1
|
Srinivasan V, Kunjiappan S, Palanisamy P. Molecular docking and in vitro evaluation of glucosamine sulfate targeting MMP-3, MMP-9, and IL-4 for potential osteoarthritis treatment. Drug Metab Pers Ther 2025; 40:43-54. [PMID: 39692282 DOI: 10.1515/dmpt-2024-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/14/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVES This study intended to investigate the potential of glucosamine sulfate (GS) as an inhibitor of genes involved in osteoarthritis (OA) development. Despite GS is often used for OA treatment due to its cartilage preservation and minimum side effects, the molecular mechanism behind its interactions remains unknown. METHODS Molecular docking was conducted to analyze the interactions between glucosamine sulfate and genes associated with OA such as matrix metalloproteinase-3 (MMP-3), MMP-9, and interleukin-4 (IL-4). Additionally, a cell viability assay using RAW 264.7 cells was performed to evaluate the toxicity of glucosamine sulfate at various concentrations. RESULTS Molecular docking results revealed that glucosamine sulfate has a good binding affinity and stable interactions with MMP-3, MMP-9, and IL-4, indicating that it may have inhibitory effects on targeted genes. Nevertheless, the cell viability assay analysis demonstrated that glucosamine sulfate had considerable toxic effects in RAW 264.7 cells at highest concentrations. CONCLUSIONS Glucosamine sulfate exhibited stable molecular interactions with genes associated to OA development. However, GS toxicity at high concentrations necessitates future research studies to optimize dosing and assess its therapeutic safety in OA treatment.
Collapse
Affiliation(s)
- Venkataramanan Srinivasan
- School of Engineering and Technology, Dhanalakshmi Srinivasan University, Perambalur, Tamil Nadu, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - Ponnusamy Palanisamy
- School of Mechanical Engineering, 30026 Vellore Institute of Technology , Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Kang D, Lee J, Yook G, Jeong S, Shin J, Kim MS, Kim YJ, Jung H, Ahn J, Kim TW, Chang MJ, Chang CB, Kang SB, Yang WH, Lee YH, Cho JW, Yi EC, Kang C, Kim JH. Regulation of senescence-associated secretory phenotypes in osteoarthritis by cytosolic UDP-GlcNAc retention and O-GlcNAcylation. Nat Commun 2025; 16:1094. [PMID: 39904978 PMCID: PMC11794700 DOI: 10.1038/s41467-024-55085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/27/2024] [Indexed: 02/06/2025] Open
Abstract
UDP-GlcNAc serves as a building block for glycosaminoglycan (GAG) chains in cartilage proteoglycans and simultaneously acts as a substrate for O-GlcNAcylation. Here, we show that transporters for UDP-GlcNAc to the endoplasmic reticulum (ER) and Golgi are significantly downregulated in osteoarthritic cartilage, leading to increased cytosolic UDP-GlcNAc and O-GlcNAcylation in chondrocytes. Mechanistically, upregulated O-GlcNAcylation governs the senescence-associated secretory phenotype (SASP) by stabilizing GATA4 via O-GlcNAcylation at S406, which compromises its degradation by p62-mediated selective autophagy. Elevated O-GlcNAcylation in the superficial layer of osteoarthritic cartilage coincides with increased GATA4 levels. The topical deletion of Gata4 in this cartilage layer ameliorates post-traumatic osteoarthritis (OA) in mice while inhibiting O-GlcNAc transferase mitigates OA by decreasing GATA4 levels. Excessive glucosamine-induced O-GlcNAcylation stabilizes GATA4 in chondrocytes and exacerbates post-traumatic OA in mice. Our findings elucidate the role of UDP-GlcNAc compartmentalization in regulating secretory pathways associated with chronic joint inflammation, providing a senostatic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Donghyun Kang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Jeeyeon Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Geunho Yook
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Sehan Jeong
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Jungkwon Shin
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Mi-Sung Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yi-Jun Kim
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, 07985, South Korea
| | - Hyeryeon Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Jinsung Ahn
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Tae Woo Kim
- Department of Orthopaedic Surgery, Seoul National University Boramae Hospital, Seoul, 07061, South Korea
| | - Moon Jong Chang
- Department of Orthopaedic Surgery, Seoul National University Boramae Hospital, Seoul, 07061, South Korea
| | - Chong Bum Chang
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, South Korea
| | - Seung-Baik Kang
- Department of Orthopaedic Surgery, Seoul National University Boramae Hospital, Seoul, 07061, South Korea
| | - Won Ho Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
| | - Yong-Ho Lee
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jin Won Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
| | - Chanhee Kang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea.
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea.
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea.
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
3
|
Giordo R, Tulasigeri Totiger S, Caggiari G, Cossu A, Manunta AF, Posadino AM, Pintus G. Protective Effect of Knee Postoperative Fluid on Oxidative-Induced Damage in Human Knee Articular Chondrocytes. Antioxidants (Basel) 2024; 13:188. [PMID: 38397786 PMCID: PMC10886415 DOI: 10.3390/antiox13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
The oxidative-stress-elicited deterioration of chondrocyte function is the initial stage of changes leading to the disruption of cartilage homeostasis. These changes entail a series of catabolic damages mediated by proinflammatory cytokines, MMPs, and aggrecanases, which increase ROS generation. Such uncontrolled ROS production, inadequately balanced by the cellular antioxidant capacity, eventually contributes to the development and progression of chondropathies. Several pieces of evidence show that different growth factors, single or combined, as well as anti-inflammatory cytokines and chemokines, can stimulate chondrogenesis and improve cartilage repair and regeneration. In this view, hypothesizing a potential growth-factor-associated action, we investigate the possible protective effect of post-operation knee fluid from patients undergoing prosthesis replacement surgery against ROS-induced damage on normal human knee articular chondrocytes (HKACs). To this end, HKACs were pre-treated with post-operation knee fluid and then exposed to H2O2 to mimic oxidative stress. Intracellular ROS levels were measured by using the molecular probe H2DCFDA; cytosolic and mitochondrial oxidative status were assessed by using HKACs infected with lentiviral particles harboring the redox-sensing green fluorescent protein (roGFP); and cell proliferation was determined by measuring the rate of DNA synthesis with BrdU incorporation. Moreover, superoxide dismutase (SOD), catalase, and glutathione levels from the cell lysates of treated cells were also measured. Postoperative peripheral blood sera from the same patients were used as controls. Our study shows that post-operation knee fluid can counteract H2O2-elicited oxidative stress by decreasing the intracellular ROS levels, preserving the cytosolic and mitochondrial redox status, maintaining the proliferation of oxidatively stressed HKACs, and upregulating chondrocyte antioxidant defense. Overall, our results support and propose an important effect of post-operation knee fluid substances in maintaining HKAC function by mediating cell antioxidative system upregulation and protecting cells from oxidative stress.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
| | - Smitha Tulasigeri Totiger
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
| | - Gianfilippo Caggiari
- Orthopaedic and Traumatology Department, University Hospital, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.C.); (A.F.M.)
| | - Annalisa Cossu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
| | - Andrea Fabio Manunta
- Orthopaedic and Traumatology Department, University Hospital, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.C.); (A.F.M.)
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
- Department of Medical Laboratory Sciences, College of Health Sciences, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
4
|
Huang YH, Chen HA, Chen CH, Liao HT, Kuo CY, Chen JP. Injectable gelatin/glucosamine cryogel microbeads as scaffolds for chondrocyte delivery in cartilage tissue engineering. Int J Biol Macromol 2023; 253:126528. [PMID: 37633562 DOI: 10.1016/j.ijbiomac.2023.126528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
In this study, we fabricate squeezable cryogel microbeads as injectable scaffolds for minimum invasive delivery of chondrocytes for cartilage tissue engineering applications. The microbeads with different glucosamine concentrations were prepared by combining the water-in-oil emulsion and cryogelation through crosslinking of gelatin with glutaraldehyde in the presence of glucosamine. The physicochemical characterization results show the successful preparation of cryogel microbeads with uniform shape and size, high porosity, large pore size, high water uptake capacity, and good injectability. In vitro analysis indicates proliferation, migration, and differentiated phenotype of rabbit chondrocytes in the cryogel scaffolds. The seeded chondrocytes in the cryogel scaffold can be delivered by injecting through an 18G needle to fully retain the cell viability. Furthermore, the incorporation of glucosamine in the cryogel promoted the differentiated phenotype of chondrocytes in a dose-dependent manner, from cartilage-specific gene expression and protein production. The in vivo study by injecting the cryogel microbeads into the subcutaneous pockets of nude mice indicates good retention ability as well as good biocompatibility and suitable biodegradability of the cryogel scaffold. Furthermore, the injected chondrocyte/cryogel microbead constructs can form ectopic functional neocartilage tissues following subcutaneous implantation in 21 days, as evidenced by histological and immunohistochemical analysis.
Collapse
Affiliation(s)
- Yen-Hsiang Huang
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Huai-An Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Han-Tsung Liao
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
5
|
Martins JMS, Dos Santos Neto LD, Sgavioli S, Araújo ICS, Reis AAS, Santos RS, de Araújo EG, Leandro NSM, Café MB. Effect of glycosaminoglycans on the structure and composition of articular cartilage and bone of broilers. Poult Sci 2023; 102:102916. [PMID: 37499613 PMCID: PMC10393804 DOI: 10.1016/j.psj.2023.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
This study aimed to assess the influence of glycosaminoglycan (chondroitin and glucosamine sulfates) supplementation in the diet of broilers on the expression of matrix metallopeptidase 9 (MMP-9) and metallopeptidase inhibitor 2 (TIMP-2) genes, the synthesis of proteoglycans, collagen type II and chondrocytes, bone and cartilage macroscopy, bone mineral densitometry, bone breaking strength and mineral profile. A completely randomized design was carried out in a 3 × 3 factorial scheme (3 levels of chondroitin sulfate: 0.00, 0.05, and 0.10%; and 3 levels of glucosamine sulfate: 0.00, 0.15, and 0.30%), totaling 9 treatments. At 21 and 42 d of age, broilers were slaughtered, and tibias and femurs were collected for evaluation. There was an interaction (P < 0.05) of sulfates for the expression of MMP-9 and its inhibitor TIMP-2 in femur articular cartilage, as well as for the number of chondrocytes, collagen type II and proteoglycans in tibia articular cartilage, bone and cartilage macroscopy and mineral profile (P < 0.05), with better results obtained with the inclusion of chondroitin and/or glucosamine sulfates in the feed. In conclusion, chondroitin and glucosamine sulfates can be used in broiler diets in order to favor the development of the structure of the locomotor system (bones and joints), thus preventing locomotion problems.
Collapse
Affiliation(s)
- Julyana M S Martins
- Department of Agricultural and Natural Sciences, Minas Gerais State University, Ituiutaba Unit, Ituiutaba, MG, Brazil
| | - Lindolfo D Dos Santos Neto
- Department of Animal Science, School of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | | | - Itallo C S Araújo
- Department of Animal Science, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Angela A S Reis
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICBII), Federal University of Goiás, Goiânia, GO, Brazil
| | - Rodrigo S Santos
- Departament of Nature Sciences, Special Academic Unit of Human Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Eugênio G de Araújo
- Department of Veterinary Medicine, School of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - Nadja S M Leandro
- Department of Animal Science, School of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marcos B Café
- Department of Animal Science, School of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
6
|
Gasparella M, Cenzi C, Piccione M, Madia VN, Di Santo R, Tudino V, Artico M, Taurone S, De Ponte C, Costi R, Di Liddo R. Effects of Modified Glucosamine on the Chondrogenic Potential of Circulating Stem Cells under Experimental Inflammation. Int J Mol Sci 2023; 24:10397. [PMID: 37373540 DOI: 10.3390/ijms241210397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Glucosamine (GlcN) is a glycosaminoglycan (GAGs) constituent in connective tissues. It is naturally produced by our body or consumed from diets. In the last decade, in vitro and in vivo trials have demonstrated that the administration of GlcN or its derivates has a protective effect on cartilage when the balance between catabolic and anabolic processes is disrupted and cells are no longer able to fully compensate for the loss of collagen and proteoglycans. To date, these benefits are still controversial because the mechanism of action of GlcN is not yet well clarified. In this study, we have characterized the biological activities of an amino acid (AA) derivate of GlcN, called DCF001, in the growth and chondrogenic induction of circulating multipotent stem cells (CMCs) after priming with tumor necrosis factor-alpha (TNFα), a pleiotropic cytokine commonly expressed in chronic inflammatory joint diseases. In the present work, stem cells were isolated from the human peripheral blood of healthy donors. After priming with TNFα (10 ng/mL) for 3 h, cultures were treated for 24 h with DCF001 (1 μg/mL) dissolved in a proliferative (PM) or chondrogenic (CM) medium. Cell proliferation was analyzed using a Corning® Cell Counter and trypan blue exclusion technique. To evaluate the potentialities of DCF001 in counteracting the inflammatory response to TNFα, we measured the amount of extracellular ATP (eATP) and the expression of adenosine-generating enzymes CD39/CD73, TNFα receptors, and NF-κB inhibitor IκBα using flow cytometry. Finally, total RNA was extracted to perform a gene expression study of some chondrogenic differentiation markers (COL2A1, RUNX2, and MMP13). Our analysis has shed light on the ability of DCF001 to (a) regulate the expression of CD39, CD73, and TNF receptors; (b) modulate eATP under differentiative induction; (c) enhance the inhibitory activity of IκBα, reducing its phosphorylation after TNFα stimulation; and (d) preserve the chondrogenic potentialities of stem cells. Although preliminary, these results suggest that DCF001 could be a valuable supplement for ameliorating the outcome of cartilage repair interventions, enhancing the efficacy of endogenous stem cells under inflammatory stimuli.
Collapse
Affiliation(s)
- Marco Gasparella
- Local Health Unit Treviso, Department of Pediatric Surgery, 31100 Treviso, Italy
| | - Carola Cenzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Monica Piccione
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Valentina Noemi Madia
- Department of Drug Chemistry and Technology, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Roberto Di Santo
- Department of Drug Chemistry and Technology, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Valeria Tudino
- Department of Drug Chemistry and Technology, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Samanta Taurone
- Department of Movement, Human and Health Sciences-Division of Health Sciences, University of Rome "Foro Italico", 00185 Rome, Italy
| | - Chiara De Ponte
- Department of Sensory Organs, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Roberta Costi
- Department of Drug Chemistry and Technology, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
7
|
Meng M, Wu Y, Sha W, Zeng R, Luo D, Jiang R, Wu H, Zhuo Z, Yang Q, Li J, Leung FW, Duan C, Feng Y, Chen H. Associations of habitual glucosamine use with SARS-CoV-2 infection and hospital admission and death with COVID-19: Evidence from a large population based cohort study. J Med Virol 2023; 95:e28720. [PMID: 37185863 DOI: 10.1002/jmv.28720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has led to a fundamental number of morbidity and mortality worldwide. Glucosamine was indicated to help prevent and control RNA virus infection preclinically, while its potential therapeutic effects on COVID-19-related outcomes are largely unknown. To assess the association of habitual glucosamine use with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, hospital admission, and mortality with COVID-19 in a large population based cohort. Participants from UK Biobank were reinvited between June and September 2021 to have SARS-CoV-2 antibody testing. The associations between glucosamine use and the risk of SARS-CoV-2 infection were estimated by logistic regression. Hazard ratios (HRs) and 95% confidence intervals (CIs) for COVID-19-related outcomes were calculated using COX proportional hazards model. Furthermore, we carried out propensity-score matching (PSM) and stratified analyses. At baseline, 42 673 (20.7%) of the 205 704 participants reported as habitual glucosamine users. During median follow-up of 1.67 years, there were 15 299 cases of SARS-CoV-2 infection, 4214 cases of COVID-19 hospital admission, and 1141 cases of COVID-19 mortality. The fully adjusted odds ratio of SARS-CoV-2 infection with glucosamine use was 0.96 (95% CI: 0.92-1.01). The fully adjusted HR were 0.80 (95% CI: 0.74-0.87) for hospital admission, and 0.81 (95% CI: 0.69-0.95) for mortality. The logistic regression and Cox proportional hazard analyses after PSM yielded consistent results. Our study demonstrated that habitual glucosamine use is associated with reduced risks of hospital admission and death with COVID-19, but not the incidence of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Meijun Meng
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanjun Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- Shantou University Medical College, Guangdong, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Guangdong, China
| | - Dongling Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qi Yang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Guangdong, China
| | - Felix W Leung
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Sepulveda Ambulatory Care Center, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Chongyang Duan
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuliang Feng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- Shantou University Medical College, Guangdong, China
| |
Collapse
|
8
|
Wu G, Ma F, Liu Z, Liu J, Xue Y, Zhang M, Wen C, Tang B, Lin L. Hybrid composites with magnesium-containing glycosaminoglycans as a chondroconducive matrix for osteoarthritic cartilage repair. Int J Biol Macromol 2022; 220:1104-1113. [PMID: 35981680 DOI: 10.1016/j.ijbiomac.2022.08.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
The alteration of the extracellular matrix (ECM) homeostasis plays an important role in the development of osteoarthritis (OA). The pathological changes of OA are mainly manifested in the large reduction of components in ECM, like type II collagen and aggrecan, especially hyaluronic acid and chondroitin sulfate and often accompanied by inflammation. Rebuilding ECM and inhibiting inflammation may reverse OA progression. In this work, we developed new magnesium-containing glycosaminoglycans (Mg-GAGs), to create a positive ECM condition for promoting cartilage regeneration and alleviating OA. In vitro results suggested that the introduction of Mg-GAGs contributed to promoting chondrocyte proliferation and facilitated upregulating chondrogenic genes and suppressed inflammation-related factors. Moreover, Mg-GAGs exhibited positive effects on suppressing synovial inflammation, reducing chondrocyte apoptosis and preserving the subchondral bone in the ACLT-induced OA rabbit model. This study provides new insight into ECM-based therapeutic strategy and opens a new avenue for the development of novel OA treatment.
Collapse
Affiliation(s)
- Guofeng Wu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Orthopedics, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Fenbo Ma
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Zhengwei Liu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Jiayi Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Yizhebang Xue
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Mengdi Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, PR China
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, PR China.
| | - Lijun Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
9
|
Babaei M, Jamshidi N, Amiri F, Rafienia M. Effects of low-intensity pulsed ultrasound stimulation on cell seeded 3D hybrid scaffold as a novel strategy for meniscus regeneration: An in vitro study. J Tissue Eng Regen Med 2022; 16:812-824. [PMID: 35689535 DOI: 10.1002/term.3331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 11/11/2022]
Abstract
Menisci are fibrocartilaginous structures in the knee joint with an inadequate regenerative capacity, which causes low healing potential and further leads to osteoarthritis. Recently, three-dimensional (3D) printing techniques and ultrasound treatment have gained plenty of attention for meniscus tissue engineering. The present study investigates the effectiveness of low-intensity pulsed ultrasound stimulations (LIPUS) on the proliferation, viability, morphology, and gene expression of the chondrocytes seeded on 3D printed polyurethane scaffolds dip-coated with gellan gum, hyaluronic acid, and glucosamine. LIPUS stimulation was performed at 100, 200, and 300 mW/cm2 intensities for 20 min/day. A faster gap closure (78.08 ± 2.56%) in the migration scratch assay was observed in the 200 mW/cm2 group after 24 h. Also, inverted microscopic and scanning electron microscopic images showed no cell morphology changes during LIPUS exposure at different intensities. The 3D cultured chondrocytes under LIPUS treatment revealed a promotion in cell proliferation rate and viability as the intensity doses increased. Additionally, LIPUS could stimulate chondrocytes to overexpress the aggrecan and collagen II genes and improve their chondrogenic phenotype. This study recommends that the combination of LIPUS treatment and 3D hybrid scaffolds can be considered as a valuable treatment for meniscus regeneration based on our in vitro data.
Collapse
Affiliation(s)
- Melika Babaei
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Nima Jamshidi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Farshad Amiri
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Medical Technologies, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| |
Collapse
|
10
|
Yuan Z, Liu S, Song W, Liu Y, Bi G, Xie R, Ren L. Galactose Enhances Chondrogenic Differentiation of ATDC5 and Cartilage Matrix Formation by Chondrocytes. Front Mol Biosci 2022; 9:850778. [PMID: 35615738 PMCID: PMC9124793 DOI: 10.3389/fmolb.2022.850778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022] Open
Abstract
Galactose, an important carbohydrate nutrient, is involved in several types of cellular metabolism, participating in physiological activities such as glycosaminoglycan (GAG) synthesis, glycosylation, and intercellular recognition. The regulatory effects of galactose on osteoarthritis have attracted increased attention. In this study, in vitro cell models of ATDC5 and chondrocytes were prepared and cultured with different concentrations of galactose to evaluate its capacity on chondrogenesis and cartilage matrix formation. The cell proliferation assay demonstrated that galactose was nontoxic to both ATDC5 cells and chondrocytes. RT-PCR and immunofluorescence staining indicated that the gene expressions of cartilage matrix type II collagen and aggrecan were significantly upregulated with increasing galactose concentration and the expression and accumulation of the extracellular matrix (ECM) protein. Overall, these results indicated that a galactose concentration below 8 mM exhibited the best effect on promoting chondrogenesis, which entitles galactose as having considerable potential for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Zhongrun Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Ying Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Gangyuan Bi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Renjian Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
- Jiangxi Key Laboratory of Medical Tissue Engineering Materials and Biofabrication, Gannan Medical University, Ganzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| |
Collapse
|
11
|
Amiri F, Babaei M, Jamshidi N, Agheb M, Rafienia M, Kazemi M. Fabrication and assessment of a novel hybrid scaffold consisted of polyurethane-gellan gum-hyaluronic acid-glucosamine for meniscus tissue engineering. Int J Biol Macromol 2022; 203:610-622. [PMID: 35051502 DOI: 10.1016/j.ijbiomac.2022.01.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
The meniscus has inadequate intrinsic regenerative capacity and its damage can lead to degeneration of articular cartilage. Meniscus tissue engineering aims to restore an injured meniscus followed by returning its normal function through bioengineered scaffolds. In the present study, the structural and biological properties of 3D-printed polyurethane (PU) scaffolds dip-coated with gellan gum (GG), hyaluronic acid (HA), and glucosamine (GA) were investigated. The optimum concentration of GG was 3% (w/v) with maintaining porosity at 88.1%. The surface coating of GG-HA-GA onto the PU scaffolds increased the compression modulus from 30.30 kPa to 59.10 kPa, the water uptake ratio from 27.33% to 60.80%, degradation rate from 5.18% to 8.84%, whereas the contact angle was reduced from 104.8° to 59.3°. MTT assay, acridine orange/ethidium bromide (AO/EB) fluorescent staining, and SEM were adopted to assess the behavior of the seeded chondrocytes on scaffolds, and it was found that the ternary surface coating stimulated the cell proliferation, viability, and adhesion. Moreover, the coated scaffolds showed higher expression levels of collagen II and aggrecan genes at day 7 compared to the control groups. Therefore, the fabricated PU-3% (w/v) GG-HA-GA scaffold can be considered as a promising scaffold for meniscus tissue engineering.
Collapse
Affiliation(s)
- Farshad Amiri
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Medical Technologies, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Melika Babaei
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Nima Jamshidi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| | - Maria Agheb
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Medical Technologies, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Lambertini E, Penolazzi L, Pandolfi A, Mandatori D, Sollazzo V, Piva R. Human osteoclasts/osteoblasts 3D dynamic co‑culture system to study the beneficial effects of glucosamine on bone microenvironment. Int J Mol Med 2021; 47:57. [PMID: 33604678 PMCID: PMC7910015 DOI: 10.3892/ijmm.2021.4890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Glucosamine (GlcN) functions as a building block of the cartilage matrix, and its multifaceted roles in promoting joint health have been extensively investigated. However, the role of GlcN in osteogenesis and bone tissue is poorly understood, mainly due to the lack of adequate experimental models. As a result, the benefit of GlcN application in bone disorders remains controversial. In order to further elucidate the pharmacological relevance and potential therapeutic/nutraceutic efficacy of GlcN, the effect of GlcN treatment was investigated in human primary osteoclasts (hOCs) and osteoblasts (hOBs) that were cultured with two‑dimensional (2D) traditional methods or co‑cultured in a 3D dynamic system more closely resembling the in vivo bone microenvironment. Under these conditions, osteoclastogenesis was supported by hOBs and sizeable self‑assembling aggregates were obtained. The differentiated hOCs were evaluated using tartrate‑resistant acid phosphatase assays and osteogenic differentiation was monitored by analyzing mineral matrix deposition via Alizarin Red staining, with expression of specific osteogenic markers determined via reverse transcription‑quantitative PCR. It was found that crystalline GlcN sulfate was effective in decreasing osteoclastic cell differentiation and function. hOCs isolated from patients with OA were more sensitive compared with those from healthy donors. Additionally, GlcN exhibited anabolic effects on hOCs both in 2D conventional cell culture and in hOC/hOB 3D dynamic co‑culture. The present study demonstrated for the first time the effectiveness of a 3D dynamic co‑culture system for characterizing the spectrum of action of GlcN on the bone microenvironment, which may pave the way for more fully determining the potential applications of a compound such as GlcN, which is positioned between pharmaceuticals and nutraceuticals. Based on the present findings, it is hypothesized that GlcN may have potential benefits in the treatment of osteopenic diseases such as osteoporosis, as well as in bone maintenance.
Collapse
Affiliation(s)
- Elisabetta Lambertini
- Department of Neuroscience and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy
| | - Letizia Penolazzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology ‑ CAST, University G. d'Annunzio of Chieti‑Pescara, 66100 Chieti, Italy
| | - Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology ‑ CAST, University G. d'Annunzio of Chieti‑Pescara, 66100 Chieti, Italy
| | | | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
13
|
Martins JMS, Dos Santos Neto LD, Noleto-Mendonça RA, de Carvalho GB, Sgavioli S, Barros de Carvalho F, Leandro NSM, Café MB. Dietary supplementation with glycosaminoglycans reduces locomotor problems in broiler chickens. Poult Sci 2020; 99:6974-6982. [PMID: 33248613 PMCID: PMC7705027 DOI: 10.1016/j.psj.2020.09.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022] Open
Abstract
This study aimed to assess the influence of glycosaminoglycan (chondroitin and glucosamine sulfates) supplementation in the diet on the performance and incidence of locomotor problems in broiler chickens. A completely randomized design was carried out in a 3 × 3 factorial scheme (3 levels of chondroitin sulfate -0, 0.05, and 0.10%; and 3 levels of glucosamine sulfate -0, 0.15, and 0.30%). Each treatment was composed of 6 replications of 30 broilers each. The performance of broilers (average weight, weight gain, feed intake, feed conversion, and productive viability) was assessed at 7, 21, 35, and 42 d of age, whereas the gait score, valgus and varus deviations, femoral degeneration, and tibial dyschondroplasia were assessed at 21 and 42 d of age. Increasing levels of glucosamine sulfate inclusion linearly increased the weight gain from 1 to 35 and from 1 to 42 d of age of broilers (P = 0.047 and P = 0.039, respectively), frequency of broilers with no femoral degeneration in the right and left femurs, and the proliferating cartilage area of proximal epiphysis at 42 d of age (P = 0.014, P < 0.0001, and P = 0.028, respectively). The increasing inclusion of chondroitin and glucosamine sulfates led to an increase in the frequency of broilers on the gait score scale 0 (P = 0.007 and P = 0.0001, respectively) and frequency of broilers with no valgus and varus deviations (P = 0.014 and P = 0.0002, respectively) also at 42 d of age. Thus, chondroitin and glucosamine sulfates can be used in the diet of broiler chickens to reduce their locomotor problems.
Collapse
Affiliation(s)
- Julyana M S Martins
- Department of Animal Science, School of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - Lindolfo D Dos Santos Neto
- Department of Animal Science, School of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - Raiana A Noleto-Mendonça
- Department of Animal Science, School of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - Genilson B de Carvalho
- Department of Animal Science, School of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - Sarah Sgavioli
- Animal Husbandry Master Program, Brazil University, Descalvado, SP, Brazil.
| | - Fabyola Barros de Carvalho
- Department of Animal Science, School of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - Nadja S M Leandro
- Department of Animal Science, School of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marcos B Café
- Department of Animal Science, School of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
14
|
Chivers PRA, Dookie RS, Gough JE, Webb SJ. Photo-dissociation of self-assembled (anthracene-2-carbonyl)amino acid hydrogels. Chem Commun (Camb) 2020; 56:13792-13795. [PMID: 33078185 DOI: 10.1039/d0cc05292b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Amino acids modified with an N-terminal anthracene group self-assemble into supramolecular hydrogels upon the addition of a range of salts or cell culture medium. Gel-phase photo-dimerisation of gelators results in hydrogel disassembly and was used to recover cells from 3D culture.
Collapse
Affiliation(s)
- Phillip R A Chivers
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | | | | | | |
Collapse
|
15
|
Li T, Liu B, Chen K, Lou Y, Jiang Y, Zhang D. Small molecule compounds promote the proliferation of chondrocytes and chondrogenic differentiation of stem cells in cartilage tissue engineering. Biomed Pharmacother 2020; 131:110652. [PMID: 32942151 DOI: 10.1016/j.biopha.2020.110652] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/09/2023] Open
Abstract
The application of tissue engineering to generate cartilage is limited because of low proliferative ability and unstable phenotype of chondrocytes. The sources of cartilage seed cells are mainly chondrocytes and stem cells. A variety of methods have been used to obtain large numbers of chondrocytes, including increasing chondrocyte proliferation and stem cell chondrogenic differentiation via cytokines, genes, and proteins. Natural or synthetic small molecule compounds can provide a simple and effective method to promote chondrocyte proliferation, maintain a stable chondrocyte phenotype, and promote stem cell chondrogenic differentiation. Therefore, the study of small molecule compounds is of great importance for cartilage tissue engineering. Herein, we review a series of small molecule compounds and their mechanisms that can promote chondrocyte proliferation, maintain chondrocyte phenotype, or induce stem cell chondrogenesis. The studies in this field represent significant contributions to the research in cartilage tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tian Li
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Bingzhang Liu
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Kang Chen
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yingyue Lou
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuhan Jiang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
16
|
Novel glucosamine-loaded thermosensitive hydrogels based on poloxamers for osteoarthritis therapy by intra-articular injection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111352. [PMID: 33254972 DOI: 10.1016/j.msec.2020.111352] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 07/03/2020] [Accepted: 08/03/2020] [Indexed: 11/23/2022]
Abstract
Glucosamine (GlcN) is a common drug used to treat osteoarthritis (OA). To prolong the action time of glucosamine on OA and improve its therapeutic effect, this research explored the potential application of GlcN-loaded thermosensitive hydrogels based on poloxamer 407 and poloxamer 188 for OA therapy by intra-articular injection. The thermosensitive hydrogels were prepared by cold method, and the effects of P407, P188, and GlcN on sol-gel transition temperature (Tsol-gel) were compared. After screening was performed, the optimized formulation showed good temperature sensitivity, and Tsol-gel was approximately 35 °C. In vitro release tests showed that GlcN was slowly released from the thermosensitive hydrogels. After the gels were intra-articularly administered to treat OA in rabbits, the degree of swelling and inflammatory factors were significantly decreased in the hydrogel group compared with those in the OA model group (P < 0.05). Histological results showed that the GlcN-administered group had a good repair effect on damaged cartilage. At the same dose, the effect of the thermosensitive hydrogels was better than that of the aqueous solution. Therefore, GlcN-loaded thermosensitive hydrogels based on poloxamers are promising sustainable delivery systems for OA therapy by intra-articular injection.
Collapse
|
17
|
Rocha B, Cillero-Pastor B, Eijkel G, Calamia V, Fernandez-Puente P, Paine MRL, Ruiz-Romero C, Heeren RMA, Blanco FJ. Integrative Metabolic Pathway Analysis Reveals Novel Therapeutic Targets in Osteoarthritis. Mol Cell Proteomics 2020; 19:574-588. [PMID: 31980557 PMCID: PMC7124476 DOI: 10.1074/mcp.ra119.001821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/08/2020] [Indexed: 01/15/2023] Open
Abstract
In osteoarthritis (OA), impairment of cartilage regeneration can be related to a defective chondrogenic differentiation of mesenchymal stromal cells (MSCs). Therefore, understanding the proteomic- and metabolomic-associated molecular events during the chondrogenesis of MSCs could provide alternative targets for therapeutic intervention. Here, a SILAC-based proteomic analysis identified 43 proteins related with metabolic pathways whose abundance was significantly altered during the chondrogenesis of OA human bone marrow MSCs (hBMSCs). Then, the level and distribution of metabolites was analyzed in these cells and healthy controls by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), leading to the recognition of characteristic metabolomic profiles at the early stages of differentiation. Finally, integrative pathway analysis showed that UDP-glucuronic acid synthesis and amino sugar metabolism were downregulated in OA hBMSCs during chondrogenesis compared with healthy cells. Alterations in these metabolic pathways may disturb the production of hyaluronic acid (HA) and other relevant cartilage extracellular matrix (ECM) components. This work provides a novel integrative insight into the molecular alterations of osteoarthritic MSCs and potential therapeutic targets for OA drug development through the enhancement of chondrogenesis.
Collapse
Affiliation(s)
- Beatriz Rocha
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC - Complejo Hospitalario Universitario de A Coruña, SERGAS, Universidad de A Coruña, A Coruña, Spain
| | - Berta Cillero-Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Gert Eijkel
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Valentina Calamia
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC - Complejo Hospitalario Universitario de A Coruña, SERGAS, Universidad de A Coruña, A Coruña, Spain.
| | - Patricia Fernandez-Puente
- Grupo de Investigación de Reumatología, INIBIC-Complejo Hospitalario Universitario de A Coruña, SERGAS, Agrupación CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Martin R L Paine
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC - Complejo Hospitalario Universitario de A Coruña, SERGAS, Universidad de A Coruña, A Coruña, Spain
| | - Ron M A Heeren
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Francisco J Blanco
- Grupo de Investigación de Reumatología, INIBIC-Complejo Hospitalario Universitario de A Coruña, SERGAS, Departamento de Medicina Universidad de A Coruña, A Coruña, Spain.
| |
Collapse
|
18
|
Multifaceted Protective Role of Glucosamine against Osteoarthritis: Review of Its Molecular Mechanisms. Sci Pharm 2019. [DOI: 10.3390/scipharm87040034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a joint disease resulting from cartilage degeneration and causing joint pain and stiffness. Glucosamine exerts chondroprotective effects and effectively reduces OA pain and stiffness. This review aims to summarise the mechanism of glucosamine in protecting joint health and preventing OA by conducting a literature search on original articles. Current evidence has revealed that glucosamine exhibits anti-inflammatory effects by reducing the levels of pro-inflammatory factors (such as tumour necrosis factor-alpha, interleukin-1, and interleukin-6) and enhancing the synthesis of proteoglycans that retard cartilage degradation and improve joint function. Additionally, glucosamine improves cellular redox status, reduces OA-mediated oxidative damages, scavenges free radicals, upregulates antioxidant proteins and enzyme levels, inhibits the production of reactive oxygen species, and induces autophagy to delay OA pathogenesis. In conclusion, glucosamine prevents OA and maintains joint health by reducing inflammation, improving the redox status, and inducing autophagy in joints. Further studies are warranted to determine the synergistic effect of glucosamine with other anti-inflammatory and/or antioxidative agents on joint health in humans.
Collapse
|
19
|
Kosorn W, Sakulsumbat M, Lertwimol T, Thavornyutikarn B, Uppanan P, Chantaweroad S, Janvikul W. Chondrogenic phenotype in responses to poly(ɛ-caprolactone) scaffolds catalyzed by bioenzymes: effects of surface topography and chemistry. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:128. [PMID: 31776772 DOI: 10.1007/s10856-019-6335-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Biodegradable poly(ε-caprolactone) (PCL) has been increasingly investigated as a promising scaffolding material for articular cartilage tissue repair. However, its use can be limited due to its surface hydrophobicity and topography. In this study, 3D porous PCL scaffolds fabricated by a fused deposition modeling (FDM) machine were enzymatically hydrolyzed using two different biocatalysts, namely Novozyme®435 and Amano lipase PS, at varied treatment conditions in a pH 8.0 phosphate buffer solution. The improved surface topography and chemistry of the PCL scaffolds were anticipated to ultimately boost the growth of porcine articular chondrocytes and promote the chondrogenic phenotype during cell culture. Alterations in surface roughness, wettability, and chemistry of the PCL scaffolds after enzymatic treatment were thoroughly investigated using several techniques, e.g., SEM, AFM, contact angle and surface energy measurement, and XPS. With increasing enzyme content, incubation time, and incubation temperature, the surfaces of the PCL scaffolds became rougher and more hydrophilic. In addition, Novozyme®435 was found to have a higher enzyme activity than Amano lipase PS when both were used in the same enzymatic treatment condition. Interestingly, the enzymatic degradation process rarely induced the deterioration of compressive strength of the bulk porous PCL material and slightly reduced the molecular weight of the material at the filament surface. After 28 days of culture, both porous PCL scaffolds catalyzed by Novozyme®435 and Amano lipase PS could facilitate the chondrocytes to not only proliferate properly, but also function more effectively, compared with the non-modified porous PCL scaffold. Furthermore, the enzymatic treatments with 50 mg of Novozyme®435 at 25 °C from 10 min to 60 min were evidently proven to provide the optimally enhanced surface roughness and hydrophilicity most significantly favorable for induction of chondrogenic phenotype, indicated by the greatest expression level of cartilage-specific gene and the largest production of total glycosaminoglycans.
Collapse
Affiliation(s)
- Wasana Kosorn
- National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Morakot Sakulsumbat
- National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Tareerat Lertwimol
- National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Boonlom Thavornyutikarn
- National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Paweena Uppanan
- National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Surapol Chantaweroad
- National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Wanida Janvikul
- National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani, 12120, Thailand.
| |
Collapse
|
20
|
Suo H, Li L, Zhang C, Yin J, Xu K, Liu J, Fu J. Glucosamine‐grafted methacrylated gelatin hydrogels as potential biomaterials for cartilage repair. J Biomed Mater Res B Appl Biomater 2019; 108:990-999. [DOI: 10.1002/jbm.b.34451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/09/2019] [Accepted: 07/11/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Hairui Suo
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical EngineeringZhejiang University Hangzhou China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical EngineeringZhejiang University Hangzhou China
- School of AutomationHangzhou Dianzi University Hangzhou China
| | - Liang Li
- Department of OrthopedicsNo. 906 Hospital of People's Liberation Army Ningbo China
| | - Chuanxin Zhang
- Adult Joint Reconstruction and Sports Medicine Center, Department of Orthopaedics, Changzheng HospitalSecond Military Medical University Shanghai China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical EngineeringZhejiang University Hangzhou China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical EngineeringZhejiang University Hangzhou China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS)Zhejiang University Hangzhou China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education MinistryZhejiang University Hangzhou China
| | - Jingyi Liu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical EngineeringZhejiang University Hangzhou China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical EngineeringZhejiang University Hangzhou China
| | - Jianzhong Fu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical EngineeringZhejiang University Hangzhou China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical EngineeringZhejiang University Hangzhou China
| |
Collapse
|
21
|
Drozdov VN, Shikh EV, Serebrova SY, Abrosimov AG, Starodubtsev AK. [Alflutop - in modern symptom - modifying osteoarthritis therapy]. TERAPEVT ARKH 2019; 91:134-140. [PMID: 32598688 DOI: 10.26442/00403660.2019.05.000169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
One of the serious problems during the treatment of osteoarthritis (OA) is the developing of adverse drug events during therapy. Nonsteroidal anti - inflammatory drugs (NSAIDs) are the first drugs with the high incidence and severity of adverse events. This article describes OA treatment strategies approaches for OA are presented using the complex drug Alflutop, which has a composition similar to the human hyaline cartilage. The drug has anti - inflammatory and analgesic effects, normalizes the function of the affected joints, improves the quality of patients' life, also has a structure - modifying effect. Such therapy is safe, well tolerable for patients, and can be used used as a starting complex OA treatment.
Collapse
Affiliation(s)
- V N Drozdov
- Clinical pharmacology and internal medicine propaedeutics of I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Department of general medicine
| | - E V Shikh
- Clinical pharmacology and internal medicine propaedeutics of I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Department of general medicine
| | - S Y Serebrova
- Clinical pharmacology and internal medicine propaedeutics of I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Department of general medicine
| | - A G Abrosimov
- Clinical pharmacology and internal medicine propaedeutics of I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Department of general medicine
| | - A K Starodubtsev
- Clinical pharmacology and internal medicine propaedeutics of I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Department of general medicine
| |
Collapse
|
22
|
Pizzolatti ALA, Gaudig F, Seitz D, Roesler CRM, Salmoria GV. Glucosamine Hydrochloride and N-Acetylglucosamine Influence the Response of Bovine Chondrocytes to TGF-β3 and IGF in Monolayer and Three-Dimensional Tissue Culture. Tissue Eng Regen Med 2019; 15:781-791. [PMID: 30603596 DOI: 10.1007/s13770-018-0150-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 01/14/2023] Open
Abstract
Background Glucosamine hydrochloride (GlcN·HCl) has been shown to inhibit cell growth and matrix synthesis, but not with N-acetyl-glucosamine (GlcNAc) supplementation. This effect might be related to an inhibition of critical growth factors (GF), or to a different metabolization of the two glucosamine derivatives. The aim of the present study was to evaluate the synergy between GlcN·HCl, GlcNAc, and GF on proliferation and cartilage matrix synthesis. Method Bovine chondrocytes were cultivated in monolayers for 48 h and in three-dimensional (3D) chitosan scaffolds for 30 days in perfusion bioreactors. Serum-free (SF) medium was supplemented with either growth factors (GF) TGF-β (5 ng mL-1) and IGF-I (10 ng mL-1), GlcN·HCl or GlcNAc at 1mM each or both. Six groups were compared according to medium supplementation: (a) SF control; (b) SF + GlcN·HCl; (c) SF + GlcNAc; (d) SF + GF; (e) SF + GF + GlcN·HCl; and (f) SF + GF + GlcNAc. Cell proliferation, proteoglycan, collagen I (COL1), and collagen II (COL2) synthesis were evaluated. Results The two glucosamines showed opposite effects in monolayer culture: GlcN·HCl significantly reduced proliferation and GlcNAc significantly augmented cellular metabolism. In the 30 days 3D culture, the GlcN·HCl added to GF stimulated cell proliferation more than when compared to GF only, but the proteoglycan synthesis was smaller than GF. However, GlcNAc added to GF improved the cell proliferation and proteoglycan synthesis more than when compared to GF and GF/GlcN·HCl. The synthesis of COL1 and COL2 was observed in all groups containing GF. Conclusion GlcN·HCl and GlcNAc increased cell growth and stimulated COL2 synthesis in long-time 3D culture. However, only GlcNAc added to GF improved proteoglycan synthesis.
Collapse
Affiliation(s)
- André Luiz A Pizzolatti
- 1Laboratory of Biomechanical Engineering (LEBm), University Hospital, Department of Mechanical Engineering, Federal University of Santa Catarina, St. Maria Flora Pausewang, Florianópolis, SC 88036-800 Brazil.,2CAPES Foundation, Ministry of Education of Brazil, St. ERL-Norte, Brasília, DF 70.040-020 Brazil
| | - Florian Gaudig
- Friedrich Baur Biomed Center, Bayreuth, St. Ludwig-Thoma- 36c, 95447 Bayreuth, Bavaria Germany.,4University of Bayreuth, St. University 30, 95447 Bayreuth, Bavaria Germany
| | - Daniel Seitz
- Friedrich Baur Biomed Center, Bayreuth, St. Ludwig-Thoma- 36c, 95447 Bayreuth, Bavaria Germany.,4University of Bayreuth, St. University 30, 95447 Bayreuth, Bavaria Germany
| | - Carlos R M Roesler
- 1Laboratory of Biomechanical Engineering (LEBm), University Hospital, Department of Mechanical Engineering, Federal University of Santa Catarina, St. Maria Flora Pausewang, Florianópolis, SC 88036-800 Brazil
| | - Gean Vitor Salmoria
- 1Laboratory of Biomechanical Engineering (LEBm), University Hospital, Department of Mechanical Engineering, Federal University of Santa Catarina, St. Maria Flora Pausewang, Florianópolis, SC 88036-800 Brazil
| |
Collapse
|
23
|
Feng M, Betti M. A novel collagen glycopeptide, Pro-Hyp-CONH-GlcN, stimulates cell proliferation and hyaluronan production in cultured human dermal fibroblasts. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
24
|
Wong SA, Rivera KO, Miclau T, Alsberg E, Marcucio RS, Bahney CS. Microenvironmental Regulation of Chondrocyte Plasticity in Endochondral Repair-A New Frontier for Developmental Engineering. Front Bioeng Biotechnol 2018; 6:58. [PMID: 29868574 PMCID: PMC5962790 DOI: 10.3389/fbioe.2018.00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
The majority of fractures heal through the process of endochondral ossification, in which a cartilage intermediate forms between the fractured bone ends and is gradually replaced with bone. Recent studies have provided genetic evidence demonstrating that a significant portion of callus chondrocytes transform into osteoblasts that derive the new bone. This evidence has opened a new field of research aimed at identifying the regulatory mechanisms that govern chondrocyte transformation in the hope of developing improved fracture therapies. In this article, we review known and candidate molecular pathways that may stimulate chondrocyte-to-osteoblast transformation during endochondral fracture repair. We also examine additional extrinsic factors that may play a role in modulating chondrocyte and osteoblast fate during fracture healing such as angiogenesis and mineralization of the extracellular matrix. Taken together the mechanisms reviewed here demonstrate the promising potential of using developmental engineering to design therapeutic approaches that activate endogenous healing pathways to stimulate fracture repair.
Collapse
Affiliation(s)
- Sarah A Wong
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin O Rivera
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Eben Alsberg
- Department of Orthopaedic Surgery and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Chelsea S Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
25
|
Ahn CB, Kim Y, Park SJ, Hwang Y, Lee JW. Development of arginine-glycine-aspartate-immobilized 3D printed poly(propylene fumarate) scaffolds for cartilage tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:917-931. [PMID: 28929935 DOI: 10.1080/09205063.2017.1383020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Poly(propylene fumarate) (PPF) has known to be a good candidate material for cartilage tissue regeneration because of its excellent mechanical properties during its degradation processes. Here, we describe the potential application of PPF-based materials as 3D printing bioinks to create macroporous cell scaffolds using micro-stereolithography. To improve cell-matrix interaction of seeded human chondrocytes within the PPF-based 3D scaffolds, we immobilized arginine-glycine-aspartate (RGD) peptide onto the PPF scaffolds. We also evaluated various cellular behaviors of the seeded chondrocytes using MTS assay, microscopic and histological analyses. The results indicated that PPF-based biocompatible scaffolds with immobilized RGD peptide could effectively support initial adhesion and proliferation of human chondrocytes. Such a 3D bio-printable scaffold can offer an opportunity to promote cartilage tissue regeneration.
Collapse
Affiliation(s)
- Chi Bum Ahn
- a Department of Molecular Medicine, College of Medicine , Gachon University , Incheon , Korea
| | - Youngjo Kim
- b Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Republic of Korea
| | - Sung Jean Park
- c College of Pharmacy , Gachon University , Incheon , Korea
| | - Yongsung Hwang
- b Soonchunhyang Institute of Medi-bio Science , Soonchunhyang University , Cheonan-si , Republic of Korea.,d Institute of Tissue Regeneration, College of Medicine , Soonchunhyang University , Cheonan-si , Republic of Korea
| | - Jin Woo Lee
- a Department of Molecular Medicine, College of Medicine , Gachon University , Incheon , Korea
| |
Collapse
|
26
|
Yao H, Xue J, Xie R, Liu S, Wang Y, Song W, Wang DA, Ren L. A novel glucosamine derivative with low cytotoxicity enhances chondrogenic differentiation of ATDC5. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:170. [PMID: 28956208 DOI: 10.1007/s10856-017-5971-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Glucosamine (GlcN) is a component of native cartilage extracellular matrix and useful in cartilage repair, but it was limited by toxicity in high concentrations. With the aim of altering bioactive properties of GlcN to reduce the toxicity and to facilitate chondrogenesis for hyaline cartilage formation, we introduced an amino-group modification with double bond into GlcN to produce N-acryloyl-glucosamine (AGA). The cell ATDC5 was chosen to evaluate its cytotoxicity and chondrogenesis capability. Cell proliferation and cytotoxicity assay showed that AGA had significantly reduced the cytotoxicity compared to GlcN, and promoted ATDC5 proliferation. Alcian blue staining and biochemical analysis indicated that AGA enhanced extracellular matrix deposition. Both the mRNA and protein levels of articular cartilage markers, like Collagen II and Aggrecan were up-regulated, as shown by quantitative real-time PCR and immunofluorescence staining. Moreover, the level of fibrocartilage marker Collagen I and hypertrophic marker Collagen Χ weren't significantly changed. Overall, these results demonstrated that the AGA achieved the functional double-bond, reduction in toxicity and enhancement in chondrogenesis could be more potential in cartilage repair.
Collapse
Affiliation(s)
- Hang Yao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore
| | - Jingchen Xue
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - Renjian Xie
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China.
| | - Dong-An Wang
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore.
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China.
| |
Collapse
|
27
|
Swilem AE, Lehocký M, Humpolíček P, Kucekova Z, Novák I, Mičušík M, Abd El-Rehim HA, Hegazy ESA, Hamed AA, Kousal J. Description of D-glucosamine immobilization kinetics onto poly(lactic acid) surface via a multistep physicochemical approach for preparation of novel active biomaterials. J Biomed Mater Res A 2017; 105:3176-3188. [PMID: 28707422 DOI: 10.1002/jbm.a.36158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/06/2017] [Accepted: 06/28/2017] [Indexed: 11/05/2022]
Abstract
Poly(lactic acid) (PLA) has shown much success in the preparation of tissue engineering scaffolds as it can be fabricated with a tailored architecture. However, the PLA surface has drawbacks including the lack of biofunctional motifs which are essential for high affinity to biological cells. Therefore, this study describes a multistep physicochemical approach for the immobilization of d-glucosamine (GlcN), a naturally occurring monosaccharide having many biological functions, on the PLA surface aiming at enhancing the cell proliferation activity. In this approach, poly(acrylic acid) (PAAc) spacer arms are first introduced into the PLA surface via plasma post-irradiation grafting technique. Then, covalent coupling or physical adsorption of GlcN with/on the PAAc spacer is carried out. Factors affecting the grafting yield are controlled to produce a suitable spacer for bioimmobilization. X-ray photon spectroscopic (XPS) analyses confirm the immobilization of GlcN on the PLA surface. The XPS results reveal also that increasing the yield of grafted PAAc spacer on the PLA surface increases the amount of covalently immobilized GlcN, but actually inhibits the immobilization process using the physical adsorption method. Contact angle measurements and atomic force microscopy (AFM) show a substantial increase of surface energy and roughness of PLA surface, respectively, upon the multistep modification procedure. The cytocompatibility of the modified surfaces is assessed using a mouse embryonic fibroblast (MEF) cell line. Observation from the cell culture basically demonstrates the potential of GlcN immobilization in improving the cytocompatibility of the PLA surface. Moreover, the covalent immobilization of GlcN seems to produce more cytocompatible surfaces if compared with the physical adsorption method. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3176-3188, 2017.
Collapse
Affiliation(s)
- Ahmed E Swilem
- Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, 760 01, Czech Republic.,Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Marian Lehocký
- Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, 760 01, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, 760 01, Czech Republic
| | - Zdenka Kucekova
- Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, 760 01, Czech Republic
| | - Igor Novák
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia, 845 41
| | - Matej Mičušík
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia, 845 41
| | - Hassan A Abd El-Rehim
- Department of Polymers, National Center for Radiation Research and Technology, Atomic Energy Authority, Nasr City, Cairo, 11371, Egypt
| | - El-Sayed A Hegazy
- Department of Polymers, National Center for Radiation Research and Technology, Atomic Energy Authority, Nasr City, Cairo, 11371, Egypt
| | - Ashraf A Hamed
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Jaroslav Kousal
- Faculty of Mathematics and Physics, Charles University Prague, V Holesovickach 2, Prague 8, 18000, Czech Republic
| |
Collapse
|
28
|
Zheng K, Shen N, Chen H, Ni S, Zhang T, Hu M, Wang J, Sun L, Yang X. Global and targeted metabolomics of synovial fluid discovers special osteoarthritis metabolites. J Orthop Res 2017; 35:1973-1981. [PMID: 28439964 DOI: 10.1002/jor.23482] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/28/2016] [Indexed: 02/04/2023]
Abstract
To identify special metabolites in synovial fluid of osteoarthritis (OA) via a metabolomics approach. Synovial fluid of 35 participants (25 OA patients and 10 controls) was detected by GC-TOF/MS and multivariate data analysis was applied to analyze correlation among the observations. Different metabolites were screened by VIP value (VIP > 1), student t-test (p < 0.05), and fold change (fold >1.5), and verified with the standard metabolites in the synovial fluid of 24 OA patients and 11 controls by LC/MS. The classification performance of different metabolites was analyzed by receiver operating characteristic (ROC) analysis. The results showed that six different metabolites (glutamine, 1,5-anhydroglucitol, gluconic lactone, tyramine, threonine, and 8-aminocaprylic acid) were strongly associated with OA in global metabolomics. Verified results of the first three metabolites were the same as the identified results using targeted metabolomics. ROC curve analysis demonstrated that their concentrations in synovial fluid were strongly correlated to OA. In addition, the concentrations of gluconic lactone were significantly different between OA and RA. Metabolites with altered levels may be contributors to OA pathogenesis and can be used as potential diagnosis criteria for OA. Gluconic lactone may prove to be a novel criterion for differential diagnosis of OA from RA. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1973-1981, 2017.
Collapse
Affiliation(s)
- Kaidi Zheng
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Nianhan Shen
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huaijun Chen
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shanmin Ni
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tingting Zhang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mengting Hu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jianguang Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Li Sun
- Department of Immunology and Rheumatology, The Frist Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
29
|
Mirzaei S, Karkhaneh A, Soleimani M, Ardeshirylajimi A, Seyyed Zonouzi H, Hanaee‐Ahvaz H. Enhanced chondrogenic differentiation of stem cells using an optimized electrospun nanofibrous PLLA/PEG scaffolds loaded with glucosamine. J Biomed Mater Res A 2017; 105:2461-2474. [DOI: 10.1002/jbm.a.36104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
AbstractRecently, tissue engineering has become one of the most important approaches in medical research for the treatment of injuries and lesions. In the present study, poly(l‐lactide) acid (PLLA), and polyethylene glycol (PEG) with different ratios and PEG molecular weights were used in order to produce appropriate nanofibrous scaffolds using the electrospinning technique for cartilage tissue engineering applications. Glucosamine was also incorporated into the polymeric scaffolds to enhance the biological properties. Mesenchymal stem cells and chondrocytes were used to monitor the differentiation yield. Water absorption test, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, real‐time reverse transcription polymerase chain reaction and mechanical properties analyses were performed to characterize the prepared scaffolds. All fabricated scaffolds had porous and nanofibrous structure with interconnected pores. The PLLA‐PEG scaffolds containing PEG with the molecular weights of 3000 and 20,000 and ratio of 85:15 was selected for glucosamine incorporation and cell culture studies due to their superior mechanical properties. According to our data, it was identified that PLLA/PEG 20,000 containing glucosamine had the most capability to support protein absorption, stem cell attachment, and proliferation. Chondrogenic‐related genes such as sex‐determining region Y‐Box 9 (SOX9) and collagen type II were shown to be expressed on these scaffolds higher than those observed on control groups. Taking together, it was demonstrated that in combination with PLLA, PEG 20,000 is a suitable substrate to improve the mechanical and physical properties of nanofibrous scaffolds. In addition, glucosamine‐PLLA/PEG 20,000 was shown to support stem cell attachment, proliferation, and chondrogenic differentiation and so holds promising potential for cartilage tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2461–2474, 2017.
Collapse
Affiliation(s)
| | - Akbar Karkhaneh
- Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Masoud Soleimani
- Stem Cell Technology Research Center Tehran 1997775555 Iran
- Department of Hematology, Faculty of Medical Science Tarbiat Modares University Tehran Iran
| | - Abdolreza Ardeshirylajimi
- Stem Cell Technology Research Center Tehran 1997775555 Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Hasti Seyyed Zonouzi
- Biomedical Engineering Faculty, Science and Research Branch, Islamic Azad University Tehran Iran
| | | |
Collapse
|
30
|
Shahali Z, Karbasi S, Avadi MR, Semnani D, Naghash Zargar E, HashemiBeni B. Evaluation of structural, mechanical, and cellular behavior of electrospun poly-3-hydroxybutyrate scaffolds loaded with glucosamine sulfate to develop cartilage tissue engineering. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1252353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zahra Shahali
- Department of Medical Nanotechnology, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Avadi
- Department of Medical Nanotechnology, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Dariush Semnani
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Elham Naghash Zargar
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Batoul HashemiBeni
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
31
|
Almeida HV, Dikina AD, Mulhall KJ, O’Brien FJ, Alsberg E, Kelly DJ. Porous Scaffolds Derived from Devitalized Tissue Engineered Cartilaginous Matrix Support Chondrogenesis of Adult Stem Cells. ACS Biomater Sci Eng 2017; 3:1075-1082. [DOI: 10.1021/acsbiomaterials.7b00019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Henrique V. Almeida
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152−160 Pearse Street, Dublin 2, Ireland
- Department
of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, College Green, Dublin 2, Ireland
- Center
for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | | | - Kevin J. Mulhall
- Sports Surgery Clinic, Northwood
Avenue, Santry Demesne, Dublin 9, Ireland
| | - Fergal J. O’Brien
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152−160 Pearse Street, Dublin 2, Ireland
- Tissue Engineering
Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | - Daniel J. Kelly
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152−160 Pearse Street, Dublin 2, Ireland
- Department
of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, College Green, Dublin 2, Ireland
- Tissue Engineering
Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
32
|
Li J, Wu X, Wu Y, Tang Z, Sun X, Pan M, Chen Y, Li J, Xiao R, Wang Z, Liu H. Porous chitosan microspheres for application as quick in vitro and in vivo hemostat. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:411-419. [PMID: 28532047 DOI: 10.1016/j.msec.2017.03.276] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/27/2016] [Accepted: 03/28/2017] [Indexed: 12/21/2022]
Abstract
Controlling massive hemorrhage is of great importance to lower transfusional medical cost, and to reduce death and mobility rate in battlefield and civilian accidents. We reported the fabrication of porous chitosan microspheres (CSMS) with tunable surface pore size by microemulsion combined with thermally induced phase separation technique, and its application as a quick hemostat. Their hemostatic property was characterized by blood clotting kinetics, adherence interaction between red blood cells/platelets and CSMS, in vitro and in vivo hemostasis by rat tail amputation and liver laceration models, and histological analysis. Their density, surface area, porosity, water absorption ratio were 0.04-0.06g/cm3, 28.2-31.5m2/g, 98%, and 15.5-23.2g/g, respectively. The surface pore was controlled to be smaller than 2.0μm. The porous CSMS showed increasing hemostatic efficacy with decreasing surface pore size. Compared to the conventional compact chitosan particles (CCSP), the porous CSMS had much improved in vitro and in vivo hemostatic potential with respect to formation of blood clot, hemostatic time, and blood loss. For instance, the hemostatic time and blood loss of CSMS in the rat liver laceration model were down to respectively 70s and 0.026g from 175s and 0.28g of CCSP. Histological examination showed that application of porous CSMS to liver laceration caused no destruction of underlying hepatocytes, inflammatory reaction, and thermal injury to liver tissue. The porous CSMS is a biodegradable, quick and safe hemostat, which can be used in various wounds including complex and non-compressive ones.
Collapse
Affiliation(s)
- Jixiang Li
- Fujian Key Laboratory of Polymer Materials, College of Material Science and Engineering, Fujian Normal University, Fujian 350007, China
| | - Xiaowei Wu
- Fujian Key Laboratory of Polymer Materials, College of Material Science and Engineering, Fujian Normal University, Fujian 350007, China
| | - Yanqing Wu
- College of Life Science, Fujian Normal University, Fujian 350007, China
| | - Zonghao Tang
- College of Life Science, Fujian Normal University, Fujian 350007, China
| | - Xun Sun
- Fujian Key Laboratory of Polymer Materials, College of Material Science and Engineering, Fujian Normal University, Fujian 350007, China
| | - Meng Pan
- Fujian Key Laboratory of Polymer Materials, College of Material Science and Engineering, Fujian Normal University, Fujian 350007, China
| | - Yufeng Chen
- Fujian Key Laboratory of Polymer Materials, College of Material Science and Engineering, Fujian Normal University, Fujian 350007, China
| | - Juanjuan Li
- Fujian Key Laboratory of Polymer Materials, College of Material Science and Engineering, Fujian Normal University, Fujian 350007, China
| | - Rongdong Xiao
- Department of Cardiovascular Surgery, Provincial Clinical College, Fujian Medical University, Fujian 350001, China
| | - Zhengchao Wang
- College of Life Science, Fujian Normal University, Fujian 350007, China.
| | - Haiqing Liu
- Fujian Key Laboratory of Polymer Materials, College of Material Science and Engineering, Fujian Normal University, Fujian 350007, China.
| |
Collapse
|
33
|
Dikina AD, Almeida HV, Cao M, Kelly DJ, Alsberg E. Scaffolds Derived from ECM Produced by Chondrogenically Induced Human MSC Condensates Support Human MSC Chondrogenesis. ACS Biomater Sci Eng 2017; 3:1426-1436. [DOI: 10.1021/acsbiomaterials.6b00654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anna D. Dikina
- Department
of Biomedical Engineering, Case Western Reserve University, 10900
Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Henrique V. Almeida
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin
2, Ireland
- Department
of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Meng Cao
- Department
of Biomedical Engineering, Case Western Reserve University, 10900
Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Daniel J. Kelly
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin
2, Ireland
- Department
of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, College Green, Dublin 2, Ireland
- Tissue
Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Eben Alsberg
- Department
of Biomedical Engineering, Case Western Reserve University, 10900
Euclid Avenue, Cleveland, Ohio 44106, United States
- Orthopaedic
Surgery, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- The
National Center for Regenerative Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
34
|
Igarashi M, Sakamoto K, Nagaoka I. Effect of glucosamine on expression of type II collagen, matrix metalloproteinase and sirtuin genes in a human chondrocyte cell line. Int J Mol Med 2016; 39:472-478. [PMID: 28035358 DOI: 10.3892/ijmm.2016.2842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 12/15/2016] [Indexed: 11/06/2022] Open
Abstract
Glucosamine (GlcN) has been widely used to treat osteoarthritis (OA) in humans. However, the effects of GlcN on genes related to cartilage metabolism are still unknown. In the present study, to elucidate the chondroprotective action of GlcN on OA, we examined the effects of GlcN (0.1-10 mM) on the expression of the sirtuin (SIRT) genes as well as type II collagen and matrix metalloproteinases (MMPs) using a human chondrocyte cell line SW 1353. SW 1353 cells were incubated in the absence or presence of GlcN. RT-PCR analyses revealed that GlcN markedly increased the mRNA expression of type II collagen (COL2A1). By contrast, the levels of MMP-1 and MMP-9 mRNA were only slightly increased by GlcN. Furthermore, western blot analyses revealed that GlcN significantly increased the protein level of COL2A1. Importantly, GlcN enhanced the mRNA expression and protein level of SIRT1, an upstream-regulating gene of COL2A1. Moreover, a SIRT1 inhibitor suppressed GlcN-induced COL2A1 gene expression. Together these observations suggest that GlcN enhances the mRNA expression and protein level of SIRT1 and its downstream gene COL2A1 in chondrocytes, thereby possibly exhibiting chondroprotective action on OA.
Collapse
Affiliation(s)
- Mamoru Igarashi
- Department of Host Defense and Biochemical Research, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Koji Sakamoto
- Department of Host Defense and Biochemical Research, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
35
|
Swilem AE, Lehocký M, Humpolíček P, Kucekova Z, Junkar I, Mozetič M, Hamed AA, Novák I. Developing a biomaterial interface based on poly(lactic acid) via plasma-assisted covalent anchorage of d-glucosamine and its potential for tissue regeneration. Colloids Surf B Biointerfaces 2016; 148:59-65. [DOI: 10.1016/j.colsurfb.2016.08.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 01/01/2023]
|
36
|
Chen CH, Kuo CY, Wang YJ, Chen JP. Dual Function of Glucosamine in Gelatin/Hyaluronic Acid Cryogel to Modulate Scaffold Mechanical Properties and to Maintain Chondrogenic Phenotype for Cartilage Tissue Engineering. Int J Mol Sci 2016; 17:1957. [PMID: 27886065 PMCID: PMC5133951 DOI: 10.3390/ijms17111957] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Glucosamine (GlcN) fulfills many of the requirements as an ideal component in scaffolds used in cartilage tissue engineering. The incorporation of GlcN in a gelatin/hyaluronic acid (GH) cryogel scaffold could provide biological cues in maintaining the phenotype of chondrocytes. Nonetheless, substituting gelatin with GlcN may also decrease the crosslinking density and modulate the mechanical properties of the cryogel scaffold, which may be beneficial as physical cues for chondrocytes in the scaffold. Thus, we prepared cryogel scaffolds containing 9% GlcN (GH-GlcN9) and 16% GlcN (GH-GlcN16) by carbodiimide-mediated crosslinking reactions at -16 °C. The crosslinking density and the mechanical properties of the cryogel matrix could be tuned by adjusting the content of GlcN used during cryogel preparation. In general, incorporation of GlcN did not influence scaffold pore size and ultimate compressive strain but increased porosity. The GH-GlcN16 cryogel showed the highest swelling ratio and degradation rate in hyaluronidase and collagenase solutions. On the contrary, the Young's modulus, storage modulus, ultimate compressive stress, energy dissipation level, and rate of stress relaxation decreased by increasing the GlcN content in the cryogel. The release of GlcN from the scaffolds in the culture medium of chondrocytes could be sustained for 21 days for GH-GlcN16 in contrast to only 7 days for GH-GlcN9. In vitro cell culture experiments using rabbit articular chondrocytes revealed that GlcN incorporation affected cell proliferation, morphology, and maintenance of chondrogenic phenotype. Overall, GH-GlcN16 showed the best performance in maintaining chondrogenic phenotype with reduced cell proliferation rate but enhanced glycosaminoglycans (GAGs) and type II collagen (COL II) secretion. Quantitative real-time polymerase chain reaction also showed time-dependent up-regulation of cartilage-specific marker genes (COL II, aggrecan and Sox9) for GH-GlcN16. Implantation of chondrocytes/GH-GlcN16 constructs into full-thickness articular cartilage defects of rabbits could regenerate neocartilage with positive staining for GAGs and COL II. The GH-GlcN16 cryogel will be suitable as a scaffold for the treatment of articular cartilage defects.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan.
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Yan-Jie Wang
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan.
- Graduate Institute of Health Industry and Technology, Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
37
|
Development of a novel glucosamine/silk fibroin–chitosan blend porous scaffold for cartilage tissue engineering applications. IRANIAN POLYMER JOURNAL 2016. [DOI: 10.1007/s13726-016-0492-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Huang TL, Wu CC, Yu J, Sumi S, Yang KC. l-Lysine regulates tumor necrosis factor-alpha and matrix metalloproteinase-3 expression in human osteoarthritic chondrocytes. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Molecular mechanisms and biomedical applications of glucosamine as a potential multifunctional therapeutic agent. Life Sci 2016; 152:21-9. [PMID: 27012765 DOI: 10.1016/j.lfs.2016.03.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/30/2022]
Abstract
Glucosamine and its acetylated derivative, N-acetyl glucosamine, are naturally occurring amino sugars found in human body. They are important components of glycoproteins, proteoglycans and glycosaminoglycans. Scientific studies have supported that glucosamine has the beneficial pharmacological effects to relieve osteoarthritis symptoms. Glucosamine can also be as a promising candidate for the prevention and/or treatment of some other diseases due to its anti-oxidant and anti-inflammatory activities. Most of its function is exerted by modulation of inflammatory responses especially through Nuclear Factor-κB (NF-κB) that can control inflammatory cytokine production and cell survival. In this review, we present a concise update on additional new therapeutic applications of glucosamine including treatment of cardiovascular disease, neurological deficits, skin disorders, cancer and the molecular mechanistic rationale for these uses. This article will also examine safety profile and adverse effects of glucosamine in human.
Collapse
|
40
|
Kim C, Jeon OH, Kim DH, Chae JJ, Shores L, Bernstein N, Bhattacharya R, Coburn JM, Yarema KJ, Elisseeff JH. Local delivery of a carbohydrate analog for reducing arthritic inflammation and rebuilding cartilage. Biomaterials 2015; 83:93-101. [PMID: 26773662 DOI: 10.1016/j.biomaterials.2015.12.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/15/2015] [Accepted: 12/28/2015] [Indexed: 11/28/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation. Because OA has a multifactorial nature and complex interrelationship of the individual elements of a whole joint, there is a need for comprehensive therapeutic approaches for cartilage tissue engineering, which simultaneously address multiple aspects of disease etiology. In this work, we investigated a multifunctional carbohydrate-based drug candidate, tri-butanoylated N-acetyl-D-galactosamine analog (3,4,6-O-Bu3GalNAc) that induced cartilage tissue production by human mesenchymal stem cells (hMSCs) and human OA chondrocytes by modulating Wnt/β-catenin signaling activity. The dual effects promoted chondrogenesis of human MSC and reduced inflammation of human OA chondrocytes in in vitro cultures. Translating these findings in vivo, we evaluated therapeutic effect of 3,4,6-O-Bu3GalNAc on the rat model of posttraumatic OA when delivered via local intra-articular sustained-release delivery using microparticles and found this method to be efficacious in preventing OA progression. These results show that 3,4,6-O-Bu3GalNAc, a disease modifying OA drug candidate, has promising therapeutic potential for articular cartilage repair.
Collapse
Affiliation(s)
- Chaekyu Kim
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Ok Hee Jeon
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Do Hun Kim
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - J Jeremy Chae
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Lucas Shores
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Nicholas Bernstein
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Rahul Bhattacharya
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Jeannine M Coburn
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Kevin J Yarema
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA.
| |
Collapse
|
41
|
Cisewski SE, Zhang L, Kuo J, Wright GJ, Wu Y, Kern MJ, Yao H. The effects of oxygen level and glucose concentration on the metabolism of porcine TMJ disc cells. Osteoarthritis Cartilage 2015; 23:1790-6. [PMID: 26033165 PMCID: PMC4577453 DOI: 10.1016/j.joca.2015.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/30/2015] [Accepted: 05/21/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. DESIGN TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 h with 0, 1.5, 5, or 25 mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-(3)H] proline and [(35)S] sulfate into the cells, respectively. RESULTS TMJ disc cell viability significantly decreased (P < 0.0001) without glucose. With glucose present, decreased oxygen levels significantly increased viability (P < 0.0001), while a decrease in glucose concentration significantly decreased viability (P < 0.0001). With glucose present, decreasing oxygen levels significantly reduced ATP production (P < 0.0001) and matrix synthesis (P < 0.0001). A decreased glucose concentration significantly decreased collagen synthesis (P < 0.0001). The interaction between glucose and oxygen was significant in regards to cell viability (P < 0.0001), ATP production (P = 0.00015), and collagen (P = 0.0002) and proteoglycan synthesis (P < 0.0001). CONCLUSIONS Although both glucose and oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply.
Collapse
Affiliation(s)
| | - Lixia Zhang
- Department of Oral Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC
| | - Jonathan Kuo
- Department of Bioengineering, Clemson University, Clemson, SC
| | | | - Yongren Wu
- Department of Bioengineering, Clemson University, Clemson, SC
| | - Michael J. Kern
- Department of Oral Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC
| | - Hai Yao
- Department of Bioengineering, Clemson University, Clemson, SC
,Department of Oral Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC
| |
Collapse
|
42
|
Suo H, Xu K, Zhang H, Zheng X. Determination of glucosamine and its derivatives released from photocrosslinked gelatin hydrogels using HPLC. Biomed Chromatogr 2015; 30:169-74. [DOI: 10.1002/bmc.3533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/13/2015] [Accepted: 05/31/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Hairui Suo
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry; Zhejiang University; Hangzhou 310027 China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal; Hangzhou China
| | - Kedi Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry; Zhejiang University; Hangzhou 310027 China
- Qiushi Academy for Advanced Studies; Zhejiang University; Hangzhou China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal; Hangzhou China
| | - Hengyi Zhang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry; Zhejiang University; Hangzhou 310027 China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal; Hangzhou China
| | - Xiaoxiang Zheng
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry; Zhejiang University; Hangzhou 310027 China
- Qiushi Academy for Advanced Studies; Zhejiang University; Hangzhou China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal; Hangzhou China
| |
Collapse
|
43
|
Sowa G, Coelho JP, Jacobs L, Komperda K, Sherry N, Vo N, Preuss H, Balk J, Kang J. The effects of glucosamine sulfate on intervertebral disc annulus fibrosus cells in vitro. Spine J 2015; 15:1339-46. [PMID: 24361347 PMCID: PMC4062614 DOI: 10.1016/j.spinee.2013.11.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/18/2013] [Accepted: 11/26/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Glucosamine has gained widespread use among patients, despite inconclusive efficacy data. Inconsistency in the clinical literature may be related to lack of understanding of the effects of glucosamine on the intervertebral disc, and therefore, improper patient selection. PURPOSE The goal of our study was to investigate the effects of glucosamine on intervertebral disc cells in vitro under the physiological conditions of inflammation and mechanical loading. STUDY DESIGN Controlled in vitro laboratory setting. METHODS Intervertebral disc cells isolated from the rabbit annulus fibrosus were exposed to glucosamine sulfate in the presence and absence of interleukin-1β and tensile strain. Outcome measures included gene expression, measurement of total glycosaminoglycans, new proteoglycan synthesis, prostaglandin E2 production, and matrix metalloproteinase activity. The study was funded by NIH/NCCAM, and the authors have no conflicts of interest. RESULTS Under conditions of inflammatory stimulation alone, glucosamine demonstrated a dose-dependent effect in decreasing inflammatory and catabolic mediators and increasing anabolic genes. However, under conditions of mechanical stimulation, although inflammatory gene expression was decreased, PGE2 was not. In addition, matrix metalloproteinase-3 gene expression was increased and aggrecan expression decreased, both of which would have a detrimental effect on matrix homeostasis. Consistent with this, measurement of total glycosaminoglycans and new proteoglycan synthesis demonstrated detrimental effects of glucosamine under all conditions tested. CONCLUSIONS These results may in part help to explain the conflicting reports of efficacy, as there is biological plausibility for a therapeutic effect under conditions of predominate inflammation but not under conditions where mechanical loading is present or in which matrix synthesis is needed.
Collapse
Affiliation(s)
- Gwendolyn Sowa
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine,The Ferguson Laboratory for Orthopaedic and Spine Research, University of Pittsburgh School of Medicine,Corresponding Author: 3471 5 Ave, Suite 201, Pittsburgh, PA 15213;
| | - J. Paulo Coelho
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine,The Ferguson Laboratory for Orthopaedic and Spine Research, University of Pittsburgh School of Medicine
| | - Lloydine Jacobs
- The Ferguson Laboratory for Orthopaedic and Spine Research, University of Pittsburgh School of Medicine
| | - Kasey Komperda
- The Ferguson Laboratory for Orthopaedic and Spine Research, University of Pittsburgh School of Medicine
| | - Nora Sherry
- The Ferguson Laboratory for Orthopaedic and Spine Research, University of Pittsburgh School of Medicine
| | - Nam Vo
- The Ferguson Laboratory for Orthopaedic and Spine Research, University of Pittsburgh School of Medicine
| | - Harry Preuss
- Department of Internal Medicine, Georgetown University School of Medicine
| | - Judith Balk
- Department of Obstetrics and Gynecology, University of Pittsburgh School of Medicine
| | - Jame Kang
- The Ferguson Laboratory for Orthopaedic and Spine Research, University of Pittsburgh School of Medicine
| |
Collapse
|
44
|
Glucosamine loaded injectable silk-in-silk integrated system modulate mechanical properties in bovine ex-vivo degenerated intervertebral disc model. Biomaterials 2015; 55:64-83. [PMID: 25934453 DOI: 10.1016/j.biomaterials.2015.03.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 01/08/2023]
Abstract
Injectable hydrogels offer a tremendous potential for treatment of degenerated intervertebral disc due to their ability to withstand complex loading, conforming precisely to the defect spaces and eliminating the need for invasive surgical procedures. We have developed an injectable hydrogel platform of N-acetyl-glucosamine (GlcNAc) loaded silk hollow spheres embedded in silk hydrogel for in situ therapeutic release and enhanced mechanical strength. The assembled silk hydrogel provided adequate structural support to the ex vivo degenerated disc model in a cyclic compression test at par with the native tissue. Spatiotemporal release of GlcNAc in a controlled manner from the silk hollow microspheres trigger enhanced proteoglycan production from ADSCs embedded in the composite system. Role of MAPK and SMAD pathways in increasing proteoglycan production have been explored by immunohistological analysis as a result of the action of GlcNAc on the cells, elucidating the potential of injectable silk microsphere-in-silk hydrogel for the regeneration of degenerated disc tissue.
Collapse
|
45
|
Cai R, Nakamoto T, Kawazoe N, Chen G. Influence of stepwise chondrogenesis-mimicking 3D extracellular matrix on chondrogenic differentiation of mesenchymal stem cells. Biomaterials 2015; 52:199-207. [PMID: 25818426 DOI: 10.1016/j.biomaterials.2015.02.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 01/06/2023]
Abstract
Extracellular matrix (ECM) has drawn a broad attention for preparation of tissue engineering scaffolds and stem cell study. ECM scaffolds stepwise mimicking development of tissues can provide useful models to investigate the interactions between stem cells and ECM during the process of tissue development. In this study, 3D stepwise chondrogenesis-mimicking ECM scaffolds were prepared from mesenchymal stem cells (MSCs) by controlling the stages of chondrogenic differentiation. ECM scaffolds mimicking the early stage and late stage of chondrogenesis were obtained when MSCs were cultured in the chondrogenic medium for 1 and 3 w, respectively. The ECM scaffolds had different compositions as shown by immunohistochemical analysis. Stem cell (SC)-ECM scaffold was rich in collagen I and biglycan. Early stage chondrogenesis-mimicking (CE)-ECM scaffold had moderate amount of collagen II and aggrecan while late stage chondrogenesis-mimicking (CL)-ECM scaffold were rich in collagen II and aggrecan. These three ECM scaffolds had different effects on chondrogenesis of MSCs. The CE-ECM scaffold facilitated chondrogenesis, however the CL-ECM scaffolds remarkably inhibited chondrogenesis of MSCs. These ECM scaffolds not only can provide new 3D ECM models to investigate the effects of ECM on MSCs functions, but also can be used as favorable ECM scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Rong Cai
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tomoko Nakamoto
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Naoki Kawazoe
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Guoping Chen
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
46
|
Eraslan A, Ulkar B. Glucosamine Supplementation after Anterior Cruciate Ligament Reconstruction in Athletes: A Randomized Placebo-controlled Trial. Res Sports Med 2015; 23:14-26. [DOI: 10.1080/15438627.2014.975809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ali Eraslan
- Department of Sports Medicine, Antalya Education and Research Hospital, Antalya, Turkey
| | - Bulent Ulkar
- Department of Sports Medicine, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
47
|
Stoppoloni D, Politi L, Leopizzi M, Gaetani S, Guazzo R, Basciani S, Moreschini O, De Santi M, Scandurra R, Scotto d'Abusco A. Effect of glucosamine and its peptidyl-derivative on the production of extracellular matrix components by human primary chondrocytes. Osteoarthritis Cartilage 2015; 23:103-13. [PMID: 25219669 DOI: 10.1016/j.joca.2014.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Aim of this study is to investigate the effects of Glucosamine (GlcN) and its peptidyl-derivative, 2-(N-Acetyl)-L-phenylalanylamido-2-deoxy-β-D-glucose (NAPA), on extracellular matrix (ECM) synthesis in human primary chondrocytes (HPCs). METHODS Dose-dependent effect of GlcN and NAPA on Glycosaminoglycan (GAG), Collagen type II (Col2) and Small Leucine-Rich Proteoglycans (SLRPs) was examined by incubating HPCs, cultured in micromasses (3D), with various amounts of two molecules, administered as either GlcN alone or NAPA alone or GlcN plus NAPA (G + N). Immunohystochemical and immunofluorescent staining and biochemical analysis were used to determine the impact of the two molecules on ECM production. Gene expression analysis was performed by TaqMan Real-Time Polymerase Chain Reaction (PCR) assays. RESULTS The lowest concentration to which GlcN and NAPA were able to affect ECM synthesis was 1 mM. Both molecules administered alone and as G + N stimulated GAGs and SLRPs synthesis at different extent, NAPA and mainly G + N stimulated Col2 production, whereas GlcN was not effective. Both molecules were able to induce Insulin Growth Factor-I (IGF-I) and to stimulate SOX-9, whereas NAPA and G + N were able to up-regulate both Hyaluronic Acid Synthase-2 and Hyaluronic acid. Very interesting is the synergistic effect observed when chondrocyte micromasses were treated with G + N. CONCLUSIONS The observed anabolic effects and optimal concentrations of GlcN and NAPA, in addition to beneficial effects on other cellular pathways, previously reported, such as the inhibition of IKKα, could be useful to formulate new cartilage repair strategies.
Collapse
Affiliation(s)
- D Stoppoloni
- Dept. of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro, 5, 00185 Roma, Italy.
| | - L Politi
- Dept. of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro, 5, 00185 Roma, Italy.
| | - M Leopizzi
- Dept. of Medico-Surgical Sciences and Biotechnologies, Faculty of Medicine and Pharmacy, Sapienza University, Polo Pontino, Corso Della Repubblica 79, Latina, Italy.
| | - S Gaetani
- Dept. of Physiology and Pharmacology "V. Erspamer", Sapienza University of Roma, P.le Aldo Moro, 5, 00185 Roma, Italy.
| | - R Guazzo
- Division of Anatomical Pathology, Dept. of Oncology, University Hospital of Siena, Via delle Scotte, 6, 53100 Siena, Italy.
| | - S Basciani
- Dept. of Experimental Medicine, Sapienza University of Roma, V.le Regina Elena, 324, 00161 Roma, Italy.
| | - O Moreschini
- Dept. of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy.
| | - M De Santi
- Division of Anatomical Pathology, Dept. of Oncology, University Hospital of Siena, Via delle Scotte, 6, 53100 Siena, Italy.
| | - R Scandurra
- Dept. of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro, 5, 00185 Roma, Italy.
| | - A Scotto d'Abusco
- Dept. of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro, 5, 00185 Roma, Italy.
| |
Collapse
|
48
|
Bottegoni C, Muzzarelli RA, Giovannini F, Busilacchi A, Gigante A. Oral chondroprotection with nutraceuticals made of chondroitin sulphate plus glucosamine sulphate in osteoarthritis. Carbohydr Polym 2014; 109:126-38. [PMID: 24815409 DOI: 10.1016/j.carbpol.2014.03.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 12/13/2022]
|
49
|
The efficacy and tolerability of glucosamine sulfate in the treatment of knee osteoarthritis: A randomized, double-blind, placebo-controlled trial. Curr Ther Res Clin Exp 2014; 70:185-96. [PMID: 24683229 DOI: 10.1016/j.curtheres.2009.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2009] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most common form of arthritis and is often associated with disability and impaired quality of life. OBJECTIVE The aim of the study was to assess the efficacy and tolerability of glucosamine sulfate (GS) in the treatment of knee OA. METHODS Consecutive outpatients affected by primary monolateral or bilateral knee OA were enrolled in this double-blind, double-dummy, prospective, randomized, placebo-controlled trial. One group received GS 1500 mg QD for 12 weeks, and the other group received placebo QD for 12 weeks. The treatment period was followed by a 12-week treatment-free observation phase. Each patient was examined at baseline and at weeks 4, 8, 12, 16, 20, and 24. The primary efficacy criteria were pain at rest and during movement, assessed on a visual analog scale (VAS) of 0 to 100 mm. The secondary criteria included the Western Ontario and McMaster Universities (WOMAC) index for total pain score (W-TPS), total stiffness score (W-TSS), and total physical function score (W-TPFS). VAS, W-TPS, W-TSS, and W-TPFS were evaluated at baseline and at weeks 4, 8, 12, 16, 20, and 24. Analgesic drug consumption (ie, acetaminophen or NSAIDs) was also assessed. RESULTS Patient demographics were similar in the GS and placebo groups. Of 60 randomized patients (30 per group), 56 completed the study (28 treated with GS and 28 who received placebo). Statistically significant improvements in symptomatic knee OA were observed, as measured by differences in resting pain at weeks 8, 12, and 16 (all, P < 0.05 vs placebo) and in pain during movement at weeks 12 and 16 (both, P < 0.05). W-TPS was lower with GS than placebo at weeks 8, 12, and 16 (all, P < 0.01), and at week 20 (P < 0.05). W-TSS was also lower with GS than placebo at weeks 8, 12, 16, and 20 (all, P < 0.05). W-TPFS was lower with GS than placebo at weeks 8 (P < 0.05), 12 (P < 0.01), 16 (P < 0.05), and 20 (P < 0.05). Drug consumption was lower in the GS group than the placebo group at weeks 8, 12, 16, and 20 (all, P < 0.05). The incidence of adverse events was 36.7% with GS and 40.0% with placebo. CONCLUSIONS GS 1500 mg QD PO for 12 weeks was associated with statistically significant reductions in pain and improvements in functioning, with decreased analgesic consumption, compared with baseline and placebo in these patients with knee OA. A carryover effect was detected after treatment ended.
Collapse
|
50
|
Gibson M, Li H, Coburn J, Moroni L, Nahas Z, Bingham C, Yarema K, Elisseeff J. Intra-articular delivery of glucosamine for treatment of experimental osteoarthritis created by a medial meniscectomy in a rat model. J Orthop Res 2014; 32:302-9. [PMID: 24600703 PMCID: PMC8396408 DOI: 10.1002/jor.22445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glucosamine (GlcN) is a naturally occurring amino-monosaccharide with putative chondroprotective activity. Optimum responses to GlcN are achieved at concentrations which are impractical with oral dosing. Intra-articular delivery of a bolus dose of GlcN is one way to overcome these pharmacokinetic obstacles. In this study we report the effects of exposing primary human chondrocytes to a bolus dose of GlcN. We also locally administered GlcN in the context of a meniscal transection model of rat osteoarthritis (OA). The knees of male rats were subjected to medial meniscal transection and developed arthritic changes over 4 weeks.Treatment groups were then given thrice weekly 100mL injections of 35 μg, 350 μg, 1.8 mg, or 3.5mg of GlcN dissolved in normal saline. Gross images, modified Mankin scores, and histomorphometric measurements were used as outcome measures. The 350 μg dosage of GlcN had the most significant positive impact on all components of the modified Mankin score. Together, these findings suggest the local delivery of high concentrations of GlcN is well tolerated and can suppress experimental OA through influences on both bone and cartilage.
Collapse
Affiliation(s)
- Matthew Gibson
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21287
| | - Hanwei Li
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21287
| | - Jeannine Coburn
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21287
| | - Lorenzo Moroni
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21287
| | - Zayna Nahas
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21287
| | - Clifford Bingham
- Division of Rheumatology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21224
| | - Kevin Yarema
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21287
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21287
| |
Collapse
|