used in treating PDs in combination with psychotropic medications, have been shown to reduce insulin resistance and development of NAFLD. In conclusion, the above evidence suggests that DNL could be a potential pathological factor associated with various metabolic abnormalities, and a new avenue for translational research and therapeutic drug designing in PDs.
Collapse
Affiliation(s)
- Mohammad M Khan
- Laboratory of Translational Neurology and Molecular Psychiatry, Department of Biotechnology, Era’s Lucknow Medical College and Hospital, and Faculty of Science, Era University, Lucknow 226003, India
| | - Zaw Ali Khan
- Era’s Lucknow Medical College and Hospital, Era University, Lucknow 226003, India
| | - Mohsin Ali Khan
- Era’s Lucknow Medical College and Hospital, Era University, Lucknow 226003, India
| |
Collapse
|
5
|
Fungfuang W, Srisuksai K, Santativongchai P, Charoenlappanit S, Phaonakrop N, Roytrakul S, Tulayakul P, Parunyakul K. Targeted proteomic analysis reveals that crocodile oil from Crocodylus siamensis may enhance hepatic energy metabolism in rats. Exp Anim 2023; 72:425-438. [PMID: 37032112 PMCID: PMC10658085 DOI: 10.1538/expanim.23-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/02/2023] [Indexed: 04/11/2023] Open
Abstract
The liver is a key organ governing body energy metabolism. Dietary fats influence energy metabolism and mitochondrial functioning. Crocodile oil (CO) is rich in mono- and polyunsaturated fatty acids that contain natural anti-inflammatory and healing properties. Our study examined how CO affects the expressions of liver proteins involved in energy metabolism in rats. Twenty-one male Sprague Dawley rats were divided into three groups and underwent oral gavage with 3 ml/kg of sterile water (N group), CO (CO group), or palm oil (PO group) for 7 weeks. Body weight, energy intake, liver weight, liver indexes, blood lipid profiles, and liver-energy intermediates were measured. The liver proteome was analyzed using shotgun proteomics, and the functions and network interactions of several candidate proteins were predicted using the STITCH v.5.0 software. Body weights, energy intake, liver contents, and lipid profiles did not differ between the groups. However, hepatic oxaloacetate and malate levels were significantly higher in the CO group than in the PO group. Targeted proteomics reveals that 22 out of 1,790 unique proteins in the CO group were involved in energy-generating pathways, including the tricarboxylic acid cycle and oxidative phosphorylation (OXPHOS), and were correlated with the AMP-activated protein kinase signaling pathway. Cluster analysis of 59 differentially expressed proteins showed that OXPHOS-associated proteins were upregulated in the CO group and that three glycolytic metabolism-related proteins were downregulated in the CO group. CO may enhance hepatic energy metabolism by regulating the expressions of energy expenditure-related proteins.
Collapse
Affiliation(s)
- Wirasak Fungfuang
- Kasetsart University Research and Development Institute, Kasetsart University, Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
- Department of Zoology, Faculty of Science, Kasetsart University, Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| | - Krittika Srisuksai
- Department of Zoology, Faculty of Science, Kasetsart University, Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| | - Pitchaya Santativongchai
- Bio-Veterinary Science (International Program), Faculty of Veterinary Medicine, Kasetsart University, Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| | - Sawanya Charoenlappanit
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathum Thani 12120, Thailand
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathum Thani 12120, Thailand
| | - Phitsanu Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Malaiman Road, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Kongphop Parunyakul
- Department of Zoology, Faculty of Science, Kasetsart University, Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
6
|
Liu Y, Wang X, Fu W, Cao Y, Dou W, Duan D, Zhao X, Ma S, Lyu Q. The association between dietary mineral intake and the risk of preeclampsia in Chinese pregnant women: a matched case-control study. Sci Rep 2023; 13:16103. [PMID: 37752229 PMCID: PMC10522594 DOI: 10.1038/s41598-023-43481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023] Open
Abstract
Previous studies on the relationship between dietary minerals and preeclampsia (PE) have given inconsistent results. The aim of this study was to further clarify the relationship between dietary minerals intake and PE in Chinese pregnant women. In this study, 440 pairs of hospital-based preeclamptic and healthy women were matched 1:1. Dietary intake was obtained through a 78-item semi-quantitative food frequency questionnaire. Multivariate conditional logistic regression was used to estimate the odds ratios (ORs) and 95% confidence intervals (CIs). Restricted cubic splines were plotted to evaluate the dose-response relationship between dietary minerals intake and PE. This study found significant inverse associations for dietary intake of calcium, magnesium, phosphorus, iron, copper, manganese and zinc and the risk of PE in both univariate and multivariate models (all P- trend < 0.05). After adjusting for possible confounders, compared with the lowest quartile, the odds ratio of the highest quartile was 0.74 (95% CI 0.56-0.98) for calcium, 0.63 (95% CI 0.42-0.93) for magnesium, 0.45 (95% CI 0.31-0.65) for phosphorus, 0.44 (95% CI 0.30-0.65) for iron, 0.72 (95% CI 0.53-0.97) for copper, 0.66 (95% CI 0.48-0.91) for manganese and 0.38 (95% CI 0.25-0.57) for zinc. In addition, a reverse J-shaped relationship between dietary minerals intake and PE risk was observed (P-overall association < 0.05). In Chinese pregnant women, a higher intake of dietary minerals, including calcium, magnesium, phosphorus, copper, iron, manganese, and zinc was associated with a lower odds of PE.
Collapse
Affiliation(s)
- Yanhua Liu
- Department of Nutrition, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinyi Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450000, Henan, China
- Department of Clinical Nutrition, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenjun Fu
- Department of Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuan Cao
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weifeng Dou
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450000, Henan, China
- Zhengzhou Shuqing Medical College, Zhengzhou, 450064, Henan, China
| | - Dandan Duan
- Department of Clinical Nutrition, Luoyang New Area People's Hospital, Luoyang, 471023, Henan, China
| | - Xianlan Zhao
- Department of Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shunping Ma
- Department of Nutrition, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Quanjun Lyu
- Department of Nutrition, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
7
|
Zhang Z, Liao Q, Pan T, Yu L, Luo Z, Su S, Liu S, Hou M, Li Y, Damba T, Liang Y, Zhou L. BATF relieves hepatic steatosis by inhibiting PD1 and promoting energy metabolism. eLife 2023; 12:RP88521. [PMID: 37712938 PMCID: PMC10503959 DOI: 10.7554/elife.88521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
The rising prevalence of nonalcoholic fatty liver disease (NAFLD) has become a global health threat that needs to be addressed urgently. Basic leucine zipper ATF-like transcription factor (BATF) is commonly thought to be involved in immunity, but its effect on lipid metabolism is not clear. Here, we investigated the function of BATF in hepatic lipid metabolism. BATF alleviated high-fat diet (HFD)-induced hepatic steatosis and inhibited elevated programmed cell death protein (PD)1 expression induced by HFD. A mechanistic study confirmed that BATF regulated fat accumulation by inhibiting PD1 expression and promoting energy metabolism. PD1 antibodies alleviated hepatic lipid deposition. In conclusion, we identified the regulatory role of BATF in hepatic lipid metabolism and that PD1 is a target for alleviation of NAFLD. This study provides new insights into the relationship between BATF, PD1, and NAFLD.
Collapse
Affiliation(s)
- Zhiwang Zhang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Qichao Liao
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Tingli Pan
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Lin Yu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Zupeng Luo
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Songtao Su
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Shi Liu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Menglong Hou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yixing Li
- College of Animal Science and Technology, Guangxi UniversityNanningChina
| | - Turtushikh Damba
- School of Pharmacy, Mongolian National University of Medical SciencesUlan BatorMongolia
| | - Yunxiao Liang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Lei Zhou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| |
Collapse
|
8
|
Li Y, Sun M, Su S, Qi X, Liu S, Pan T, Zhou L, Li Y. Tuberostemonine alleviates high-fat diet-induced obesity and hepatic steatosis by increasing energy consumption. Chem Biol Interact 2023; 381:110545. [PMID: 37236577 DOI: 10.1016/j.cbi.2023.110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Obesity is of public concern worldwide, and it increases the probability of developing a number of comorbid diseases, including NAFLD. Recent research on obesity drugs and health demands have shown the potential of natural plant extracts for preventing and treating obesity and their lack of toxicity and treatment-related side effects. We have demonstrated that tuberostemonine (TS), an alkaloid extracted from the traditional Chinese medicine Stemona tuberosa Lour can inhibit intracellular fat deposition, reduce oxidative stress, increase cellular adenosine triphosphate (ATP), and increase mitochondrial membrane potential. It effectively reduced weight gain and fat accumulation caused by a high-fat diet, and regulated liver function and blood lipid levels. Moreover, it regulate glucose metabolism and improved energy metabolism in mice. TS also decreased high-fat diet-induced obesity and improved lipid and glucose metabolism disorders in mice, with no significant side effects. In conclusion, TS was shown to be a safe alternative for obese patients and might be developed as an antiobesity and anti-nonalcoholic fatty liver drug.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Mingjie Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Songtao Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Xinyi Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Tingli Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
9
|
Liu K, Liu S, Wu C, Wang Y, Zhang Y, Yu J, Liu S, Li X, Qi X, Su S, Qi X, Zhou L, Li Y. Rhynchophylline relieves nonalcoholic fatty liver disease by activating lipase and increasing energy metabolism. Int Immunopharmacol 2023; 117:109948. [PMID: 37012893 DOI: 10.1016/j.intimp.2023.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/13/2023]
Abstract
Hepatic fat metabolism may be altered in the context of overnutrition and obesity, often resulting in the accumulation of triglycerides in hepatocytes and leading to nonalcoholic fatty liver disease (NAFLD). Natural plant alkaloids have demonstrated great potential for the prevention and treatment of NAFLD. However, the role of rhynchophylline (RHY) in lipid metabolism is not clear. We explored the role of RHY in lipid metabolism in cells treated with oleic and palmitic acids to mimic high-fat diet (HFD) conditions. RHY attenuated oleic and palmitic acid-induced increases in triglyceride accumulation in HepG2, AML12, and LMH cells. RHY also increased energy metabolism and reduced oxidative stress. We further investigated the effect of RHY on hepatic lipid metabolism in mice fed an HFD including 40 mg/kg RHY. RHY alleviated hepatic steatosis, reduced fat deposition, promoted energy metabolism, and improved glucose metabolism. We investigated the mechanism responsible for this activity by docking with key proteins of lipid metabolism disorders using Discovery Studio software, which showed that RHY interacted well with lipases. Finally, we found that adding RHY promoted lipase activity and lipolysis. In conclusion, RHY ameliorated HFD-induced NAFLD and its complications by increasing lipase activity.
Collapse
Affiliation(s)
- Kang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Songsong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Chou Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Yuwei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Yurou Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Jingsu Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Xiangling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Xinyu Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Songtao Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Xinyi Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
10
|
Park SH, Lee J, Hwang JT, Chung MY. Physiologic and epigenetic effects of nutrients on disease pathways. Nutr Res Pract 2023; 17:13-31. [PMID: 36777807 PMCID: PMC9884588 DOI: 10.4162/nrp.2023.17.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND/OBJECTIVES Epigenetic regulation by nutrients can influence the development of specific diseases. This study sought to examine the effect of individual nutrients and nutrient families in the context of preventing chronic metabolic diseases via epigenetic regulation. The inhibition of lipid accumulation and inflammation by nutrients including proteins, lipids, vitamins, and minerals were observed, and histone acetylation by histone acetyltransferase (HAT) was measured. Correlative analyses were also performed. MATERIALS/METHODS Nutrients were selected according to information from the Korean Ministry of Food and Drug Safety. Selected nutrient functionalities, including the attenuation of fatty acid-induced lipid accumulation and lipopolysaccharide-mediated acute inflammation were evaluated in mouse macrophage Raw264.7 and mouse hepatocyte AML-12 cells. Effects of the selected nutrients on in vitro HAT inhibition were also evaluated. RESULTS Nitric oxide (NO) production correlated with HAT activity, which was regulated by the amino acids group, suggesting that amino acids potentially contribute to the attenuation of NO production via the inhibition of HAT activity. Unsaturated fatty acids tended to attenuate inflammation by inhibiting NO production, which may be attributable to the inhibition of in vitro HAT activity. In contrast to water-soluble vitamins, the lipid-soluble vitamins significantly decreased NO production. Water- and lipid-soluble vitamins both exhibited significant inhibitory activities against HAT. In addition, calcium and manganese significantly inhibited lipid accumulation, NO production, and HAT activity. CONCLUSIONS Several candidate nutrients and their family members may have roles in the prevention of diseases, including hepatic steatosis and inflammation-related diseases (i.e., nonalcoholic steatohepatitis) via epigenetic regulation. Further studies are warranted to determine which specific amino acids, unsaturated fatty acids and lipid-soluble vitamins or specific minerals influence the development of steatosis and inflammatory-related diseases.
Collapse
Affiliation(s)
- Soo-Hyun Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Korea
| | - Jaein Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Korea.,Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Jin-Taek Hwang
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Korea.,Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Min-Yu Chung
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Korea
| |
Collapse
|
11
|
Luo T, Jiang S, Zhou B, Song Q, Du J, Liu P, Wang X, Song H, Shao C. Protective Effect of Isoorientin on Oleic Acid-Induced Oxidative Damage and Steatosis in Rat Liver Cells. Front Pharmacol 2022; 13:818159. [PMID: 35185572 PMCID: PMC8853441 DOI: 10.3389/fphar.2022.818159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022] Open
Abstract
The harm of nonalcoholic fatty liver disease to human health is increasing, which calls for urgent prevention and treatment of the disease. Isoorientin is an effective ingredient of Chinese herbal medicine with anti-inflammatory and antioxidant effects. However, the effect of isoorientin in nonalcoholic fatty liver disease is still unclear. In this study, combined in vivo and in vitro experiments, through pathological observation, flow cytometry, immunofluorescence and western blot analysis to explore the role of isoorientin in steatosis and reveal its molecular mechanism. The results demonstrated that oleic acid treatment significantly increased the content of ROS and lipid droplets in rat hepatocytes, and promoted the expression of γH2AX, HO-1, PPARγ, SREBP-1c, FAS. The ROS content in the cells of co-treated with isoorientin and oleic acid was significantly reduced compared to the oleic acid group, and the expression of γH2AX, HO-1, PPARγ, SREBP-1c, FAS, and the nuclear translocation of NF-κB p65 were also significantly inhibited. Our data showed that oleic acid induce oxidative damage and steatosis in hepatocytes both in vitro and in vivo, and activate the PPARγ/NF-κB p65 signal pathway. Moreover, isoorientin can significantly reduce oleic acid -induced oxidative damage and steatosis by regulating the PPARγ/NF-kB p65 signal pathway.
Collapse
Affiliation(s)
- Tongwang Luo
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Tongwang Luo, ; Houhui Song, ; Chunyan Shao,
| | - Sheng Jiang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Bin Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Quanjiang Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jing Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Ping Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xiaodu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Tongwang Luo, ; Houhui Song, ; Chunyan Shao,
| | - Chunyan Shao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, China
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Tongwang Luo, ; Houhui Song, ; Chunyan Shao,
| |
Collapse
|
12
|
Huang T, Yu L, Pan H, Ma Z, Wu T, Zhang L, Liu K, Qi Q, Miao W, Song Z, Zhang H, Zhou L, Li Y. Integrated Transcriptomic and Translatomic Inquiry of the Role of Betaine on Lipid Metabolic Dysregulation Induced by a High-Fat Diet. Front Nutr 2021; 8:751436. [PMID: 34708066 PMCID: PMC8542779 DOI: 10.3389/fnut.2021.751436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
An excessive high-fat/energy diet is a major cause of obesity and linked complications, such as non-alcoholic fatty liver disease (NAFLD). Betaine has been shown to effectively improve hepatic lipid metabolism. However, the mechanistic basis for this improvement is largely unknown. Herein, integration of mRNA sequencing and ribosome footprints profiling (Ribo-seq) was used to investigate the means by which betaine alleviates liver lipid metabolic disorders induced by a high-fat diet. For the transcriptome, gene set enrichment analysis demonstrated betaine to reduce liver steatosis by up-regulation of fatty acid beta oxidation, lipid oxidation, and fatty acid catabolic processes. For the translatome, 574 differentially expressed genes were identified, 17 of which were associated with the NAFLD pathway. By combined analysis of transcriptome and translatome, we found that betaine had the greater effect on NAFLD at the translational level. Further, betaine decreased translational efficiency (TE) for IDI1, CYP51A1, TM7SF2, and APOA4, which are related to lipid biosynthesis. In summary, this study demonstrated betaine alleviating lipid metabolic dysfunction at the translational level. The transcriptome and translatome data integration approach used herein provides for a new understanding of the means by which to treat NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
13
|
Zhang Z, Pan T, Sun Y, Liu S, Song Z, Zhang H, Li Y, Zhou L. Dietary calcium supplementation promotes the accumulation of intramuscular fat. J Anim Sci Biotechnol 2021; 12:94. [PMID: 34503581 PMCID: PMC8431880 DOI: 10.1186/s40104-021-00619-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the livestock industry, intramuscular fat content is a key factor affecting meat quality. Many studies have shown that dietary calcium supplementation is closely related to lipid metabolism. However, few studies have examined the relationship between dietary calcium supplementation and intramuscular fat accumulation. METHODS Here, we used C2C12 cells, C57BL/6 mice (n = 8) and three-way cross-breeding pigs (Duroc×Landrace×Large white) (n = 10) to study the effect of calcium addition on intramuscular fat accumulation. In vitro, we used calcium chloride to adjust the calcium levels in the medium (2 mmol/L or 3 mmol/L). Then we measured various indicators. In vivo, calcium carbonate was used to regulate calcium levels in feeds (Mice: 0.5% calcium or 1.2% calcium) (Pigs: 0.9% calcium or 1.5% calcium). Then we tested the mice gastrocnemius muscle triglyceride content, pig longissimus dorsi muscle meat quality and lipidomics. RESULTS In vitro, calcium addition (3 mmol/L) had no significant effect on cell proliferation, but promoted the differentiation of C2C12 cells into slow-twitch fibers. Calcium supplementation increased triglyceride accumulation in C2C12 cells. Calcium addition increased the number of mitochondria and also increased the calcium level in the mitochondria and reduced the of key enzymes activity involved in β-oxidation such as acyl-coenzyme A dehydrogenase. Decreasing mitochondrial calcium level can alleviate lipid accumulation induced by calcium addition. In addition, calcium addition also reduced the glycolytic capacity and glycolytic conversion rate of C2C12 cells. In vivo, dietary calcium supplementation (1.2%) promoted the accumulation of triglycerides in the gastrocnemius muscle of mice. Dietary calcium supplementation (1.5%) had no effect on pig weight, but significantly improved the flesh color of the longissimus dorsi muscle, reduced the backfat thickness and increased intramuscular fat content in pigs. Besides, calcium addition had no effect on longissimus dorsi pH, electrical conductivity and shear force. CONCLUSIONS These results suggest that calcium addition promotes intramuscular fat accumulation by inhibiting the oxidation of fatty acids. These findings provide a new tool for increasing intramuscular fat content and an economical strategy for improving meat quality.
Collapse
Affiliation(s)
- Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Guangxi Zhuang Autonomous Region, Nanning, 530004, People's Republic of China
| | - Tingli Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Guangxi Zhuang Autonomous Region, Nanning, 530004, People's Republic of China
| | - Yu Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Guangxi Zhuang Autonomous Region, Nanning, 530004, People's Republic of China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Guangxi Zhuang Autonomous Region, Nanning, 530004, People's Republic of China
| | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Guangxi Zhuang Autonomous Region, Nanning, 530004, People's Republic of China
| | - Haojie Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Guangxi Zhuang Autonomous Region, Nanning, 530004, People's Republic of China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Guangxi Zhuang Autonomous Region, Nanning, 530004, People's Republic of China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Guangxi Zhuang Autonomous Region, Nanning, 530004, People's Republic of China.
| |
Collapse
|