1
|
Larnder AH, Manges AR, Murphy RA. The estrobolome: Estrogen-metabolizing pathways of the gut microbiome and their relation to breast cancer. Int J Cancer 2025. [PMID: 40177842 DOI: 10.1002/ijc.35427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025]
Abstract
Increasing evidence links the gut microbiome to carcinogenesis. Disruptions in estrogen regulation by the estrobolome-gut microbiota with estrogen-related functions-may promote breast cancer. However, precise information on estrobolome targets and their underlying mechanisms is limited. This review identifies relevant targets for measuring the estrobolome, focusing on enzymes and microbial taxa involved in processing estrogens, precursors, metabolites, and phytoestrogens, to facilitate the exploration of potential links to breast cancer. Evidence from breast cancer case-control studies is synthesized to assess alignment with these targets, highlight gaps in the evidence, and suggest new paths forward. Findings from case-control studies were heterogeneous and showed limited alignment with estrobolome targets, with only Escherichia coli and Roseburia inulinivorans identified as differentially abundant and functionally relevant between cases and controls. The lack of compelling evidence for estrobolome-specific mechanisms may reflect measurement challenges or may suggest that broader ecological changes in the microbiome, which influence a network of interacting mechanisms, are more influential for carcinogenesis. To clarify the estrobolome's role in breast cancer, future research should use advanced sequencing techniques and methods such as metabolomics and transcriptomics, while considering clinical and behavioral factors that may modify estrobolome mechanisms.
Collapse
Affiliation(s)
- Ashley H Larnder
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Amee R Manges
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Rachel A Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
- Cancer Control Research, BC Cancer, Vancouver, Canada
| |
Collapse
|
2
|
Mai H, Liu C, Fu B, Ji X, Chen M, Zhang Y, Lin Y, Chen J, Song Y, Gu S. Carnosic acid attenuates diabetic retinopathy via the SIRT1 signaling pathway: neuroprotection and endothelial cell preservation. Am J Transl Res 2025; 17:2293-2310. [PMID: 40225985 PMCID: PMC11982880 DOI: 10.62347/fknz9461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/07/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE To explore the therapeutic effects of Carnosic acid (CA) on diabetic retinopathy (DR), a complication of diabetes mellitus (DM) characterized by retinal neuronal damage induced by oxidative stress. METHODS DR was induced in rodent models via streptozotocin (STZ) administration, while human retinal microvascular endothelial cells (HRMECs) were cultured in high-glucose (HG) conditions. The effects of CA on oxidative stress, inflammation, and apoptotic signaling were evaluated by quantifying relevant biomarkers. RESULTS CA treatment significantly increased the expression of sirtuin 1, which was reduced in both STZ-treated rats and HG-exposed HRMECs, as confirmed by polymerase chain reaction (PCR) analysis. CA alleviated oxidative stress, inflammation, and apoptosis in STZ-induced DR models. In vitro, CA exhibited a dose-dependent enhancement of SIRT1 expression, providing substantial protection against HG-induced damage in HRMECs. This protective effect involved the suppression of oxidative mediators, reduction of pro-inflammatory cytokine release, and inhibition of apoptotic pathways. Additionally, CA prevented retinal ferroptosis by activating the SIRT1/p53/solute carrier family 7 member 11 (SLC7A11) pathway both in vivo and in vitro. CONCLUSION This study suggests that CA alleviates DR by activating SIRT1, leading to decreased inflammation, apoptosis, and oxidative stress.
Collapse
Affiliation(s)
- Huade Mai
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Chenghong Liu
- Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Biwei Fu
- Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Xinbo Ji
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Minghui Chen
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Yunbo Zhang
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Yunyun Lin
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Juming Chen
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Yanling Song
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Shenhong Gu
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| |
Collapse
|
3
|
Wang Z, Liu S, Li S, Wei F, Lu X, Zhao P, Sun C, Yao J. Jingfang Granules alleviates OVA-induced allergic rhinitis through regulating endoplasmic reticulum stress signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119039. [PMID: 39510425 DOI: 10.1016/j.jep.2024.119039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/12/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jingfang Granules (JF) is a modified herbal compound preparation that is empirically used in clinical practice for the treatment of allergic diseases. Nevertheless, the role of JF in allergic rhinitis (AR) has yet to be demonstrated, and its potential mechanisms of action remain to be fully evaluated. AIM OF STUDY The objective of this research is to examine the underlying mechanisms by which JF can be used to treat AR. This will be achieved through the use of an ovalbumin (OVA)/aluminum hydroxide AR model in mice. MATERIALS AND METHODS ICR mice were administered an intraperitoneal (i.p.) injection of OVA/aluminium hydroxide in order to permit the establishment of an AR model. Following the intragastric administration of JF to the mice, testing nose scratching and sneezing behavior in mice to determine modeling status, and stained transverse sections of the mouse nose using the Hematoxylin and Eosin (H&E) method were in vitro evaluated to assess the histological effects of JF on mice with AR. The regulatory network was subjected to proteomic and metabolomic investigation. The expression of serum cytokines as well as histamine (HIS) was detected using ELISA kits. Protein expression in nasal mucosal tissues was identified through the use of a Western blot. RESULTS JF demonstrated a notable reduction in nose-scratching and sneezing in AR mice. Concurrently, JF markedly reduced IgE, IL-4, IL-6, IL-13, TNF-α and HIS levels while elevating IFN-γ levels in the serum of AR mice. This was achieved by inhibiting the endoplasmic reticulum (ER) stress-related protein associated proteins including GADD and ATF4, p-eIF2α, p-IRE1α, XBP1s and p-PERK. Proteomics, metabolomics, Western blotting and Quantitative Real-time polymerase chain reaction (qPCR) results confirmed that JF inhibits the glycolysis/arginine biosynthesis pathway by suppressing the ER stress (ERs) signaling pathway, which in turn inhibits the inflammatory response. CONCLUSION Findings from the present study indicate that JF is an efficacious treatment for OVA/aluminum hydroxide-induced nasal mucosal injury and inflammation in mice. Furthermore, the study demonstrated that JF exhibited anti-AR clinic pharmacological effects by modulating the ERs signaling pathway and inhibiting glycolysis as well as arginine biosynthesis.
Collapse
Affiliation(s)
- Zhikang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China
| | - Shujun Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shirong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fangjiao Wei
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoyan Lu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China; College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, China.
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| |
Collapse
|
4
|
Gutiérrez-Brito JA, Lomelí-Nieto JÁ, Muñoz-Valle JF, Oregon-Romero E, Corona-Angeles JA, Hernández-Bello J. Sex hormones and allergies: exploring the gender differences in immune responses. FRONTIERS IN ALLERGY 2025; 5:1483919. [PMID: 39840271 PMCID: PMC11747284 DOI: 10.3389/falgy.2024.1483919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/22/2024] [Indexed: 01/23/2025] Open
Abstract
Allergies are closely associated with sex-related hormonal variations that influence immune function, leading to distinct symptom profiles. Similar sex-based differences are observed in other immune disorders, such as autoimmune diseases. In allergies, women exhibit a higher prevalence of atopic conditions, such as allergic asthma and eczema, in comparison to men. However, age-related changes play a significant role because men have a higher incidence of allergies until puberty, and then comes a switch ratio of prevalence and severity in women. Investigations into the mechanisms of how the hormones influence the development of these diseases are crucial to understanding the molecular, cellular, and pathological aspects. Sex hormones control the reproductive system and have several immuno-modulatory effects affecting immune cells, including T and B cell development, antibody production, lymphoid organ size, and lymphocyte death. Moreover, studies have suggested that female sex hormones amplify memory immune responses, which may lead to an excessive immune response impacting the pathogenesis, airway hyperresponsiveness, inflammation of airways, and mucus production of allergic diseases. The evidence suggests that estrogens enhance immune humoral responses, autoimmunity, mast cell reactivity, and delayed IV allergic reactions, while androgens, progesterone, and glucocorticoids suppress them. This review explores the relationship between sex hormones and allergies, including epidemiological data, experimental findings, and insights from animal models. We discuss the general properties of these hormones, their effects on allergic processes, and clinical observations and therapeutic results. Finally, we describe hypersensitivity reactions to these hormones.
Collapse
Affiliation(s)
| | | | | | | | | | - Jorge Hernández-Bello
- Research Institute of Biomedical Sciences, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
5
|
Jia M, Ning F, Wen J, Wang X, Chen J, Hu J, Chen X, Liu Z. Secoisolariciresinol diglucoside attenuates neuroinflammation and cognitive impairment in female Alzheimer's disease mice via modulating gut microbiota metabolism and GPER/CREB/BDNF pathway. J Neuroinflammation 2024; 21:201. [PMID: 39135052 PMCID: PMC11320852 DOI: 10.1186/s12974-024-03195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Gender is a significant risk factor for late-onset Alzheimer's disease (AD), often attributed to the decline of estrogen. The plant estrogen secoisolariciresinol diglucoside (SDG) has demonstrated anti-inflammatory and neuroprotective effects. However, the protective effects and mechanisms of SDG in female AD remain unclear. METHODS Ten-month-old female APPswe/PSEN1dE9 (APP/PS1) transgenic mice were treated with SDG to assess its potential ameliorative effects on cognitive impairments in a female AD model through a series of behavioral and biochemical experiments. Serum levels of gut microbial metabolites enterodiol (END) and enterolactone (ENL) were quantified using HPLC-MS. Correlation analysis and broad-spectrum antibiotic cocktail (ABx) treatment were employed to demonstrate the involvement of END and ENL in SDG's cognitive improvement effects in female APP/PS1 mice. Additionally, an acute neuroinflammation model was constructed in three-month-old C57BL/6J mice treated with lipopolysaccharide (LPS) and subjected to i.c.v. injection of G15, an inhibitor of G protein-coupled estrogen receptor (GPER), to investigate the mediating role of the estrogen receptor GPER in the cognitive benefits conferred by SDG. RESULTS SDG administration resulted in significant improvements in spatial, recognition, and working memory in female APP/PS1 mice. Neuroprotective effects were observed, including enhanced expression of CREB/BDNF and PSD-95, reduced β-amyloid (Aβ) deposition, and decreased levels of TNF-α, IL-6, and IL-10. SDG also altered gut microbiota composition, increasing serum levels of END and ENL. Correlation analysis indicated significant associations between END, ENL, cognitive performance, hippocampal Aβ-related protein mRNA expression, and cortical neuroinflammatory cytokine levels. The removal of gut microbiota inhibited END and ENL production and eliminated the neuroprotective effects of SDG. Furthermore, GPER was found to mediate the inhibitory effects of SDG on neuroinflammatory responses. CONCLUSION These findings suggest that SDG promotes the production of gut microbial metabolites END and ENL, which inhibit cerebral β-amyloid deposition, activate GPER to enhance CREB/BDNF signaling pathways, and suppress neuroinflammatory responses. Consequently, SDG exerts neuroprotective effects and ameliorates cognitive impairments associated with AD in female mice.
Collapse
Affiliation(s)
- Mengzhen Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fangjie Ning
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Junqing Wen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaorui Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiao Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, Guangdong, China.
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Northwest A&F University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
6
|
Ahmed IA, Mikail MA. Diet and skin health: The good and the bad. Nutrition 2024; 119:112350. [PMID: 38232577 DOI: 10.1016/j.nut.2023.112350] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
The skin protects humans from pathogens, ultraviolet light, chemicals, mechanical, thermal, and physical injuries as well as hazardous substances. Other important roles of the skin include the regulation of several important physiological processes of the body, sensing stimuli, synthesis of vitamin D, and immune surveillance. However, aging, diseases and environmental conditions significantly change the skin's behavior and functioning. The treatment and prevention strategies for various skin diseases especially photoaging usually include topical treatment with medical cosmetology, active ingredients and other physical means of photoprotection. In recent times, however, there is an increasing consciousness about the role of diet and nutrition in skin health with certain dietary components emerging as an adequate alternative approach to alleviate and prevent both endogenous and exogenous aging symptoms. Therefore, this narrative review uniquely discusses the basic structure of the skin and also addresses common dermatological signs of damaged skin, the impacts of unhealthy diet habits on the skin, and the beneficial effects of some healthy diet habits on skin health. The information and data were collated from various literature databases and resources such as Science Direct, PubMed, Wiley, Springer, Taylor and Francis, Inflibnet, Scopus, Google, and Google Scholar using relevant keywords Medical Subject Headings (MeSH). In conclusion, diet and nutrition play essential roles in the optimum functioning of the human body, including the skin. Thus, certain diet habits such as less water intake, high-fat diet, refined sugar, and certain food additives are unhealthy and harmful to the skin while alternative healthy diet habits such as adequate water intake; consumption of antioxidants and polyphenolic-rich fruits, vegetables, nuts, and legumes; a low glycemic index diet; probiotics; and phytoestrogens should be adopted to enhance skin health.
Collapse
Affiliation(s)
- Idris Adewale Ahmed
- Department of Biotechnology, Faculty of Applied Science, Lincoln University College, Kelana Jaya 47301 Petaling Jaya, Selangor, Malaysia.; Mimia Sdn. Bhd., Selangor, Malaysia.
| | | |
Collapse
|
7
|
Zhang P. The Role of Diet and Nutrition in Allergic Diseases. Nutrients 2023; 15:3683. [PMID: 37686715 PMCID: PMC10490368 DOI: 10.3390/nu15173683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Allergic diseases are a set of chronic inflammatory disorders of lung, skin, and nose epithelium characterized by aberrant IgE and Th2 cytokine-mediated immune responses to exposed allergens. The prevalence of allergic diseases, including asthma, allergic rhinitis, and atopic dermatitis, has increased dramatically worldwide in the past several decades. Evidence suggests that diet and nutrition play a key role in the development and severity of allergic diseases. Dietary components can differentially regulate allergic inflammation pathways through host and gut microbiota-derived metabolites, therefore influencing allergy outcomes in positive or negative ways. A broad range of nutrients and dietary components (vitamins A, D, and E, minerals Zn, Iron, and Se, dietary fiber, fatty acids, and phytochemicals) are found to be effective in the prevention or treatment of allergic diseases through the suppression of type 2 inflammation. This paper aims to review recent advances in the role of diet and nutrition in the etiology of allergies, nutritional regulation of allergic inflammation, and clinical findings about nutrient supplementation in treating allergic diseases. The current literature suggests the potential efficacy of plant-based diets in reducing allergic symptoms. Further clinical trials are warranted to examine the potential beneficial effects of plant-based diets and anti-allergic nutrients in the prevention and management of allergic diseases.
Collapse
Affiliation(s)
- Ping Zhang
- Center for Integrative Conservation, Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 6663030, China
| |
Collapse
|
8
|
Hu S, Ding Q, Zhang W, Kang M, Ma J, Zhao L. Gut microbial beta-glucuronidase: a vital regulator in female estrogen metabolism. Gut Microbes 2023; 15:2236749. [PMID: 37559394 PMCID: PMC10416750 DOI: 10.1080/19490976.2023.2236749] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
A growing amount of evidence has supported that gut microbiota plays a vital role in the reproductive endocrine system throughout a woman's whole life, and gut microbial β-glucuronidase (gmGUS) is a key factor in regulating host estrogen metabolism. Moreover, estrogen levels also influence the composition as well as the diversity of gut microbiota. In normal condition, the gmGUS-estrogen crosstalk maintains body homeostasis of physiological estrogen level. Once this homeostasis is broken, the estrogen metabolism will be disturbed, resulting in estrogen-related diseases, such as gynecological cancers, menopausal syndrome, etc. together with gut microbial dysbiosis, which may accelerate these pathological processes. In this review, we highlight the regulatory role of gmGUS on the physical estrogen metabolism and estrogen-related diseases, summarize the present evidence of the interaction between gmGUS and estrogen metabolism, and unwrap the potential mechanisms behind them. Finally, gmGUS may become a potential biomarker for early diagnosis of estrogen-induced diseases. Regulating gmGUS activity or transplanting gmGUS-producing microbes shows promise for treating estrogen-related diseases.
Collapse
Affiliation(s)
- Shiwan Hu
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyou Ding
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhang
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Mengjiao Kang
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Jing Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|