1
|
Park JW, Chang CB, Lee YK, Suh J, Kim J, Shin T, Kim Y, Kang D, Kim JH. Mitigating polyethylene-mediated periprosthetic tissue inflammation through MEDSAH-grafting. PLoS One 2024; 19:e0301618. [PMID: 38843277 PMCID: PMC11156361 DOI: 10.1371/journal.pone.0301618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/19/2024] [Indexed: 06/09/2024] Open
Abstract
Periprosthetic tissue inflammation is a challenging complication arising in joint replacement surgeries, which is often caused by wear debris from polyethylene (PE) components. In this study, we examined the potential biological effects of grafting a [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (MEDSAH) polymer onto the surface of PE through a solvent-evaporation technique. J774A.1 macrophage-like cells and primary cultured mouse osteoblasts were treated with PE powder with or without the MEDSAH coating. MEDSAH grafting on PE substantially reduced the expression of pro-inflammatory cytokines and other mediators in primary cultured mouse osteoblasts, but did not significantly impact macrophage-mediated inflammation. Our findings suggest that a MEDSAH coating on PE-based materials has potential utility in mitigating periprosthetic tissue inflammation and osteolysis and preventing aseptic loosening in total joint replacements. Further research, including large-scale clinical trials and biomechanical analyses, is needed to assess the long-term performance and clinical implications of MEDSAH-coated PE-based materials in total joint arthroplasty.
Collapse
Affiliation(s)
- Jung-Wee Park
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Chong Bum Chang
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Young-Kyun Lee
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jooyeon Suh
- Center for RNA Research, Institute for Basic Science, Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | | | - Taejin Shin
- R&D Center, Corentec Co., Ltd., Seoul, South Korea
| | - YongHwa Kim
- R&D Center, Corentec Co., Ltd., Seoul, South Korea
| | - Donghyun Kang
- Center for RNA Research, Institute for Basic Science, Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Jin-Hong Kim
- Center for RNA Research, Institute for Basic Science, Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
2
|
ISHIHARA K. Biomimetic polymers with phosphorylcholine groups as biomaterials for medical devices. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:579-606. [PMID: 39662944 PMCID: PMC11704457 DOI: 10.2183/pjab.100.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/01/2024] [Indexed: 12/13/2024]
Abstract
Biomimetic molecular designs can yield superior biomaterials. Polymers with a phosphorylcholine group, a polar group of phospholipid molecules, are particularly interesting. A methacrylate monomer, 2-methacryloyloxyethyl phosphorylcholine (MPC), was developed using efficient synthetic reactions and purification techniques. This process has been applied in industrial production to supply MPC globally. Polymers with various structures can be readily synthesized using MPC and their properties have been studied. The MPC polymer surface has a highly hydrated structure in biological conditions, leading to the prevention of adsorption of proteins and lipid molecules, adhesion of cells, and inhibition of bacterial adhesion and biofilm formation. Additionally, it provides an extremely lubricious surface. MPC polymers are used in various applications and can be stably immobilized on material surfaces such as metals and ceramics and polymers such as elastomers. They are also stable under sterilization and in vivo conditions. This makes them ideal for application in the surface treatment of various medical devices, including artificial organs, implanted in humans.
Collapse
Affiliation(s)
- Kazuhiko ISHIHARA
- Division of Materials & Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
3
|
Kariya S, Nakatani M, Maruyama T, Ono Y, Ueno Y, Komemushi A, Tanigawa N. Evaluation of the antithrombogenicity of poly-2-methoxyethylacrylate-coated catheters. J Vasc Access 2020; 23:117-122. [PMID: 33356882 DOI: 10.1177/1129729820983175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The blood compatibility of indwelling intravascular catheters is facilitated by the use of antithrombogenic materials. Heparin has typically been used for this purpose; however, since heparin-coated catheters are considered combination products, difficulties meeting the relevant Food and Drug Administration safety recommendations have disrupted commercialization. Other issues include coating durability and the occurrence of heparin-induced thrombocytopenia. Polymer coatings are a potential alternative; however, polymer antithrombogenicity in circulating human blood has yet to be demonstrated. The present study aimed to establish the ex vivo antithrombogenicity of a poly-2-methoxyethylacrylate (PMEA) polymer coating applied to a central venous catheter using an artificial human blood circulation system. METHODS The present study used an artificial human blood circulation system to conduct an ex vivo evaluation of the antithrombogenicity of poly-2-methoxyethylacrylate (PMEA)-coated catheters. Human blood samples obtained from volunteer donors were loaded into a circulation system fitted with either a PMEA-coated or uncoated catheter. After 3-h, the catheter was removed and examined using scanning electron microscopy. Protein adsorption on the catheter surface was investigated by shredding the catheter that had contacted the blood inside the circulation system and immersing the pieces in 1 mL of 0.5 N NaOH for 2 days. The amount of protein in the 0.5 N NaOH was determined according to the Lowry method. RESULTS Adherent fibrin, which forms a sheath on the catheter surface, was observed on uncoated, but not PMEA-coated catheters. Furthermore, the amount of protein adsorption was significantly less with PMEA-coated than uncoated catheters (p = 0.043). CONCLUSIONS The present findings demonstrated the antithrombogenicity of PMEA-coated catheters in circulating human blood.
Collapse
Affiliation(s)
- Shuji Kariya
- Department of Radiology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Miyuki Nakatani
- Department of Radiology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Takuji Maruyama
- Department of Radiology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yasuyuki Ono
- Department of Radiology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yutaka Ueno
- Department of Radiology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Atsushi Komemushi
- Department of Radiology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Noboru Tanigawa
- Department of Radiology, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
4
|
Optimisation of grafted phosphorylcholine-based polymer on additively manufactured titanium substrate for hip arthroplasty. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:696-706. [DOI: 10.1016/j.msec.2019.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 01/03/2023]
|
5
|
Moro T, Ishihara K, Takatori Y, Tanaka S, Kyomoto M, Hashimoto M, Ishikura H, Hidaka R, Tanaka T, Kawaguchi H, Nakamura K. Effects of a roughened femoral head and the locus of grafting on the wear resistance of the phospholipid polymer-grafted acetabular liner. Acta Biomater 2019; 86:338-349. [PMID: 30590185 DOI: 10.1016/j.actbio.2018.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022]
Abstract
Although laboratory tests and mid-term clinical outcomes show the clinical safety and remarkable wear resistance of the highly cross-linked polyethylene (HXLPE) acetabular liner with a nanometer-scaled graft layer of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), the wear resistance of the layer under severe abrasive conditions is concerning. We evaluated the effects of a roughened femoral head and the grafting locus on the wear resistance of the PMPC-grafted HXLPE liner and the effect of PMPC grafting on wear resistance of the HXLPE substrate by removing the PMPC-grafted layer using a severely roughened femoral head. Against a moderately roughened femoral head, the PMPC-grafted HXLPE liner showed negative wear, although an untreated HXLPE liner increased the wear by 154.1% compared with wear against a polished femoral head, confirming that PMPC grafts were unaffected. Against a severely roughened femoral head, the PMPC-grafted layer of the head contact area might be removed under severe conditions. However, the wear rate was reduced by 52.5% compared to that of untreated HXLPE liners. Moreover, the head non-contact area-modified PMPC-grafted HXLPE liner against a polished femoral head reduced the wear by 76.8% compared with untreated HXLPE liner; thus, this area may be also important in the development of fluid-film lubrication. STATEMENT OF SIGNIFICANCE: Here we describe effects of a roughened femoral head and the locus of grafting on the wear-resistance of the phospholipid polymer grafted highly cross-linked polyethylene (PMPC-HXLPE) liner. Against a moderately roughened femoral head, the PMPC-HXLPE liner showed negative wear, confirming that PMPC grafts were unaffected. After removing the PMPC layer of the head contact area using a severely roughened femoral head, the wear rate not only exceeded that of untreated HXLPE liners, but was reduced by 52.5%, confirming that PMPC grafting does not affect the wear-resistance of the HXLPE substrate. In addition, the head non-contact area-modified PMPC-HXLPE liner reduced the wear by 76.8%. Thus, this area may also may be important in the development of fluid-film lubrication.
Collapse
Affiliation(s)
- Toru Moro
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yoshio Takatori
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Sakae Tanaka
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masayuki Kyomoto
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Corporate R&D Group, KYOCERA Corporation, 800 Ichimiyake, Yasu 520-2362, Japan
| | - Masami Hashimoto
- Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
| | - Hisatoshi Ishikura
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryo Hidaka
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takeyuki Tanaka
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroshi Kawaguchi
- Japan Community Health Care Organization, Tokyo Shinjuku Medical Center, Spine Center, 5-1 Tsukudo, Shinjuku-ku, Tokyo 162-8543, Japan
| | - Kozo Nakamura
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
6
|
Developing a thermal grafting process for zwitterionic polymers on cross-linked polyethylene with geometry-independent grafting thickness. Acta Biomater 2019; 85:180-191. [PMID: 30583111 DOI: 10.1016/j.actbio.2018.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
To overcome the drawbacks of the UV grafting method, an alternative, thermal grafting process is suggested. The uniform and geometry-independent grafting of zwitterionic polymers on curved cross-linked polyethylene (CLPE), which is used in artificial hip joints, surface was successfully achieved. Poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly(2-(methacryloyloxy)ethyl)dimethyl(3-sulfopropyl)ammonium hydroxide) (PMEDSAH) were grafted on the CLPE by two methods: a UV-based process and a thermal process. The thermal method yielded zwitterionic surfaces with similar hydrophilicities and graft layer thicknesses to those prepared via the UV grafting method. The X-ray photoelectron spectra and surface zeta potential results showed that the PMPC and PMEDSAH layers were successfully grafted onto the CLPE surface. In addition, 3-D confocal microscopy, as well as friction and wear volume tests, confirmed that there was a significant decrease in the friction coefficient and wear, which indicates that the thermal grafting method can successfully substitute the UV grafting method. The thermally grafted polymer showed uniform graft layer thickness on the curved CLPE surface, whereas the UV-grafted polymer showed a geometry-dependent heterogeneous graft layer thickness. Thus, we confirmed that the thermal grafting method is advantageous for the preparation of uniform grafting layers on artificial joint surfaces with complicated shapes. STATEMENT OF SIGNIFICANCE: Formation of uniform grafting thickness of the zwitterionic polymers on the implant materials is a very important issue in the field of biomaterials. In this study, a thermal grafting process was developed for the formation of the uniform grafting thickness of the zwitterionic polymers on the curved cross-linked polyethylene (CLPE) surface used in artificial hip-joint. This method yielded zwitterionized CLPE surfaces with similar hydrophilicities and friction coefficient to those prepared via the UV grafting method which has been widely used process to modify the implant surfaces. Furthermore, the thermally grafted CLPE surface showed geometry-independent uniform grafting thickness on the curved CLPE surface while UV-grafted one showed uneven grafting thickness. This grafting method could help the development of complex, personalized, and biocompatible artificial liner surfaces.
Collapse
|
7
|
Park HH, Sun K, Seong M, Kang M, Park S, Hong S, Jung H, Jang J, Kim J, Jeong HE. Lipid-Hydrogel-Nanostructure Hybrids as Robust Biofilm-Resistant Polymeric Materials. ACS Macro Lett 2019; 8:64-69. [PMID: 35619411 DOI: 10.1021/acsmacrolett.8b00888] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite extensive efforts toward developing antibiofilm materials, efficient prevention of biofilm formation remains challenging. Approaches based on a single strategy using either bactericidal material, antifouling coatings, or nanopatterning have shown limited performance in the prevention of biofilm formation. This study presents a hybrid strategy based on a lipid-hydrogel-nanotopography hybrid for the development of a highly efficient and durable biofilm-resistant material. The hybrid material consists of nanostructured antifouling, biocompatible polyethylene glycol-based polymer grafted with an antifouling zwitterionic polymer of 2-methacryloyloxyethyl phosphorylcholine. Based on the unique composite nanostructures, the lipid-hydrogel-nanostructure hybrid exhibits superior dual functionalities of antifouling and bactericidal activities against Gram-negative and Gram-positive bacteria, compared with those of surfaces with simple nanostructures or antifouling coatings. Additionally, it preserves the robust antibiofilm activity even when the material is damaged under external mechanical stimuli thanks to the polymeric composite nanostructure.
Collapse
Affiliation(s)
- Hyun-Ha Park
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kahyun Sun
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minho Seong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minsu Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sunho Park
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seongkyeol Hong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hosup Jung
- Center for Food and Bioconvergence, Department of Food Science and Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaesung Jang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
8
|
Ghosh S, Abanteriba S, Wong S, Houshyar S. Selective laser melted titanium alloys for hip implant applications: Surface modification with new method of polymer grafting. J Mech Behav Biomed Mater 2018; 87:312-324. [PMID: 30103113 DOI: 10.1016/j.jmbbm.2018.07.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 01/05/2023]
Abstract
A significant number of hip replacements (HR) fail permanently despite the success of the medical procedure, due to wear and progressive loss of osseointegration of implants. An ideal model should consist of materials with a high resistance to wear and with good biocompatibility. This study aims to develop a new method of grafting the surface of selective laser melted (SLM) titanium alloy (Ti-6Al-4V) with poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC), to improve the surface properties and biocompatibility of the implant. PMPC was grafted onto the SLM fabricated Ti-6Al-4V, applying the following three techniques; ultraviolet (UV) irradiation, thermal heating both under normal atmosphere and UV irradiation under N2 gas atmosphere. Scanning electron microscopy (SEM), 3D optical profiler, energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) were used to characterise the grafted surface. Results demonstrated that a continuous PMPC layer on the Ti-6Al-4V surface was achieved using the UV irradiation under N2 gas atmosphere technique, due to the elimination of oxygen from the system. As indicated in the results, one of the advantages of this technique is the presence of phosphorylcholine, mostly on the surface, which reveals the existence of a strong chemical bond between the grafted layer (PMPC) and substrate (Ti-6Al-4V). The nano-scratch test revealed that the PMPC grafted surface improves the mechanical strength of the surface and thus, protects the underlying implant substrate from scratching under high loads.
Collapse
Affiliation(s)
- Subir Ghosh
- School of Engineering, RMIT University, Melbourne, 3000 VIC, Australia.
| | | | - Sherman Wong
- School of Science, RMIT University, Melbourne, 3001 VIC, Australia
| | - Shadi Houshyar
- Center for Materials Innovation and Future Fashion (CMIFF), RMIT University, Brunswick, 3056 VIC, Australia
| |
Collapse
|
9
|
Bian YY, Zhou L, Zhou G, Jin ZM, Xin SX, Hua ZK, Weng XS. Study on biocompatibility, tribological property and wear debris characterization of ultra-low-wear polyethylene as artificial joint materials. J Mech Behav Biomed Mater 2018; 82:87-94. [DOI: 10.1016/j.jmbbm.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 10/17/2022]
|
10
|
Milner PE, Parkes M, Puetzer JL, Chapman R, Stevens MM, Cann P, Jeffers JRT. A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement. Acta Biomater 2018; 65:102-111. [PMID: 29109026 DOI: 10.1016/j.actbio.2017.11.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 02/01/2023]
Abstract
Partial joint repair is a surgical procedure where an artificial material is used to replace localised chondral damage. These artificial bearing surfaces must articulate against cartilage, but current materials do not replicate both the biphasic and boundary lubrication mechanisms of cartilage. A research challenge therefore exists to provide a material that mimics both boundary and biphasic lubrication mechanisms of cartilage. In this work a polymeric network of a biomimetic boundary lubricant, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), was incorporated into an ultra-tough double network (DN) biphasic (water phase + polymer phase) gel, to form a PMPC triple network (PMPC TN) hydrogel with boundary and biphasic lubrication capability. The presence of this third network of MPC was confirmed using ATR-FTIR. The PMPC TN hydrogel had a yield stress of 26 MPa, which is an order of magnitude higher than the peak stresses found in the native human knee. A preliminary pin on plate tribology study was performed where both the DN and PMPC TN hydrogels experienced a reduction in friction with increasing sliding speed which is consistent with biphasic lubrication. In the physiological sliding speed range, the PMPC TN hydrogel halved the friction compared to the DN hydrogel indicating the boundary lubricating PMPC network was working. A biocompatible, tough, strong and chondral lubrication imitating PMPC TN hydrogel was synthesised in this work. By complementing the biphasic and boundary lubrication mechanisms of cartilage, PMPC TN hydrogel could reduce the reported incidence of chondral damage opposite partial joint repair implants, and therefore increase the clinical efficacy of partial joint repair. STATEMENT OF SIGNIFICANCE This paper presents the synthesis, characterisation and preliminary tribological testing of a new biomaterial that aims to recreate the primary chondral lubrication mechanisms: boundary and biphasic lubrication. This work has demonstrated that the introduction of an established zwitterionic, biomimetic boundary lubricant can improve the frictional properties of an ultra-tough hydrogel. This new biomaterial, when used as a partial joint replacement bearing material, may help avoid damage to the opposing chondral surface-which has been reported as an issue for other non-biomimetic partial joint replacement materials. Alongside the synthesis of a novel biomaterial focused on complementing the lubrication mechanisms of cartilage, your readership will gain insights into effective mechanical and tribological testing methods and materials characterisation methods for their own biomaterials.
Collapse
Affiliation(s)
- Piers E Milner
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Maria Parkes
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jennifer L Puetzer
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Robert Chapman
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom; School of Chemistry, Centre for Advanced Macromolecular Design, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Philippa Cann
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jonathan R T Jeffers
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
11
|
Kirschner AY, Chang CC, Kasemset S, Emrick T, Freeman BD. Fouling-resistant ultrafiltration membranes prepared via co-deposition of dopamine/zwitterion composite coatings. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Iuster N, Tairy O, Driver MJ, Armes SP, Klein J. Cross-Linking Highly Lubricious Phosphocholinated Polymer Brushes: Effect on Surface Interactions and Frictional Behavior. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01423] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Noa Iuster
- Department
of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Odeya Tairy
- Department
of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael J. Driver
- Vertellus Biomaterials,
Vertellus Specialties UK Ltd., Basingstoke, Hampshire RG25 2PH, U.K
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Jacob Klein
- Department
of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
13
|
Morgese G, Cavalli E, Müller M, Zenobi-Wong M, Benetti EM. Nanoassemblies of Tissue-Reactive, Polyoxazoline Graft-Copolymers Restore the Lubrication Properties of Degraded Cartilage. ACS NANO 2017; 11:2794-2804. [PMID: 28273419 DOI: 10.1021/acsnano.6b07847] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Osteoarthritis leads to an alteration in the composition of the synovial fluid, which is associated with an increase in friction and the progressive and irreversible destruction of the articular cartilage. In order to tackle this degenerative disease, there has been a growing interest in the medical field to establish effective, long-term treatments to restore cartilage lubrication after damage. Here we develop a series of graft-copolymers capable of assembling selectively on the degraded cartilage, resurfacing it, and restoring the lubricating properties of the native tissue. These comprise a polyglutamic acid backbone (PGA) coupled to brush-forming, poly-2-methyl-2-oxazoline (PMOXA) side chains, which provide biopassivity and lubricity to the surface, and to aldehyde-bearing tissue-reactive groups, for the anchoring on the degenerated cartilage via Schiff bases. Optimization of the graft-copolymer architecture (i.e., density and length of side chains and amount of tissue-reactive functions) allowed a uniform passivation of the degraded cartilage surface. Graft-copolymer-treated cartilage showed very low coefficients of friction within synovial fluid, reestablishing and in some cases improving the lubricating properties of the natural cartilage. Due to these distinctive properties and their high biocompatibility and stability under physiological conditions, cartilage-reactive graft-copolymers emerge as promising injectable formulations to slow down the progression of cartilage degradation, which characterizes the early stages of osteoarthritis.
Collapse
Affiliation(s)
- Giulia Morgese
- Laboratory for Surface Science and Technology, Department of Materials, and ‡Cartilage Engineering + Regeneration Laboratory, Department of Health Sciences and Technology, ETH Zürich , Zürich, Switzerland
| | - Emma Cavalli
- Laboratory for Surface Science and Technology, Department of Materials, and ‡Cartilage Engineering + Regeneration Laboratory, Department of Health Sciences and Technology, ETH Zürich , Zürich, Switzerland
| | - Mischa Müller
- Laboratory for Surface Science and Technology, Department of Materials, and ‡Cartilage Engineering + Regeneration Laboratory, Department of Health Sciences and Technology, ETH Zürich , Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Laboratory for Surface Science and Technology, Department of Materials, and ‡Cartilage Engineering + Regeneration Laboratory, Department of Health Sciences and Technology, ETH Zürich , Zürich, Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, Department of Materials, and ‡Cartilage Engineering + Regeneration Laboratory, Department of Health Sciences and Technology, ETH Zürich , Zürich, Switzerland
| |
Collapse
|
14
|
Watanabe K, Moro T, Kyomoto M, Saiga K, Taketomi S, Kadono Y, Takatori Y, Tanaka S, Ishihara K. The effects of presence of a backside screw hole on biotribological behavior of phospholipid polymer-grafted crosslinked polyethylene. J Biomed Mater Res B Appl Biomater 2017; 106:610-618. [PMID: 28263442 DOI: 10.1002/jbm.b.33837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022]
Abstract
One of the important factors in determining the success of joint replacement is the wear performance of polyethylene. Although highly crosslinked polyethylene (CLPE) is presently used, it is still not adequate. We have developed a surface modification technology using poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) in an attempt to improve wear performance. In this study, we evaluated the wear and creep deformation resistances of 3-mm and 6-mm thick PMPC-grafted CLPE disks, set on a metal back-plate, with and without a sham screw hole. The gravimetric wear and volumetric change of the disks were examined using a multidirectional pin-on-disk tester. PMPC grafting decreased the gravimetric wear of CLPE regardless of the presence of a screw hole, and did not affect the volumetric change. The volumetric change in the bearing and backside surfaces of the 3-mm thick disk with a screw hole was much larger than that of those without a screw hole or those of the 6-mm thick disk, which was caused by creep deformation. PMPC grafting on the bearing surface can be a material engineering approach to reduce the wear without changing the creep deformation resistance, and is a promising surface modification technology that can be used to increase the longevity of various artificial joints. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 610-618, 2018.
Collapse
Affiliation(s)
- Kenichi Watanabe
- Research Department, KYOCERA Medical Corporation, 3-3-31 Miyahara, Yodogawa-ku, Osaka, 532-0003, Japan.,Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toru Moro
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masayuki Kyomoto
- Research Department, KYOCERA Medical Corporation, 3-3-31 Miyahara, Yodogawa-ku, Osaka, 532-0003, Japan.,Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kenichi Saiga
- Research Department, KYOCERA Medical Corporation, 3-3-31 Miyahara, Yodogawa-ku, Osaka, 532-0003, Japan.,Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shuji Taketomi
- Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuho Kadono
- Department of Orthopaedic Surgery, Saitama Medical University School of Medicine, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Yoshio Takatori
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Sakae Tanaka
- Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
15
|
Ghosh S, Abanteriba S. Status of surface modification techniques for artificial hip implants. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:715-735. [PMID: 28228866 PMCID: PMC5278906 DOI: 10.1080/14686996.2016.1240575] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Surface modification techniques have been developed significantly in the last couple of decades for enhanced tribological performance of artificial hip implants. Surface modification techniques improve biological, chemical and mechanical properties of implant surfaces. Some of the most effective techniques, namely surface texturing, surface coating, and surface grafting, are applied to reduce the friction and wear of artificial implants. This article reviews the status of the developments of surface modification techniques and their effects on commonly used artificial joint implants. This study focused only on artificial hip joint prostheses research of the last 10 years. A total of 27 articles were critically reviewed and categorized according to surface modification technique. The literature reveals that modified surfaces exhibit reduced friction and enhanced wear resistance of the contact surfaces. However, the wear rates are still noticeable in case of surface texturing and surface coating. The associated vortex flow aids to release entrapped wear debris and thus increase the wear particles generation in case of textured surfaces. The earlier delamination of coating materials due to poor adhesion and graphitization transformation has limited the use of coating techniques. Moreover, the produced wear debris has adverse effects on biological fluid. Conversely, the surface grafting technique provides phospholipid like layer that exhibited lower friction and almost zero wear rates even after a longer period of friction and wear test. The findings suggest that further investigations are required to identify the role of surface grafting on film formation and heat resistance ability under physiological hip joint conditions for improved performance and longevity of hip implants.
Collapse
Affiliation(s)
- Subir Ghosh
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| | | |
Collapse
|
16
|
Chang CC, Kolewe KW, Li Y, Kosif I, Freeman BD, Carter KR, Schiffman JD, Emrick T. Underwater Superoleophobic Surfaces Prepared from Polymer Zwitterion/Dopamine Composite Coatings. ADVANCED MATERIALS INTERFACES 2016; 3:1500521. [PMID: 27774375 PMCID: PMC5074057 DOI: 10.1002/admi.201500521] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hydration is central to mitigating surface fouling by oil and microorganisms. Immobilization of hydrophilic polymers on surfaces promotes retention of water and a reduction of direct interactions with potential foulants. While conventional surface modification techniques are surface-specific, mussel-inspired adhesives based on dopamine effectively coat many types of surfaces and thus hold potential as a universal solution to surface modification. Here, we describe a facile, one-step surface modification strategy that affords hydrophilic, and underwater superoleophobic, coatings by the simultaneous deposition of polydopamine (PDA) with poly(methacryloyloxyethyl phosphorylcholine) (polyMPC). The resultant composite coating features enhanced hydrophilicity (i.e., water contact angle of ~10° in air) and antifouling performance relative to PDA coatings. PolyMPC affords control over coating thickness and surface roughness, and results in a nearly 10 fold reduction in Escherichia coli adhesion relative to unmodified glass. The substrate-independent nature of PDA coatings further promotes facile surface modification without tedious surface pretreatment, and offers a robust template for codepositing polyMPC to enhance biocompatibility, hydrophilicity and fouling resistance.
Collapse
Affiliation(s)
- Chia-Chih Chang
- Department of Polymer Science & Engineering, Conte Center for Polymer Research, 120 Governors Drive, University of Massachusetts, Amherst, MA 01003, USA
| | - Kristopher W. Kolewe
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Yinyong Li
- Department of Polymer Science & Engineering, Conte Center for Polymer Research, 120 Governors Drive, University of Massachusetts, Amherst, MA 01003, USA
| | - Irem Kosif
- Department of Polymer Science & Engineering, Conte Center for Polymer Research, 120 Governors Drive, University of Massachusetts, Amherst, MA 01003, USA
| | - Benny D. Freeman
- Department of Chemical Engineering, University of Texas, Austin, TX 78758, USA
| | - Kenneth R. Carter
- Department of Polymer Science & Engineering, Conte Center for Polymer Research, 120 Governors Drive, University of Massachusetts, Amherst, MA 01003, USA
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Todd Emrick
- Department of Polymer Science & Engineering, Conte Center for Polymer Research, 120 Governors Drive, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
17
|
van Weerd J, Karperien M, Jonkheijm P. Supported Lipid Bilayers for the Generation of Dynamic Cell-Material Interfaces. Adv Healthc Mater 2015; 4:2743-79. [PMID: 26573989 DOI: 10.1002/adhm.201500398] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/03/2015] [Indexed: 12/13/2022]
Abstract
Supported lipid bilayers (SLB) offer unique possibilities for studying cellular membranes and have been used as a synthetic architecture to interact with cells. Here, the state-of-the-art in SLB-based technology is presented. The fabrication, analysis, characteristics and modification of SLBs are described in great detail. Numerous strategies to form SLBs on different substrates, and the means to patteren them, are described. The use of SLBs as model membranes for the study of membrane organization and membrane processes in vitro is highlighted. In addition, the use of SLBs as a substratum for cell analysis is presented, with discrimination between cell-cell and cell-extracellular matrix (ECM) mimicry. The study is concluded with a discussion of the potential for in vivo applications of SLBs.
Collapse
Affiliation(s)
- Jasper van Weerd
- Bioinspired Molecular Engineering; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Dept. of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Molecular Nanofabrication Group, MESA+; University of Twente; Enschede 7500 AE The Netherlands
| | - Marcel Karperien
- Dept. of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
| | - Pascal Jonkheijm
- Bioinspired Molecular Engineering; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Molecular Nanofabrication Group, MESA+; University of Twente; Enschede 7500 AE The Netherlands
| |
Collapse
|
18
|
Goda T, Toya M, Matsumoto A, Miyahara Y. Poly(3,4-ethylenedioxythiophene) Bearing Phosphorylcholine Groups for Metal-Free, Antibody-Free, and Low-Impedance Biosensors Specific for C-Reactive Protein. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27440-27448. [PMID: 26588324 DOI: 10.1021/acsami.5b09325] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conducting polymers possessing biorecognition elements are essential for developing electrical biosensors sensitive and specific to clinically relevant biomolecules. We developed a new 3,4-ethylenedioxythiophene (EDOT) derivative bearing a zwitterionic phosphorylcholine group via a facile synthesis through the Michael-type addition thiol-ene "click" reaction for the detection of an acute-phase biomarker human C-reactive protein (CRP). The phosphorylcholine group, a major headgroup in phospholipid, which is the main constituent of plasma membrane, was also expected to resist nonspecific adsorption of other proteins at the electrode/solution interface. The biomimetic EDOT derivative was randomly copolymerized with EDOT, via an electropolymerization technique with a dopant sodium perchlorate, onto a glassy carbon electrode to make the synthesized polymer film both conductive and target-responsive. The conducting copolymer films were characterized by cyclic voltammetry, scanning electron microscopy, attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. The specific interaction of CRP with phosphorylcholine in a calcium-containing buffer solution was determined by differential pulse voltammetry, which measures the altered redox reaction between the indicators ferricyanide/ferrocyanide as a result of the binding event. The conducting polymer-based protein sensor achieved a limit of detection of 37 nM with a dynamic range of 10-160 nM, covering the dynamically changing CRP levels in circulation during the acute phase. The results will enable the development of metal-free, antibody-free, and low-impedance electrochemical biosensors for the screening of nonspecific biomarkers of inflammation and infection.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Masahiro Toya
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
19
|
Yarimitsu S, Moro T, Kyomoto M, Watanabe K, Tanaka S, Ishihara K, Murakami T. Influences of dehydration and rehydration on the lubrication properties of phospholipid polymer-grafted cross-linked polyethylene. Proc Inst Mech Eng H 2015; 229:506-14. [PMID: 26036469 DOI: 10.1177/0954411915588969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 05/05/2015] [Indexed: 11/16/2022]
Abstract
Surface modification by grafting of biocompatible phospholipid polymer onto the surface of artificial joint material has been proposed to reduce the risk of aseptic loosening and improve the durability. Poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-grafted cross-linked polyethylene (CLPE) has shown promising results for reducing wear of CLPE. The main lubrication mechanism for the PMPC layer is considered to be the hydration lubrication. In this study, the lubrication properties of PMPC-grafted CLPE were evaluated in reciprocating friction test with rehydration process by unloading in various lubricants. The start-up friction of PMPC-grafted CLPE was reduced, and the damage of PMPC layer was suppressed by rehydration in water or hyaluronic acid solutions. In contrast, the start-up friction of PMPC-grafted CLPE increased in fetal bovine serum solution, and the damage for PMPC layer was quite noticeable. Interestingly, the start-up friction of PMPC-grafted CLPE was reduced in fetal bovine serum solution containing hyaluronic acid, and the damage of the PMPC layer was suppressed. These results indicate that the rehydration by unloading and hyaluronic acid are elemental in maximizing the lubrication effect of hydrated PMPC layer.
Collapse
Affiliation(s)
- Seido Yarimitsu
- Research Center for Advanced Biomechanics, Kyushu University, Fukuoka, Japan Faculty of System Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Toru Moro
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masayuki Kyomoto
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan Research Department, KYOCERA Medical Corporation, Osaka, Japan
| | - Kenichi Watanabe
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Research Department, KYOCERA Medical Corporation, Osaka, Japan
| | - Sakae Tanaka
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Teruo Murakami
- Research Center for Advanced Biomechanics, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Goda T, Ishihara K, Miyahara Y. Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science. J Appl Polym Sci 2015. [DOI: 10.1002/app.41766] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University; 2-3-10 Kanda-Surugadai Chiyoda Tokyo 101-0062 Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo Tokyo 113-8656 Japan
- Department of Bioengineering; The University of Tokyo; 7-3-1 Hongo Bunkyo Tokyo 113-8656 Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University; 2-3-10 Kanda-Surugadai Chiyoda Tokyo 101-0062 Japan
| |
Collapse
|
21
|
Garapaty A, Champion JA. Non-covalent phosphorylcholine coating reduces protein adsorption and phagocytic uptake of microparticles. Chem Commun (Camb) 2015; 51:13814-7. [DOI: 10.1039/c5cc03459k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phosphorylcholine co-polymer was assembled on model polystyrene microparticles through a simple, widely-applicable ethanol coating process. The coating rendered particles resistant to protein adsorption and phagocytosis by macrophages, making it useful for a range of biological applications.
Collapse
Affiliation(s)
- Anusha Garapaty
- School of Chemical & Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
22
|
Functionalized Lipid Particulates in Targeted Drug Delivery. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Liu L, Li W, Liu Q. Recent development of antifouling polymers: structure, evaluation, and biomedical applications in nano/micro-structures. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:599-614. [DOI: 10.1002/wnan.1278] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/25/2014] [Accepted: 05/09/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Lingyun Liu
- Department of Chemical and Biomolecular Engineering; University of Akron; Akron OH USA
| | - Wenchen Li
- Department of Chemical and Biomolecular Engineering; University of Akron; Akron OH USA
| | - Qingsheng Liu
- Department of Chemical and Biomolecular Engineering; University of Akron; Akron OH USA
| |
Collapse
|
24
|
Moro T, Takatori Y, Kyomoto M, Ishihara K, Hashimoto M, Ito H, Tanaka T, Oshima H, Tanaka S, Kawaguchi H. Long-term hip simulator testing of the artificial hip joint bearing surface grafted with biocompatible phospholipid polymer. J Orthop Res 2014; 32:369-76. [PMID: 24249706 DOI: 10.1002/jor.22526] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/29/2013] [Indexed: 02/04/2023]
Abstract
To prevent periprosthetic osteolysis and subsequent aseptic loosening of artificial hip joints, we recently developed a novel acetabular highly cross-linked polyethylene (CLPE) liner with graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) on its surface. We investigated the wear resistance of the poly(MPC) (PMPC)-grafted CLPE liner during 20 million cycles in a hip joint simulator. We extended the simulator test of one liner to 70 million cycles to investigate the long-term durability of the grafting. Gravimetric, surface, and wear particle analyses revealed that PMPC grafting onto the CLPE liner surface markedly decreased the production of wear particles and showed that the effect of PMPC grafting was maintained through 70 million cycles. We believe that PMPC grafting can significantly improve the wear resistance of artificial hip joints.
Collapse
Affiliation(s)
- Toru Moro
- Division of Science for Joint Reconstruction, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan; Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Material tailoring of the femoral component in a total knee replacement to reduce the problem of aseptic loosening. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.matdes.2013.05.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Solution Properties and Potential Biological Applications of Zwitterionic Poly(ε-N-methacryloyl-l-lysine). Macromolecules 2013. [DOI: 10.1021/ma401549c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Moro T, Kyomoto M, Ishihara K, Saiga K, Hashimoto M, Tanaka S, Ito H, Tanaka T, Oshima H, Kawaguchi H, Takatori Y. Grafting of poly(2-methacryloyloxyethyl phosphorylcholine) on polyethylene liner in artificial hip joints reduces production of wear particles. J Mech Behav Biomed Mater 2013; 31:100-6. [PMID: 23651567 DOI: 10.1016/j.jmbbm.2013.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 03/07/2013] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
Abstract
Despite improvements in the techniques, materials, and fixation of total hip arthroplasty, periprosthetic osteolysis, a complication that arises from this clinical procedure and causes aseptic loosening, is considered to be a major clinical problem associated with total hip arthroplasty. With the objective of reducing the production of wear particles and eliminating periprosthetic osteolysis, we prepared a novel hip polyethylene (PE) liner whose surface graft was made of a biocompatible phospholipid polymer-poly(2-methacryloyloxyethyl phosphorylcholine (MPC)). This study investigated the wear resistance of the poly(MPC)-grafted cross-linked PE (CLPE; MPC-CLPE) liner during 15×10(6) cycles of loading in a hip joint simulator. The gravimetric analysis showed that the wear of the acetabular liner was dramatically suppressed in the MPC-CLPE liner, as compared to that in the non-treated CLPE liner. Analyses of the MPC-CLPE liner surface revealed that it suffered from no or very little wear even after the simulator test, whereas the CLPE liners suffered from substantial wears. The scanning electron microscope (SEM) analysis of the wear particles isolated from the lubricants showed that poly(MPC) grafting dramatically decreased the total number, area, and volume of the wear particles. However, there was no significant difference in the particle size distributions, and, in particular, from the SEM image, it was observed that particles with diameters less than 0.50μm were present in the range of the highest frequency. In addition, there were no significant differences in the particle size descriptors and particle shape descriptors. The results obtained in this study show that poly(MPC) grafting markedly reduces the production of wear particles from CLPE liners, without affecting the size of the particles. These results suggest that poly(MPC) grafting is a promising technique for increasing the longevity of artificial hip joints.
Collapse
Affiliation(s)
- Toru Moro
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Masayuki Kyomoto
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Research Department, KYOCERA Medical Corporation, 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kenichi Saiga
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Research Department, KYOCERA Medical Corporation, 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003, Japan
| | - Masami Hashimoto
- Materials Research and Development Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
| | - Sakae Tanaka
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hideya Ito
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takeyuki Tanaka
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hirofumi Oshima
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroshi Kawaguchi
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshio Takatori
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
28
|
SHIRAISHI K, WAKISAKA S, SATOZAKI J, SUGIYAMA K. Preparation of Poly[(meth)acrylamide)]Having L-Lysine Moiety and its Effect on Fibrinolytic Activity. KOBUNSHI RONBUNSHU 2012. [DOI: 10.1295/koron.69.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Wang JJ, Liu F. Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on silicone hydrogels for reducing protein adsorption. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2651-2657. [PMID: 22020548 DOI: 10.1007/s10856-011-4452-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/29/2011] [Indexed: 05/31/2023]
Abstract
The biomimetic synthetic methacrylate monomer containing a phosphorylcholine group, 2-methacryloyloxyethyl phosphorylcholine (MPC), has been widely used to improve the surface property of biomaterials. In the current report, both hydrophilic and antifouling surfaces were prepared on silicone hydrogels with MPC grafted by UV-induced free radical polymerization. The MPC-grafted silicone hydrogels were characterized by graft yield and static water contact angle (SCA) measurements. According to the results, the graft yield reached a maximum at 5 min of UV exposure time and 8 wt% MPC concentration. The modified silicone hydrogels possessed hydrophilic surfaces with the lowest water contact angle of 20º. The oxygen permeability of the MPC-grafted silicone hydrogels was as high as the unmodified silicone hydrogel. The mechanical property of silicone hydrogels was maintained at about 95% of the tensile strength and elastic modulus after the MPC grafting. The results of the in vitro single protein adsorption on the MPC-grafted silicone hydrogels were in agreement with the SCA measurements. The smaller the water contact angle, the greater was the protein repelling ability. The MPC-grafted silicone hydrogel is expected to be a novel biomaterial which possesses excellent surface hydrophilicity, antifouling property, oxygen permeability and mechanical property.
Collapse
Affiliation(s)
- Jing Jing Wang
- Department of Polymer Materials and Engineering, School of Material Engineering, Yancheng Institute of Technology, Yancheng, People's Republic of China.
| | | |
Collapse
|
30
|
Zhang X, Tan D, Li J, Tan H, Fu Q. Synthesis and hemocompatibity evaluation of segmented polyurethane end-capped with both a fluorine tail and phosphatidylcholine polar headgroups. BIOFOULING 2011; 27:919-930. [PMID: 21895550 DOI: 10.1080/08927014.2011.615926] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To improve the hemocompatibility of polyurethanes, an amine monomer containing a long fluorine tail and phosphatidylcholine polar headgroups, 2-amino-3-oxo-3-(2-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctan amido) ethyl amino) propyl phosphorylcholine (FASPC) was firstly synthesized and characterized. Then four kinds of fluorinated phosphatidylcholine end-capped polyurethanes with different chemical structures were prepared. The surface properties of these prepared polyurethanes were characterized using X-ray photoelectron spectroscopic analysis (XPS) and water contact angle measurements. The results indicated that the phosphatidylcholine (PC) polar headgroups along with the fluorine tail could be easily enriched on the top surfaces, and the PC groups could be highly oriented on the outmost surface when the polymer film was in contact with water for only 30 s at room temperature. The evaluation of hemocompatibity was carried out via fibrinogen adsorption and platelet adhesion. Fibrinogen adsorption (37°C for 90 min) decreased by 98% to 87% compared to that on ordinary polyurethane surfaces, and almost no platelet adhesion and activation was observed at 37°C for 2 h.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | | | | | | | | |
Collapse
|
31
|
Hamawaki R, Tominaga A, Shiraishi K, Sugiyama K, Nitta Y, Nakatani T, Okamoto K. Grafting of Biocompatible Polymers on DLC Thin Films by Plasma Irradiation-Post Polymerization Technique for Application of Biomedical Devices and Cell Microarrays. J PHOTOPOLYM SCI TEC 2011. [DOI: 10.2494/photopolymer.24.447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|