1
|
Cui X, Sun Q, Wang H. Targeting fibroblast growth factor (FGF)-21: a promising strategy for metabolic dysfunction-associated steatotic liver disease treatment. Front Pharmacol 2025; 16:1510322. [PMID: 40331190 PMCID: PMC12052895 DOI: 10.3389/fphar.2025.1510322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Metabolic dysfunction-associated steatitic liver disease (MASLD) is the predominant chronic liver disease, with its incidence increasing year by year. It has emerged as the most rapidly increasing contributor to liver-related mortality worldwide and is becoming a principal cause of end-stage liver disorders, primarily cancer of the liver and liver transplantation, hence putting a substantial economic burden on public health. The approval of Resmetirom signifies significant advancement in the treatment of metabolic dysfunction-associated steatohepatitis (MASH); nonetheless, the heterogeneity of MASLD renders it challenging for a single medication to address the requirements of all patients. Consequently, it is essential to formulate varied therapeutic approaches for distinct pathogenic causes and phases of disease. Fibroblast growth factor 21 (FGF21), a member of the fibroblast growth factor family, plays a positive and protective role in MASLD. It attenuates hepatic steatosis and lipotoxicity, ameliorates insulin resistance (IR), reduces oxidative stress, endoplasmic reticulum (ER) stress, and inflammation, as well as possesses anti-fibrotic effects. As a result, FGF21 has the potential to treat MASLD. In this review, we will address the possible mechanisms of FGF21 therapy for MASLD to facilitate the development of clinical therapies targeting FGF21 for MASLD.
Collapse
Affiliation(s)
- Xinyue Cui
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Quanhao Sun
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haiqiang Wang
- Department of Gastroenterology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Li S, Zou T, Chen J, Li J, You J. Fibroblast growth factor 21: An emerging pleiotropic regulator of lipid metabolism and the metabolic network. Genes Dis 2024; 11:101064. [PMID: 38292170 PMCID: PMC10825286 DOI: 10.1016/j.gendis.2023.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/20/2023] [Accepted: 06/27/2023] [Indexed: 02/01/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) was originally identified as an important metabolic regulator which plays a crucial physiological role in regulating a variety of metabolic parameters through the metabolic network. As a novel multifunctional endocrine growth factor, the role of FGF21 in the metabolic network warrants extensive exploration. This insight was obtained from the observation that the FGF21-dependent mechanism that regulates lipid metabolism, glycogen transformation, and biological effectiveness occurs through the coordinated participation of the liver, adipose tissue, central nervous system, and sympathetic nerves. This review focuses on the role of FGF21-uncoupling protein 1 (UCP1) signaling in lipid metabolism and how FGF21 alleviates non-alcoholic fatty liver disease (NAFLD). Additionally, this review reveals the mechanism by which FGF21 governs glucolipid metabolism. Recent research on the role of FGF21 in the metabolic network has mostly focused on the crucial pathway of glucolipid metabolism. FGF21 has been shown to have multiple regulatory roles in the metabolic network. Since an adequate understanding of the concrete regulatory pathways of FGF21 in the metabolic network has not been attained, this review sheds new light on the metabolic mechanisms of FGF21, explores how FGF21 engages different tissues and organs, and lays a theoretical foundation for future in-depth research on FGF21-targeted treatment of metabolic diseases.
Collapse
Affiliation(s)
| | | | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jiaming Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
3
|
Opare-Addo PA, Sarfo FS, Aikins M, Bediako SA, Ovbiagele B. Epigenetics as a target to mitigate excess stroke risk in people of African ancestry: A scoping review. J Stroke Cerebrovasc Dis 2024; 33:107585. [PMID: 38253246 PMCID: PMC11060795 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Globally, individuals of African ancestry have a relatively greater stroke preponderance compared to other racial/ethnic groups. The higher prevalence of traditional stroke risk factors in this population, however, only partially explains this longstanding disparity. Epigenetic signatures are transgenerational and could be a plausible therapeutic target to further bend the stroke disparities curve for people of African ancestry. There is, however, limited data on epigenetics and stroke risk in this population. PURPOSE To examine existing evidence and knowledge gaps on the potential contribution of epigenetics to excess stroke risk in people of African ancestry and avenues for mitigation. MATERIALS AND METHODS We conducted a scoping review of studies published between January 2003 and July 2023, on epigenetics and stroke risk. We then summarized our findings, highlighting the results for people of African ancestry. RESULTS Of 104 studies, there were only 6 studies that specifically looked at epigenetic mechanisms and stroke risk in people of African ancestry. Results of these studies show how patterns of DNA methylation and non-coding RNA interact with lifestyle choices, xenobiotics, and FVIII levels to raise stroke risk in people of African ancestry. However, no studies evaluated epigenetic patterns as actionable targets for the influence of psychosocial stressors or social context and excess stroke risk in this population (versus others). Also, no studies interrogated the role of established or novel therapeutic agents with the potential to reprogram DNA by adding or removing epigenetic markers in people of African ancestry. CONCLUSION Epigenetics potentially offers a promising target for modifying the effects of lifestyle, environmental exposures, and other factors that differentially affect people of African ancestry and place them at relatively greater stroke risk compared to other populations. Studies that precisely assess the pathways by which epigenetic mechanisms modulate population-specific disparities in the risk of stroke are needed.
Collapse
Affiliation(s)
| | - Fred Stephen Sarfo
- Komfo Anokye Teaching Hospital, Kumasi, Ghana; Neurology Division, Kwame Nkrumah University of Science & Technology, P. O. Box 1934, Kumasi, Ghana.
| | | | | | | |
Collapse
|
4
|
Long Y, Mao C, Liu S, Tao Y, Xiao D. Epigenetic modifications in obesity-associated diseases. MedComm (Beijing) 2024; 5:e496. [PMID: 38405061 PMCID: PMC10893559 DOI: 10.1002/mco2.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
The global prevalence of obesity has reached epidemic levels, significantly elevating the susceptibility to various cardiometabolic conditions and certain types of cancer. In addition to causing metabolic abnormalities such as insulin resistance (IR), elevated blood glucose and lipids, and ectopic fat deposition, obesity can also damage pancreatic islet cells, endothelial cells, and cardiomyocytes through chronic inflammation, and even promote the development of a microenvironment conducive to cancer initiation. Improper dietary habits and lack of physical exercise are important behavioral factors that increase the risk of obesity, which can affect gene expression through epigenetic modifications. Epigenetic alterations can occur in early stage of obesity, some of which are reversible, while others persist over time and lead to obesity-related complications. Therefore, the dynamic adjustability of epigenetic modifications can be leveraged to reverse the development of obesity-associated diseases through behavioral interventions, drugs, and bariatric surgery. This review provides a comprehensive summary of the impact of epigenetic regulation on the initiation and development of obesity-associated cancers, type 2 diabetes, and cardiovascular diseases, establishing a theoretical basis for prevention, diagnosis, and treatment of these conditions.
Collapse
Affiliation(s)
- Yiqian Long
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Chao Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaChina
| | - Shuang Liu
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaChina
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic SurgerySecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Desheng Xiao
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
5
|
Huang CH, Lee WJ, Huang YL, Tsai TF, Chen LK, Lin CH. Sebacic Acid as a Potential Age-Related Biomarker of Liver Aging: Evidence Linking Mice and Human. J Gerontol A Biol Sci Med Sci 2023; 78:1799-1808. [PMID: 37148322 DOI: 10.1093/gerona/glad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 05/08/2023] Open
Abstract
The aging process is complicated and involves diverse organ dysfunction; furthermore, the biomarkers that are able to reflect biological aging are eagerly sought after to monitor the system-wide decline associated with the aging process. To address this, we performed a metabolomics analysis using a longitudinal cohort study from Taiwan (N = 710) and established plasma metabolomic age using a machine learning algorithm. The resulting estimation of age acceleration among the older adults was found to be correlated with HOMA-insulin resistance. In addition, a sliding window analysis was used to investigate the undulating decrease in hexanoic and heptanoic acids that occurs among the older adults at different ages. A comparison of the metabolomic alterations associated with aging between humans and mice implied that ω-oxidation of medium-chain fatty acids was commonly dysregulated in older subjects. Among these fatty acids, sebacic acid, an ω-oxidation product produced by the liver, was significantly decreased in the plasma of both older humans and aged mice. Notably, an increase in the production and consumption of sebacic acid within the liver tissue of aged mice was observed, along with an elevation of pyruvate-to-lactate conversion. Taken together, our study reveals that sebacic acid and metabolites of ω-oxidation are the common aging biomarkers in both humans and mice. The further analysis suggests that sebacic acid may play an energetic role in supporting the production of acetyl-CoA during liver aging, and thus its alteration in plasma concentration potentially reflects the aging process.
Collapse
Affiliation(s)
- Chen-Hua Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Ju Lee
- Department of Geriatric Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Family Medicine, Taipei Veterans General Hospital Yuanshan Branch, Yilan, Taiwan
| | - Yi-Long Huang
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
6
|
Wang J, Zhang F, Yang W, Gao D, Yang L, Yu C, Chen C, Li X, Zhang J. FGF1 ameliorates obesity-associated hepatic steatosis by reversing IGFBP2 hypermethylation. FASEB J 2023; 37:e22881. [PMID: 36934380 PMCID: PMC11977529 DOI: 10.1096/fj.202201950r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/17/2023] [Accepted: 03/06/2023] [Indexed: 03/20/2023]
Abstract
Obesity is a major contributing factor for metabolic-associated fatty liver disease (MAFLD). Fibroblast growth factor (FGF) 1 is the first paracrine FGF family member identified to exhibit promising metabolic regulatory properties capable of conferring glucose-lowering and insulin-sensitizing effect. This study explores the role and molecular underpinnings of FGF1 in obesity-associated hepatic steatosis. In a mouse high-fat diet (HFD)-induced MAFLD model, chronic treatment with recombinant FGF1(rFGF1) was found to effectively reduce the severity of insulin resistance, hyperlipidemia, and inflammation. FGF1 treatment decreased lipid accumulation in the mouse liver and palmitic acid-treated AML12 cells. These effects were associated with decreased mature form SREBF1 expression and its target genes FASN and SCD1. Interestingly, we uncovered that rFGF1 significantly induced IGFBP2 expression at both mRNA and protein levels in HFD-fed mouse livers and cultured hepatocytes treated with palmitic acid. Adeno-associated virus-mediated IGFBP2 suppression significantly diminished the therapeutic benefit of rFGF1 on MAFLD-associated phenotypes, indicating that IGFBP2 plays a crucial role in the FGF1-mediated reduction of hepatic steatosis. Further analysis revealed that rFGF1 treatment reduces the recruitment of DNA methyltransferase 3 alpha to the IGFBP2 genomic locus, leading to decreased IGFBP2 gene methylation and increased mRNA and protein expression. Collectively, our findings reveal FGF1 modulation of lipid metabolism via epigenetic regulation of IGFBP2 expression, and unravel the therapeutic potential of the FGF1-IGFBP2 axis in metabolic diseases associated with obesity.
Collapse
Affiliation(s)
- Jie Wang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's HospitalQuzhouChina
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Feng Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's HospitalQuzhouChina
| | - Weiwei Yang
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Dandan Gao
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's HospitalQuzhouChina
| | - Linglong Yang
- Medical Research CenterThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Chenhua Yu
- Medical Research CenterThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Chengshui Chen
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's HospitalQuzhouChina
| | - Xiaokun Li
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Jin‐San Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's HospitalQuzhouChina
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Medical Research CenterThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
7
|
Britsemmer JH, Krause C, Taege N, Geißler C, Lopez-Alcantara N, Schmidtke L, Naujack AM, Wagner J, Wolter S, Mann O, Kirchner H. Fatty Acid Induced Hypermethylation in the Slc2a4 Gene in Visceral Adipose Tissue Is Associated to Insulin-Resistance and Obesity. Int J Mol Sci 2023; 24:ijms24076417. [PMID: 37047391 PMCID: PMC10094548 DOI: 10.3390/ijms24076417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
De novo lipogenesis (DNL) in visceral adipose tissue (VAT) is associated with systemic insulin sensitivity. DNL in VAT is regulated through ChREBP activity and glucose uptake through Glut4 (encoded by Slc2a4). Slc2a4 expression, ChREBP activity, and DNL are decreased in obesity, the underlying cause however remains unidentified. We hypothesize that increased DNA methylation in an enhancer region of Slc2a4 decreases Slc2a4 expression in obesity and insulin resistance. We found that SLC2A4 expression in VAT of morbidly obese subjects with high HbA1c (>6.5%, n = 35) is decreased, whereas DNA methylation is concomitantly increased compared to morbidly obese subjects with low HbA1c (≤6.5%, n = 65). In diet-induced obese (DIO) mice, DNA methylation of Slc2a4 persistently increases with the onset of obesity and insulin resistance, while gene expression progressively decreases. The regulatory impact of DNA methylation in the investigated enhancer region on SLC2A4 gene expression was validated with a reporter gene assay. Additionally, treatment of 3T3 pre-adipocytes with palmitate/oleate during differentiation decreased DNA methylation and increased Slc2a4 expression. These findings highlight a potential regulation of Slc2a4 by DNA methylation in VAT, which is induced by fatty acids and may play a role in the progression of obesity and insulin resistance in humans.
Collapse
|
8
|
Hong X, Wu Z, Cao W, Lv J, Yu C, Huang T, Sun D, Liao C, Pang Y, Pang Z, Cong L, Wang H, Wu X, Liu Y, Gao W, Li L. Longitudinal Association of DNA Methylation With Type 2 Diabetes and Glycemic Traits: A 5-Year Cross-Lagged Twin Study. Diabetes 2022; 71:2804-2817. [PMID: 36170668 DOI: 10.2337/db22-0513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023]
Abstract
Investigators of previous cross-sectional epigenome-wide association studies (EWAS) in adults have reported hundreds of 5'-cytosine-phosphate-guanine-3' (CpG) sites associated with type 2 diabetes mellitus (T2DM) and glycemic traits. However, the results from EWAS have been inconsistent, and longitudinal observations of these associations are scarce. Furthermore, few studies have investigated whether DNA methylation (DNAm) could be modified by smoking, drinking, and glycemic traits, which have broad impacts on genome-wide DNAm and result in altering the risk of T2DM. Twin studies provide a valuable tool for epigenetic studies, as twins are naturally matched for genetic information. In this study, we conducted a systematic literature search in PubMed and Embase for EWAS, and 214, 33, and 117 candidate CpG sites were selected for T2DM, HbA1c, and fasting blood glucose (FBG). Based on 1,070 twins from the Chinese National Twin Registry, 67, 17, and 16 CpG sites from previous studies were validated for T2DM, HbA1c, and FBG. Longitudinal review and blood sampling for phenotypic information and DNAm were conducted twice in 2013 and 2018 for 308 twins. A cross-lagged analysis was performed to examine the temporal relationship between DNAm and T2DM or glycemic traits in the longitudinal data. A total of 11 significant paths from T2DM to subsequent DNAm and 15 paths from DNAm to subsequent T2DM were detected, suggesting both directions of associations. For glycemic traits, we detected 17 cross-lagged associations from baseline glycemic traits to subsequent DNAm, and none were from the other cross-lagged direction, indicating that CpG sites may be the consequences, not the causes, of glycemic traits. Finally, a longitudinal mediation analysis was performed to explore the mediation effects of DNAm on the associations of smoking, drinking, and glycemic traits with T2DM. No significant mediations of DNAm in the associations linking smoking and drinking with T2DM were found. In contrast, our study suggested a potential role of DNAm of cg19693031, cg00574958, and cg04816311 in mediating the effect of altered glycemic traits on T2DM.
Collapse
Affiliation(s)
- Xuanming Hong
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhiyu Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Weihua Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Chunxiao Liao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zengchang Pang
- Qingdao Center for Disease Control and Prevention, Qingdao, China
| | - Liming Cong
- Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| | - Hua Wang
- Jiangsu Center for Disease Control and Prevention, Nanjing, China
| | - Xianping Wu
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Yu Liu
- Heilongjiang Center for Disease Control and Prevention, Harbin, China
| | - Wenjing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
9
|
Water extract from artichoke ameliorates high-fat diet-induced non-alcoholic fatty liver disease in rats. BMC Complement Med Ther 2022; 22:308. [PMID: 36424606 PMCID: PMC9686119 DOI: 10.1186/s12906-022-03794-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The "multiple-hit" hypothesis is currently the most widely accepted theory for non-alcoholic fatty liver disease (NAFLD) pathogenesis. The present study aimed to investigate the effects of the water extract of artichoke (WEA) on NAFLD and its underlying mechanism. METHODS Rats were fed a high-fat diet (HFD) for 8 weeks to induce NAFLD and then treated with WEA at three doses (0.4, 0.8, and 1.6 g/kg body weight, BW) for 8 weeks. At the end of the intervention, serum biochemical parameters, hepatic antioxidant capacity, hepatic levels of pro-inflammatory cytokines, liver histopathology, hepatic inflammatory gene and lipid metabolism gene expression, and Akt and p-Akt (S473) protein levels were determined. RESULTS The body weight, liver weight, liver triglyceride (TG) and serum levels of TG, total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, aspartate aminotransferase, glucose, and insulin were all significantly reduced in the WEA-treated groups (0.8 and 1.6 g/kg BW) compared with the HFD group (P < 0.01). A significant decrease in hepatic content of malondialdehyde (P < 0.01) and glutathione (P < 0.01), as well as a significant increase in liver superoxide dismutase activity (P < 0.01) were observed in WEA-treated groups (0.8 and 1.6 g/kg BW) compared to the HFD group. In addition, there was a marked decrease in the hepatic levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in the WEA-treated groups compared to the HFD group (P < 0.01). In line with these findings, the histopathology of the livers of rats treated with WEA (0.8 and 1.6 g/kg BW) showed a decrease in steatosis, ballooning, and lobular inflammation. Mechanistically, the reduced hepatic TG content might be related to the downregulation of lipogenic genes (SREBP1c, FASN, SCD1) and upregulation of lipolytic gene (PPARα), and the improved insulin signaling might be associated with the observed increase in antioxidant activity and reduction in inflammation in the WEA-treated groups. CONCLUSION The hepatoprotective role of WEA in NAFLD may be attributed to its anti-steatotic, antioxidant, anti-inflammatory, and anti-insulin resistance effects.
Collapse
|
10
|
Lee CG, Lee SJ, Park S, Choi SE, Song MW, Lee HW, Kim HJ, Kang Y, Lee KW, Kim HM, Kwak JY, Lee IJ, Jeon JY. In Vivo Two-Photon Imaging Analysis of Dynamic Degradation of Hepatic Lipid Droplets in MS-275-Treated Mouse Liver. Int J Mol Sci 2022; 23:ijms23179978. [PMID: 36077368 PMCID: PMC9456374 DOI: 10.3390/ijms23179978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
The accumulation of hepatic lipid droplets (LDs) is a hallmark of non-alcoholic fatty liver disease (NAFLD). Appropriate degradation of hepatic LDs and oxidation of complete free fatty acids (FFAs) are important for preventing the development of NAFLD. Histone deacetylase (HDAC) is involved in the impaired lipid metabolism seen in high-fat diet (HFD)-induced obese mice. Here, we evaluated the effect of MS-275, an inhibitor of HDAC1/3, on the degradation of hepatic LDs and FFA oxidation in HFD-induced NAFLD mice. To assess the dynamic degradation of hepatic LDs and FFA oxidation in fatty livers of MS-275-treated HFD C57BL/6J mice, an intravital two-photon imaging system was used and biochemical analysis was performed. The MS-275 improved hepatic metabolic alterations in HFD-induced fatty liver by increasing the dynamic degradation of hepatic LDs and the interaction between LDs and lysozyme in the fatty liver. Numerous peri-droplet mitochondria, lipolysis, and lipophagy were observed in the MS-275-treated mouse fatty liver. Biochemical analysis revealed that the lipolysis and autophagy pathways were activated in MS-275 treated mouse liver. In addition, MS-275 reduced the de novo lipogenesis, but increased the mitochondrial oxidation and the expression levels of oxidation-related genes, such as PPARa, MCAD, CPT1b, and FGF21. Taken together, these results suggest that MS-275 stimulates the degradation of hepatic LDs and mitochondrial free fatty acid oxidation, thus protecting against HFD-induced NAFLD.
Collapse
Affiliation(s)
- Chang-Gun Lee
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Soo-Jin Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Gyeonggi-do, Korea
| | - Seokho Park
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
- Department of Biomedical Science, The Graduate School, Ajou University, Suwon 16499, Gyeonggi-do, Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Min-Woo Song
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Hyo Won Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Gyeonggi-do, Korea
- Department of Chemistry, Ajou University, Suwon 16499, Gyeonggi-do, Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Hwan Myung Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Gyeonggi-do, Korea
- Department of Chemistry, Ajou University, Suwon 16499, Gyeonggi-do, Korea
| | - Jong-Young Kwak
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Gyeonggi-do, Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
- Correspondence: (J.-Y.K.); (J.Y.J.); Tel.: +82-31-219-4487 (J.-Y.K.); +82-31-219-7459 (J.Y.J.); Fax: +82-31-219-5069 (J.-Y.K.); +82-31-219-4497 (J.Y.J.)
| | - In-Jeong Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Gyeonggi-do, Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
- Correspondence: (J.-Y.K.); (J.Y.J.); Tel.: +82-31-219-4487 (J.-Y.K.); +82-31-219-7459 (J.Y.J.); Fax: +82-31-219-5069 (J.-Y.K.); +82-31-219-4497 (J.Y.J.)
| |
Collapse
|