1
|
Wang T, Maldonado CC, Huang BL, Budbazar E, Martin A, Layne MD, Murphy-Ullrich JE, Grinstaff MW, Albro MB. A Bio-inspired Latent TGF-β Conjugated Scaffold Improves Neocartilage Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636279. [PMID: 39975171 PMCID: PMC11838498 DOI: 10.1101/2025.02.03.636279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
In cartilage tissue engineering, active TGF-β is conventionally supplemented in culture medium at highly supraphysiologic doses to accelerate neocartilage development. While this approach enhances cartilage extracellular matrix (ECM) biosynthesis, it further promotes tissue features detrimental to hyaline cartilage function, including the induction of tissue swelling, hyperplasia, hypertrophy, and ECM heterogeneities. In contrast, during native cartilage development, chondrocytes are surrounded by TGF-β configured in a latent complex (LTGF-β), which undergoes cell-mediated activation, giving rise to moderated, physiologic dosing regimens that enhance ECM biosynthesis while avoiding detrimental features associated with TGF-β excesses. Here, we explore a bio-inspired strategy, consisting of LTGF-β-conjugated scaffolds, providing TGF-β exposure regimens that are moderated and uniformly administered throughout the construct. Specifically, we evaluate the performance of LTGF-β scaffolds to improve neocartilage development with bovine chondrocyte-seeded agarose constructs compared to outcomes from active TGF-β media supplementation (MS) at a physiologic 0.3 ng/mL dose (MS-0.3), supraphysiologic 10 ng/mL dose (MS-10), or TGF-β free. For small-size constructs (∅3×2 mm), LTGF-β scaffolds yield neocartilage that achieves native-matched mechanical properties (800-925 kPa) and sGAG content (6.6%-7.1%), while providing a cell morphology and collagen distribution more reminiscent of hyaline cartilage. LTGF-β scaffolds further afford an optimal chondrogenic phenotype, marked by a 12-to 28-fold reduction of COL-I expression relative to TGF-β-free and a 7-to 17-fold reduction of COL-X expression relative to MS-10. Further, for large-size constructs, which approach the dimensions needed for clinical cartilage repair, LTGF-β scaffolds significantly reduce mechanical and biochemical heterogeneities relative to MS-0.3 and MS-10. Overall, the use of LTGF-β scaffolds improves the composition, structure, material properties, and cell phenotype of neocartilage.
Collapse
|
2
|
Wang T, Kim SY, Peng Y, Zheng J, Layne MD, Murphy-Ullrich JE, Albro MB. Autoinduction-Based Quantification of In Situ TGF-β Activity in Native and Engineered Cartilage. Tissue Eng Part C Methods 2024; 30:522-532. [PMID: 39311474 DOI: 10.1089/ten.tec.2024.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Transforming growth factor beta (TGF-β) is a potent growth factor that regulates the homeostasis of native cartilage and is administered as an anabolic supplement for engineered cartilage growth. The quantification of TGF-β activity in live tissues in situ remains a significant challenge, as conventional activity assessments (e.g., Western blotting of intracellular signaling molecules or reporter cell assays) are unable to measure absolute levels of TGF-β activity in three-dimensional tissues. In this study, we develop a quantification platform established on TGF-β's autoinduction response, whereby active TGF-β (aTGF-β) signaling in cells induces their biosynthesis and secretion of new TGF-β in its latent form (LTGF-β). As such, cell-secreted LTGF-β can serve as a robust, non-destructive, label-free biomarker for quantifying in situ activity of TGF-β in live cartilage tissues. Here, we detect LTGF-β1 secretion levels for bovine native tissue explants and engineered tissue constructs treated with varying doses of media-supplemented aTGF-β3 using an isoform-specific ELISA. We demonstrate that: 1) LTGF-β secretion levels increase proportionally to aTGF-β exposure, reaching 7.4- and 6.6-fold increases in native and engineered cartilage, respectively; 2) synthesized LTGF-β exhibits low retention in both native and engineered cartilage tissue; and 3) secreted LTGF-β is stable in conditioned media for 2 weeks, thus enabling a reliable biological standard curve between LTGF-β secretion and exposed TGF-β activity. Accordingly, we perform quantifications of TGF-β activity in bovine native cartilage, demonstrating up to 0.59 ng/mL in response to physiological dynamic loading. We further quantify the in situ TGF-β activity in aTGF-β-conjugated scaffolds for engineered tissue, which exhibits 1.81 ng/mL of TGF-β activity as a result of a nominal 3 μg/mL loading dose. Overall, cell-secreted LTGF-β can serve as a robust biomarker to quantify in situ activity of TGF-β in live cartilage tissue and can be potentially applied for a wide range of applications, including multiple tissue types and tissue engineering platforms with different cell populations and scaffolds.
Collapse
Affiliation(s)
- Tianbai Wang
- Division of Materials Science & Engineering, Boston University, Boston, Massachusetts, USA
| | - Sung Yeon Kim
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| | - Yifan Peng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Jane Zheng
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Matthew D Layne
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | | | - Michael B Albro
- Division of Materials Science & Engineering, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Hay AM, Rhoades MJ, Bangerter S, Ferguson SA, Lee H, T. Gill M, Page GL, Pope A, Measom GJ, Hager RL, Seeley MK. Serum Cartilage Oligomeric Matrix Protein Concentration Increases More After Running Than Swimming for Older People. Sports Health 2024; 16:534-541. [PMID: 37697665 PMCID: PMC11195858 DOI: 10.1177/19417381231195309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Knee osteoarthritis is common in older people. Serum cartilage oligomeric matrix protein (sCOMP) is a biomarker of knee articular cartilage metabolism. The purpose of this study was 2-fold: to (1) determine acute effects of running and swimming on sCOMP concentration in older people; and (2) investigate relationships between sCOMP concentration change due to running and swimming and measures of knee health in older people. HYPOTHESES Running would result in greater increase in sCOMP concentration than swimming, and increase in sCOMP concentration due to running and swimming would associate positively with measures of poor knee health. STUDY DESIGN Cross-sectional. LEVEL OF EVIDENCE Level 3. METHODS A total of 20 participants ran 5 km and 19 participants swam 1500 m. sCOMP concentration was measured immediately before, immediately after, and 15, 30, and 60 minutes after running or swimming. sCOMP concentration change due to running and swimming was compared. Correlations between sCOMP concentration change due to running and swimming, and other measures of knee health were evaluated, including the Tegner Activity Scale and Knee injury and Osteoarthritis Outcome Score. RESULTS sCOMP concentration increased 29% immediately after running, relative to baseline, but only 6% immediately after swimming (P < 0.01). No significant relationship was observed between acute sCOMP change due to running and swimming, and observed measures of knee health (P > 0.05). Participants with clinically relevant knee symptoms exhibited greater sCOMP concentration before and after running and swimming (P = 0.03) and had greater body mass (P = 0.04). CONCLUSION Running results in greater acute articular cartilage metabolism than swimming; however, the chronic effects of this are unclear. Older people with clinically relevant knee symptoms possess greater sCOMP concentration and are heavier, independent of exercise mode and physical activity level. CLINICAL RELEVANCE These results describe the effects of exercise (running and swimming) for older physically active persons, with and without knee pain.
Collapse
Affiliation(s)
- Alexandra M. Hay
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | | | | | - Seth A. Ferguson
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Hyunwook Lee
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Martha T. Gill
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Garritt L. Page
- Department of Statistics, Brigham Young University, Provo, Utah
| | - Andrew Pope
- Department of Statistics, Brigham Young University, Provo, Utah
| | - Gary J. Measom
- Department of Nursing, Utah Valley University, Orem, Utah
| | - Ronald L. Hager
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Matthew K. Seeley
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| |
Collapse
|
4
|
van der Kraan PM, van Caam AP, Blaney Davidson EN, van den Bosch MH, van de Loo FA. Growth factors that drive aggrecan synthesis in healthy articular cartilage. Role for transforming growth factor-β? OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100459. [PMID: 38486843 PMCID: PMC10938168 DOI: 10.1016/j.ocarto.2024.100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Articular cartilage makes smooth movement possible and destruction of this tissue leads to loss of joint function. An important biomolecule that determines this function is the large aggregating proteoglycan of cartilage, aggrecan. Aggrecan has a relatively short half-life in cartilage and therefore continuous production of this molecule is essential. Methods In this narrative review we discuss what is the role of growth factors in driving the synthesis of aggrecan in articular cartilage. A literature search has been done using the search items; cartilage, aggrecan, explant, Transforming Growth factor-β (TGF-β), Insulin-like Growth Factor (IGF), Bone Morphogenetic Protein (BMP) and the generic term "growth factors". Focus has been on studies using healthy cartilage and models of cartilage regeneration have been excluded. Results In healthy adult articular cartilage IGF is the main factor that drives aggrecan synthesis and maintains adequate levels of production. BMP's and TGF-β have a very limited role but appear to be more important during chondrogenesis and cartilage development. The major role of TGF-β is not stimulation of aggrecan synthesis but maintenance of the differentiated articular cartilage chondrocyte phenotype. Conclusion TGF-β is a factor that is generally considered as an important factor in stimulating aggrecan synthesis in cartilage but its role in this might be very restrained in healthy, adult articular cartilage.
Collapse
Affiliation(s)
| | - Arjan P.M. van Caam
- Radboudumc, Experimental Rheumatology, Department of Rheumatology, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Esmeralda N. Blaney Davidson
- Radboudumc, Experimental Rheumatology, Department of Rheumatology, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Martijn H.J. van den Bosch
- Radboudumc, Experimental Rheumatology, Department of Rheumatology, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Fons A.J. van de Loo
- Radboudumc, Experimental Rheumatology, Department of Rheumatology, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
5
|
van den Akker GGH, Chabronova A, Housmans BAC, van der Vloet L, Surtel DAM, Cremers A, Marchand V, Motorin Y, Caron MMJ, Peffers MJ, Welting TJM. TGF-β2 Induces Ribosome Activity, Alters Ribosome Composition and Inhibits IRES-Mediated Translation in Chondrocytes. Int J Mol Sci 2024; 25:5031. [PMID: 38732249 PMCID: PMC11084827 DOI: 10.3390/ijms25095031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Alterations in cell fate are often attributed to (epigenetic) regulation of gene expression. An emerging paradigm focuses on specialized ribosomes within a cell. However, little evidence exists for the dynamic regulation of ribosome composition and function. Here, we stimulated a chondrocytic cell line with transforming growth factor beta (TGF-β2) and mapped changes in ribosome function, composition and ribosomal RNA (rRNA) epitranscriptomics. 35S Met/Cys incorporation was used to evaluate ribosome activity. Dual luciferase reporter assays were used to assess ribosomal modus. Ribosomal RNA expression and processing were determined by RT-qPCR, while RiboMethSeq and HydraPsiSeq were used to determine rRNA modification profiles. Label-free protein quantification of total cell lysates, isolated ribosomes and secreted proteins was done by LC-MS/MS. A three-day TGF-β2 stimulation induced total protein synthesis in SW1353 chondrocytic cells and human articular chondrocytes. Specifically, TGF-β2 induced cap-mediated protein synthesis, while IRES-mediated translation was not (P53 IRES) or little affected (CrPv IGR and HCV IRES). Three rRNA post-transcriptional modifications (PTMs) were affected by TGF-β2 stimulation (18S-Gm1447 downregulated, 18S-ψ1177 and 28S-ψ4598 upregulated). Proteomic analysis of isolated ribosomes revealed increased interaction with eIF2 and tRNA ligases and decreased association of eIF4A3 and heterogeneous nuclear ribonucleoprotein (HNRNP)s. In addition, thirteen core ribosomal proteins were more present in ribosomes from TGF-β2 stimulated cells, albeit with a modest fold change. A prolonged stimulation of chondrocytic cells with TGF-β2 induced ribosome activity and changed the mode of translation. These functional changes could be coupled to alterations in accessory proteins in the ribosomal proteome.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Alzbeta Chabronova
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Bas A. C. Housmans
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Laura van der Vloet
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Don A. M. Surtel
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Andy Cremers
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Virginie Marchand
- UAR2008 IBSLor CNRS-INSERM, Université de Lorraine, BioPole, F54000 Nancy, France; (V.M.); (Y.M.)
| | - Yuri Motorin
- UAR2008 IBSLor CNRS-INSERM, Université de Lorraine, BioPole, F54000 Nancy, France; (V.M.); (Y.M.)
- UMR7365 IMoPA, CNRS, Université de Lorraine, BioPole, F54000 Nancy, France
| | - Marjolein M. J. Caron
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Mandy J. Peffers
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Tim J. M. Welting
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center +, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
6
|
Takase R, Ichinose T, Hashimoto S, Amano I, Ohsawa T, Koibuchi N, Chikuda H. Protective Effects of Extracorporeal Shockwave Therapy on the Degenerated Meniscus in a Rat Model. Am J Sports Med 2024; 52:374-382. [PMID: 38174366 DOI: 10.1177/03635465231214697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
BACKGROUND Loss of meniscal function in association with degenerative changes affects the development and progression of knee osteoarthritis, for which there is currently no effective treatment. Extracorporeal shockwave therapy (ESWT) is an established treatment for musculoskeletal disorders. However, the therapeutic effect of ESWT on meniscal degeneration remains unclear. PURPOSE To evaluate the therapeutic effect of ESWT on the degenerated meniscus in an anterior cruciate ligament transection (ACLT) model. STUDY DESIGN Controlled laboratory study. METHODS Twelve-week-old male Wistar rats were randomly assigned to 3 groups (normal, ESWT-, and ESWT+). Unilateral ACLT of the right knee was performed in the latter 2 groups. At 4 weeks after ACLT, the ESWT+ group received 800 shockwave impulses at an energy flux density of 0.22 mJ/mm2 in a single session. Histological changes were examined in the posterior portion of the medial meniscus after ESWT (n = 15 per group). Real-time polymerase chain reaction (PCR) was performed after ESWT (n = 5 per group) to analyze the expression of connective tissue growth factor/CCN family member 2 (CTGF/CCN2), sex determining region Y-box 9, vascular endothelial growth factor α, aggrecan, collagen type 1 alpha 2, and collagen type 2 alpha 1 (Col2α1). Immunohistochemistry was used to analyze the expression of CTGF/CCN2 and Ki-67 (n = 5 per group) after ESWT. RESULTS The meniscal histopathological score at 4 weeks after ACLT was significantly higher than that in the normal group, and the score in the ESWT+ group was significantly lower than that in the ESWT- group at 4 and 12 weeks after ESWT. Real-time PCR revealed that the mRNA expression of CTGF/CCN2 and Col2α1 decreased 4 weeks after ACLT. In the ESWT+ group, real-time PCR revealed that the mRNA expression of CTGF/CCN2 increased 24 hours after ESWT, and the expression of Col2α1 increased 4 weeks after ESWT (all significant data were P < .05). The ratio of CTGF/CCN2-positive cells and Ki67-positive cells was significantly higher in the ESWT+ group after ESWT. CONCLUSION The present study revealed that ESWT might suppress ACLT-induced meniscal degeneration by stimulating cartilage repair factors and inducing collagen type 2. CLINICAL RELEVANCE ESWT can be an effective treatment to protect the degenerated meniscus in a rat model of ACLT.
Collapse
Affiliation(s)
- Ryota Takase
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tsuyoshi Ichinose
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shogo Hashimoto
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takashi Ohsawa
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hirotaka Chikuda
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
7
|
Iijima H, Zhang F, Ambrosio F, Matsui Y. Network-based cytokine inference implicates Oncostatin M as a driver of an inflammation phenotype in knee osteoarthritis. Aging Cell 2024; 23:e14043. [PMID: 38111237 PMCID: PMC10861212 DOI: 10.1111/acel.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 12/20/2023] Open
Abstract
Inflammatory cytokines released by synovium after trauma disturb the gene regulatory network and have been implicated in the pathophysiology of osteoarthritis. A mechanistic understanding of how aging perturbs this process can help identify novel interventions. Here, we introduced network paradigms to simulate cytokine-mediated pathological communication between the synovium and cartilage. Cartilage-specific network analysis of injured young and aged murine knees revealed aberrant matrix remodeling as a transcriptomic response unique to aged knees displaying accelerated cartilage degradation. Next, network-based cytokine inference with pharmacological manipulation uncovered IL6 family member, Oncostatin M (OSM), as a driver of the aberrant matrix remodeling. By implementing a phenotypic drug discovery approach, we identified that the activation of OSM recapitulated an "inflammatory" phenotype of knee osteoarthritis and highlighted high-value targets for drug development and repurposing. These findings offer translational opportunities targeting the inflammation-driven osteoarthritis phenotype.
Collapse
Affiliation(s)
- Hirotaka Iijima
- Discovery Center for Musculoskeletal RecoverySchoen Adams Research Institute at SpauldingCharlestownMassachusettsUSA
- Department of Physical Medicine & RehabilitationHarvard Medical SchoolBostonMassachusettsUSA
- Department of Physical Medicine & RehabilitationSpaulding Rehabilitation HospitalCharlestownMassachusettsUSA
- Institute for Advanced ResearchNagoya UniversityNagoyaJapan
- Biomedical and Health Informatics Unit, Graduate School of MedicineNagoya UniversityNagoyaJapan
| | - Fan Zhang
- Department of Medicine Division of RheumatologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- Department of Biomedical Informatics Center for Health AIUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal RecoverySchoen Adams Research Institute at SpauldingCharlestownMassachusettsUSA
- Department of Physical Medicine & RehabilitationHarvard Medical SchoolBostonMassachusettsUSA
- Department of Physical Medicine & RehabilitationSpaulding Rehabilitation HospitalCharlestownMassachusettsUSA
| | - Yusuke Matsui
- Biomedical and Health Informatics Unit, Graduate School of MedicineNagoya UniversityNagoyaJapan
- Institute for Glyco‐core Research, Tokai National Higher Education and Research SystemNagoya UniversityNagoyaJapan
| |
Collapse
|
8
|
Zhao XX, Xie WQ, Xiao WF, Li HZ, Naranmandakh S, Bruyere O, Reginster JY, Li YS. Perlecan: Roles in osteoarthritis and potential treating target. Life Sci 2022; 312:121190. [PMID: 36379311 DOI: 10.1016/j.lfs.2022.121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Osteoarthritis (OA) is the most common joint disease, affecting hundreds of millions of people globally, which leads to a high cost of treatment and further medical care and an apparent decrease in patient prognosis. The recent view of OA pathogenesis is that increased vascularity, bone remodeling, and disordered turnover are influenced by multivariate risk factors, such as age, obesity, and overloading. The view also reveals the gap between the development of these processes and early stage risk factors. This review presents the latest research on OA-related signaling pathways and analyzes the potential roles of perlecan, a typical component of the well-known protective structure against osteoarthritic pericellular matrix (PCM). Based on the experimental results observed in end-stage OA models, we summarized and analyzed the role of perlecan in the development of OA. In normal cartilage, it plays a protective role by maintaining the integrin of PCM and sequesters growth factors. Second, perlecan in cartilage is required to not only activate vascular epithelium growth factor receptor (VEGFR) signaling of endothelial cells for vascular invasion and catabolic autophagy, but also for different signaling pathways for the catabolic and anabolic actions of chondrocytes. Finally, perlecan may participate in pain sensitization pathways.
Collapse
Affiliation(s)
- Xiao-Xuan Zhao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Wen-Qing Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wen-Feng Xiao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Heng-Zhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Sukhbaatar district, 14201 Ulaanbaatar, Mongolia
| | - Olivier Bruyere
- Department of Public Health, Epidemiology and Health Economics, University of Liège, CHU Sart Tilman B23, 4000 Liège, Belgium
| | - Jean-Yves Reginster
- Department of Public Health, Epidemiology and Health Economics, University of Liège, CHU Sart Tilman B23, 4000 Liège, Belgium.
| | - Yu-Sheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
9
|
Hu J, Gundry M, Zheng K, Zhong J, Hourigan P, Meakin JR, Winlove CP, Toms AD, Knapp KM, Chen J. The biomechanics of metaphyseal cone augmentation in revision knee replacement. J Mech Behav Biomed Mater 2022; 131:105233. [DOI: 10.1016/j.jmbbm.2022.105233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/27/2022]
|
10
|
Yang Z, Li W, Song C, Leng H. CTGF as a multifunctional molecule for cartilage and a potential drug for osteoarthritis. Front Endocrinol (Lausanne) 2022; 13:1040526. [PMID: 36325449 PMCID: PMC9618584 DOI: 10.3389/fendo.2022.1040526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
CTGF is a multifunctional protein and plays different roles in different cells and under different conditions. Pamrevlumab, a monoclonal antibody against CTGF, is an FDA approved drug for idiopathic pulmonary fibrosis (IPF) and Duchenne muscular dystrophy (DMD). Recent studies have shown that CTGF antibodies may potentially serve as a new drug for osteoarthritis (OA). Expression of CTGF is significantly higher in OA joints than in healthy counterparts. Increasing attention has been attracted due to its interesting roles in joint homeostasis. Joint homeostasis relies on normal cellular functions and cell-cell interactions. CTGF is essential for physiological activities of chondrocytes. Abnormal CTGF expression may cause cartilage degeneration. In this review, the physiological functions of CTGF in chondrocytes and related mechanisms are summarized. Changes in the related signaling pathways due to abnormal CTGF are discussed, which are contributing factors to inflammation, cartilage degeneration and synovial fibrosis in OA. The possibility of CTGF as a potential therapeutic target for OA treatment are reviewed.
Collapse
Affiliation(s)
- Zihuan Yang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Chunli Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing Municipal Science & Technology Commission, Beijing, China
| | - Huijie Leng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- *Correspondence: Huijie Leng,
| |
Collapse
|
11
|
Xu G, Geng X, Yang F, Zhang H. FBLN1 promotes chondrocyte proliferation by increasing phosphorylation of Smad2. J Orthop Sci 2022; 27:242-248. [PMID: 33610427 DOI: 10.1016/j.jos.2020.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/24/2020] [Accepted: 12/01/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND The role of fibulin-1 or FBLN1 in chondrocyte proliferation has not been reported so far. In this study, we aimed to verify whether FBLN1 promotes chondrocyte proliferation in elderly patients with knee osteoarthritis by phosphorylating Smad2. METHODS Chondrocytes were isolated from cartilage samples collected from elderly patients with osteoarthritis (n = 6) and young patients (n = 6). The isolated chondrocytes were divided into the following three groups: control (medium only); cells transfected with adenovirus expressing green fluorescent protein (Ad-GFP); and those transfected with adenovirus expressing green fluorescent protein and FBLN1 (Ad-GFP-FBLN1). Furthermore, chondrocytes were divided into the following three groups in the mechanistic analysis: group 1, medium only; group 2, Ad-FBLN1; and group 3, Ad-FBLN1+pSmad2 inhibitor. The cells were analyzed for the relevant indicators after culturing for 48 h. RESULTS There were more EdU-positive cells in the Ad-GFP-FBLN1 group than in the other two groups (both P < 0.05). Compared with the other two groups, the level of pSmad2 and Col2 in the Ad-GFP-FBLN1 group was significantly increased (P < 0.05). The gene expression level of each indicator was consistent with the protein expression level. There was no significant difference in the indicators between groups 1 and 3. The percentage of EdU-positive cells in group 2 was higher than that in the other two groups (P < 0.05). The expression of pSmad2 and Col2 in group 2 was higher than that in the other two groups (both P < 0.05). CONCLUSION FBLN1 can promote chondrocyte proliferation in the knee cartilage in elderly patients by phosphorylating Smad2.
Collapse
Affiliation(s)
- Gang Xu
- Department of Orthopedics, Shanxi Provincial Cancer Hospital, No. 3, Zhigong New Street, Xinghualing District, Taiyuan, 030001, China
| | - Xiang Geng
- Shanxi Health Vocational College, No. 100, Wenjin Road, Jinzhong, 030619, China
| | - Fan Yang
- Department of Orthopedics, Shanxi Provincial Cancer Hospital, No. 3, Zhigong New Street, Xinghualing District, Taiyuan, 030001, China
| | - Haijiao Zhang
- Hospital Infection-Control Dept, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, China.
| |
Collapse
|
12
|
Wu Z, Korntner SH, Mullen AM, Zeugolis DI. Collagen type II: From biosynthesis to advanced biomaterials for cartilage engineering. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100030. [PMID: 36824570 PMCID: PMC9934443 DOI: 10.1016/j.bbiosy.2021.100030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Collagen type II is the major constituent of cartilage tissue. Yet, cartilage engineering approaches are primarily based on collagen type I devices that are associated with suboptimal functional therapeutic outcomes. Herein, we briefly describe cartilage's development and cellular and extracellular composition and organisation. We also provide an overview of collagen type II biosynthesis and purification protocols from tissues of terrestrial and marine species and recombinant systems. We then advocate the use of collagen type II as a building block in cartilage engineering approaches, based on safety, efficiency and efficacy data that have been derived over the years from numerous in vitro and in vivo studies.
Collapse
Affiliation(s)
- Z Wu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - SH Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - AM Mullen
- Teagasc Research Centre, Ashtown, Ireland
| | - DI Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
- Correspondence author at: REMODEL, NUI Galway & UCD.
| |
Collapse
|
13
|
Impact of perlecan, a core component of basement membrane, on regeneration of cartilaginous tissues. Acta Biomater 2021; 135:13-26. [PMID: 34454085 DOI: 10.1016/j.actbio.2021.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023]
Abstract
As an indispensable component of the extracellular matrix, perlecan (Pln) plays an essential role in cartilaginous tissue function. Although there exist studies suggesting that Pln expressed by cartilaginous tissues is critical for chondrogenesis, few papers have discussed the potential impact Pln may have on cartilage regeneration. In this review, we delineate Pln structure, biomechanical properties, and interactive ligands-which together contribute to the effect Pln has on cartilaginous tissue development. We also review how the signaling pathways of Pln affect cartilage development and scrutinize the potential application of Pln to divisions of cartilage regeneration, spanning vascularization, stem cell differentiation, and biomaterial improvement. The aim of this review is to deepen our understanding of the spatial and temporal interactions that occur between Pln and cartilaginous tissue and ultimately apply Pln in scaffold design to improve cell-based cartilage engineering and regeneration. STATEMENT OF SIGNIFICANCE: As a key component of the basement membrane, Pln plays a critical role in tissue development and repair. Recent findings suggest that Pln existing in the pericellular matrix surrounding mature chondrocytes is actively involved in cartilage regeneration and functionality. We propose that Pln is essential to developing an in vitro matrix niche within biological scaffolds for cartilage tissue engineering.
Collapse
|
14
|
Pötter N, Westbrock F, Grad S, Alini M, Stoddart MJ, Schmal H, Kubosch D, Salzmann G, Kubosch EJ. Evaluation of the influence of platelet-rich plasma (PRP), platelet lysate (PL) and mechanical loading on chondrogenesis in vitro. Sci Rep 2021; 11:20188. [PMID: 34642434 PMCID: PMC8510996 DOI: 10.1038/s41598-021-99614-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/22/2021] [Indexed: 01/12/2023] Open
Abstract
The aim of this work is to investigate the capability of PRP as an adjuvant therapy to autologous chondrocyte implantation (ACI) in combination with multi-axial load with respect to cartilage regeneration. Articular cartilage shows poor repair capacity and therapies for cartilage defects are still lacking. Well-established operative treatments include ACI, and growing evidence shows the beneficial effects of PRP. Platelets contain numerous growth factors, among them transforming growth factor beta (TGF-β). Dynamic mechanical loading is known to be essential for tissue formation, improving extracellular matrix (ECM) production. For our ACI model monolayer expanded human chondrocytes were seeded into polyurethane scaffolds and embedded in fibrin (hChondro), in PRP-Gel (PRP), or in fibrin with platelet lysate (PL), which was added to the media once a week with a concentration of 50 vol%. The groups were either exposed to static conditions or multi-axial forces in a ball-joint bioreactor for 1 h per day over 2 weeks, mimicking ACI under physiological load. The culture medium was collected and analyzed for glycosaminoglycan (GAG), nitrite and transforming growth factor beta 1 (TGF-β1) content. The cell-scaffold constructs were collected for DNA and GAG quantification; the expression of chondrogenic genes, TGF-β and related receptors, as well as inflammatory genes, were analyzed using qPCR. Loading conditions showed superior chondrogenic differentiation (upregulation of COL2A1, ACAN, COMP and PRG4 expression) than static conditions. PRP and PL groups combined with mechanical loading showed upregulation of COL2A1, ACAN and COMP. The highest amount of total TGF-β1 was quantified in the PL group. Latent TGF-β1 was activated in all loaded groups, while the highest amount was found in the PL group. Load increased TGFBR1/TGFBR2 mRNA ratio, with further increases in response to supplements. In general, loading increased nitrite release into the media. However, over time, the media nitrite content was lower in the PL group compared to the control group. Based on these experiments, we conclude that chondrogenic differentiation is strongest when simulated ACI is performed in combination with dynamic mechanical loading and PRP-gel or PL supplementation. An inflammatory reaction was reduced by PRP and PL, which could be one of the major therapeutic effects. Loading presumably can enhance the action of TGF-β1, which was predominantly activated in loaded PL groups. The combination of load and PRP represents an effective and promising synergy concerning chondrocyte-based cartilage repair.
Collapse
Affiliation(s)
- N Pötter
- AO Research Institute Davos, Davos, Switzerland.
- Department of Orthopedics and Trauma Surgery, Albert-Ludwigs University Medical Center Freiburg, Freiburg, Germany.
| | - F Westbrock
- AO Research Institute Davos, Davos, Switzerland
- Department of Orthopedics and Trauma Surgery, Albert-Ludwigs University Medical Center Freiburg, Freiburg, Germany
| | - S Grad
- AO Research Institute Davos, Davos, Switzerland
| | - M Alini
- AO Research Institute Davos, Davos, Switzerland
| | - M J Stoddart
- AO Research Institute Davos, Davos, Switzerland
- Department of Orthopedics and Trauma Surgery, Albert-Ludwigs University Medical Center Freiburg, Freiburg, Germany
| | - H Schmal
- Department of Orthopedics and Trauma Surgery, Albert-Ludwigs University Medical Center Freiburg, Freiburg, Germany
- Department of Orthopaedic Surgery, University Hospital Odense, Odense, Denmark
| | - D Kubosch
- Department of Orthopedics and Trauma Surgery, Albert-Ludwigs University Medical Center Freiburg, Freiburg, Germany
| | - G Salzmann
- Department of Orthopedics and Trauma Surgery, Albert-Ludwigs University Medical Center Freiburg, Freiburg, Germany
- Schulthess Klinik, Zürich, Switzerland
| | - E J Kubosch
- Department of Orthopedics and Trauma Surgery, Albert-Ludwigs University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
CCN proteins in the musculoskeletal system: current understanding and challenges in physiology and pathology. J Cell Commun Signal 2021; 15:545-566. [PMID: 34228239 PMCID: PMC8642527 DOI: 10.1007/s12079-021-00631-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The acronym for the CCN family was recently revised to represent “cellular communication network”. These six, small, cysteine-enriched and evolutionarily conserved proteins are secreted matricellular proteins, that convey and modulate intercellular communication by interacting with structural proteins, signalling factors and cell surface receptors. Their role in the development and physiology of musculoskeletal system, constituted by connective tissues where cells are interspersed in the cellular matrix, has been broadly studied. Previous research has highlighted a crucial balance of CCN proteins in mesenchymal stem cell commitment and a pivotal role for CCN1, CCN2 and their alter ego CCN3 in chondrogenesis and osteogenesis; CCN4 plays a minor role and the role of CCN5 and CCN6 is still unclear. CCN proteins also participate in osteoclastogenesis and myogenesis. In adult life, CCN proteins serve as mechanosensory proteins in the musculoskeletal system providing a steady response to environmental stimuli and participating in fracture healing. Substantial evidence also supports the involvement of CCN proteins in inflammatory pathologies, such as osteoarthritis and rheumatoid arthritis, as well as in cancers affecting the musculoskeletal system and bone metastasis. These matricellular proteins indeed show involvement in inflammation and cancer, thus representing intriguing therapeutic targets. This review discusses the current understanding of CCN proteins in the musculoskeletal system as well as the controversies and challenges associated with their multiple and complex roles, and it aims to link the dispersed knowledge in an effort to stimulate and guide readers to an area that the writers consider to have significant impact and relevant potentialities.
Collapse
|
16
|
Li B, Guan G, Mei L, Jiao K, Li H. Pathological mechanism of chondrocytes and the surrounding environment during osteoarthritis of temporomandibular joint. J Cell Mol Med 2021; 25:4902-4911. [PMID: 33949768 PMCID: PMC8178251 DOI: 10.1111/jcmm.16514] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Temporomandibular joint (TMJ) osteoarthritis is a common chronic degenerative disease of the TMJ. In order to explore its aetiology and pathological mechanism, many animal models and cell models have been constructed to simulate the pathological process of TMJ osteoarthritis. The main pathological features of TMJ osteoarthritis include chondrocyte death, extracellular matrix (ECM) degradation and subchondral bone remodelling. Chondrocyte apoptosis accelerates the destruction of cartilage. However, autophagy has a protective effect on condylar chondrocytes. Degradation of ECM not only changes the properties of cartilage but also affects the phenotype of chondrocytes. The loss of subchondral bone in the early stages of TMJ osteoarthritis plays an aetiological role in the onset of osteoarthritis. In recent years, increasing evidence has suggested that chondrocyte hypertrophy and endochondral angiogenesis promote TMJ osteoarthritis. Hypertrophic chondrocytes secrete many factors that promote cartilage degeneration. These chondrocytes can further differentiate into osteoblasts and osteocytes and accelerate cartilage ossification. Intrachondral angiogenesis and neoneurogenesis are considered to be important triggers of arthralgia in TMJ osteoarthritis. Many molecular signalling pathways in endochondral osteogenesis are responsible for TMJ osteoarthritis. These latest discoveries in TMJ osteoarthritis have further enhanced the understanding of this disease and contributed to the development of molecular therapies. This paper summarizes recent cognition on the pathogenesis of TMJ osteoarthritis, focusing on the role of chondrocyte hypertrophy degeneration and cartilage angiogenesis.
Collapse
Affiliation(s)
- Baochao Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangzhao Guan
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Li Mei
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Wiegertjes R, Thielen NGM, van Caam APM, van Laar M, van Beuningen HM, Koenders MI, van Lent PLEM, van der Kraan PM, van de Loo FAJ, Blaney Davidson EN. Increased IL-6 receptor expression and signaling in ageing cartilage can be explained by loss of TGF-β-mediated IL-6 receptor suppression. Osteoarthritis Cartilage 2021; 29:773-782. [PMID: 33617971 DOI: 10.1016/j.joca.2021.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/12/2020] [Accepted: 01/06/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) development is strongly associated with ageing, possibly due to age-related changes in transforming growth factor-β (TGF-β) signaling in cartilage. Recently, we showed that TGF-β suppresses interleukin (IL)-6 receptor (IL-6R) expression in chondrocytes. As IL-6 is involved in cartilage degeneration, we hypothesized that age-related loss of TGF-β signaling results in increased IL-6R expression and signaling in ageing cartilage. DESIGN Bovine articular cartilage was collected and immediately processed to study age-related changes in IL-6R expression using qPCR and IHC (age-range: 0.5-14 years). Moreover, cartilage from young and aged cows was stimulated with rhIL-6 and/or rhTGF-β1 to measure IL-6-induced p-STAT3 using Western blot. Expression of STAT3-responsive genes was analyzed using qPCR. RESULTS Expression of IL-6 receptor (bIL-6R) significantly increased in cartilage upon ageing (slope: 0.32, 95%CI: 0.20-0.45), while expression of glycoprotein 130 (bGP130) was unaffected. Cartilage stimulation with IL-6 showed increased induction of p-STAT3 upon ageing (slope: 0.14, 95%CI: 0.08-0.20). Furthermore, IL-6-mediated induction of STAT3-responsive genes like bSOCS3 and bMMP3 was increased in aged compared to young cartilage. Interestingly, the ability of TGF-β to suppress bIL6R expression in young cartilage was lost upon ageing (slope: 0.21, 95%CI: 0.13-0.30). Concurrently, an age-related loss in TGF-β-mediated suppression of IL-6-induced p-STAT3 and bSOCS3 expression was observed. CONCLUSIONS Ageing results in enhanced IL-6R expression and subsequent IL-6-induced p-STAT3 signaling in articular cartilage. This is likely caused by age-related loss of protective TGF-β signaling, resulting in loss of TGF-β-mediated IL-6R suppression. Because of the detrimental role of IL-6 in cartilage, this mechanism may be involved in age-related OA development.
Collapse
Affiliation(s)
- R Wiegertjes
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - N G M Thielen
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A P M van Caam
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M van Laar
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - H M van Beuningen
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M I Koenders
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - P L E M van Lent
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - P M van der Kraan
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - F A J van de Loo
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - E N Blaney Davidson
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
18
|
Cherifi C, Monteagudo S, Lories RJ. Promising targets for therapy of osteoarthritis: a review on the Wnt and TGF-β signalling pathways. Ther Adv Musculoskelet Dis 2021; 13:1759720X211006959. [PMID: 33948125 PMCID: PMC8053758 DOI: 10.1177/1759720x211006959] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is the most common chronic joint disorder worldwide, with a high personal burden for the patients and an important socio-economic impact. Current therapies are largely limited to pain management and rehabilitation and exercise strategies. For advanced cases, joint replacement surgery may be the only option. Hence, there is an enormous need for the development of effective and safe disease-modifying anti-OA drugs. A strong focus in OA research has been on the identification and role of molecular signalling pathways that contribute to the balance between anabolism and catabolism in the articular cartilage. In this context, most insights have been gained in understanding the roles of the transforming growth factor-beta (TGF-β) and the Wingless-type (Wnt) signalling cascades. The emerging picture demonstrates a high degree of complexity with context-dependent events. TGF-β appears to protect cartilage under healthy conditions, but shifts in its receptor use and subsequent downstream signalling may be deleterious in aged individuals or in damaged cartilage. Likewise, low levels of Wnt activity appear important to sustain chondrocyte viability but excessive activation is associated with progressive joint damage. Emerging clinical data suggest some potential for the use of sprifermin, a recombinant forms of fibroblast growth factor 18, a distant TGF-β superfamily member, and for lorecivivint, a Wnt pathway modulator.
Collapse
Affiliation(s)
- Chahrazad Cherifi
- Department of Development and Regeneration, KU Leuven, Skeletal Biology and Engineering Research Centre, Leuven, Belgium
| | - Silvia Monteagudo
- Department of Development and Regeneration, KU Leuven, Skeletal Biology and Engineering Research Centre, Leuven, Belgium
| | - Rik J Lories
- Department of Development and Regeneration, KU Leuven, Skeletal Biology and Engineering Research Centre, Box 813 O&N, Herestraat 49, Leuven 3000, Belgium; Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Intraarticular injection of liposomal adenosine reduces cartilage damage in established murine and rat models of osteoarthritis. Sci Rep 2020; 10:13477. [PMID: 32778777 PMCID: PMC7418027 DOI: 10.1038/s41598-020-68302-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/12/2020] [Indexed: 01/17/2023] Open
Abstract
Osteoarthritis (OA) affects nearly 10% of the population of the United States and other industrialized countries and, at present, short of surgical joint replacement, there is no therapy available that can reverse the progression of the disease. Adenosine, acting at its A2A receptor (A2AR), is a critical autocrine factor for maintenance of cartilage homeostasis and here we report that injection of liposomal suspensions of either adenosine or a selective A2AR agonist, CGS21680, significantly reduced OA cartilage damage in a murine model of obesity-induced OA. The same treatment also improved swelling and preserved cartilage in the affected knees in a rat model of established post-traumatic OA (PTOA). Differential expression analysis of mRNA from chondrocytes harvested from knees of rats with PTOA treated with liposomal A2AR agonist revealed downregulation of genes associated with matrix degradation and upregulation of genes associated with cell proliferation as compared to liposomes alone. Studies in vitro and in affected joints demonstrated that A2AR ligation increased the nuclear P-SMAD2/3/P-SMAD1/5/8 ratio, a change associated with repression of terminal chondrocyte differentiation. These results strongly suggest that targeting the A2AR is an effective approach to treat OA.
Collapse
|
20
|
Walsh SK, Schneider SE, Amundson LA, Neu CP, Henak CR. Maturity-dependent cartilage cell plasticity and sensitivity to external perturbation. J Mech Behav Biomed Mater 2020; 106:103732. [PMID: 32321631 DOI: 10.1016/j.jmbbm.2020.103732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/04/2020] [Accepted: 03/13/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Articular cartilage undergoes biological and morphological changes throughout maturation. The prevalence of osteoarthritis in the aged population suggests that maturation predisposes cartilage to degradation and/or impaired regeneration, but this process is not fully understood. Therefore, the objective of this study was to characterize the cellular and genetic profile of cartilage, as well as biological plasticity in response to mechanical and culture time stimuli, as a function of animal maturity. METHODS/DESIGN Porcine articular cartilage explants were harvested from stifle joints of immature (2-4 weeks), adolescent (5-6 months), and mature (1-5 years) animals. Half of all samples were subjected to a single compressive mechanical load. Loaded samples were paired with unloaded controls for downstream analyses. Expression of cartilage progenitor cell markers CD105, CD44, and CD29 were determined via flow cytometry. Expression of matrix synthesis genes Col1, Col2, Col10, ACAN, and SOX9 were determined via qPCR. Tissue morphology and matrix content were examined histologically. Post-loading assays were performed immediately and following 7 days in culture. RESULTS CD105 and CD29 expression decreased with maturity, while CD44 expression was upregulated in cartilage from mature animals. Expression of matrix synthesis genes were generally upregulated in cartilage from mature animals, and adolescent animals showed the lowest expression of several matrix synthesizing genes. Culture time and mechanical loading analyses revealed greater plasticity to mechanical loading and culture time in cartilage from younger animals. Histology confirmed distinct structural and biochemical profiles across maturity. CONCLUSION This study demonstrates differential, nonlinear expression of chondroprogenitor markers and matrix synthesis genes as a function of cartilage maturity, as well as loss of biological plasticity in aged tissue. These findings have likely implications for age-related loss of regeneration and osteoarthritis progression.
Collapse
Affiliation(s)
- Shannon K Walsh
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, USA.
| | - Stephanie E Schneider
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Laura A Amundson
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
21
|
Cui C, Zheng L, Fan Y, Zhang J, Xu R, Xie J, Zhou X. Parathyroid hormone ameliorates temporomandibular joint osteoarthritic-like changes related to age. Cell Prolif 2020; 53:e12755. [PMID: 32154622 PMCID: PMC7162802 DOI: 10.1111/cpr.12755] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Ageing could be a contributing factor to the progression of temporomandibular joint osteoarthritis (TMJ OA), whereas its pathogenesis and potential therapeutic strategy have not been comprehensively investigated. MATERIALS AND METHODS We generated ageing mouse models (45-week and 60-week; 12-week mice as control) and intermittently injected 45-week mice with parathyroid hormone (PTH(1-34)) or vehicle for 4 weeks. Cartilage and subchondral bone of TMJ were analysed by microCT, histological and immunostaining. Western blot, qRT-PCR, ChIP, ELISA and immunohistochemical analysis were utilized to examination the mechanism of PTH(1-34)'s function. RESULTS We showed apparent OA-like phenotypes in ageing mice. PTH treatment could ameliorate the degenerative changes and improve bone microarchitecture in the subchondral bone by activating bone remodelling. Moreover, PTH inhibited phosphorylation level of Smad3, which can combine with p16ink4a gene promoter region, resulting in reduced senescent cells accumulation and increased cellular proliferation of marrow mesenchymal stem cells (MSCs). ELISA also showed relieved levels of specific senescent-associated secretory phenotype (SASP) in ageing mice after PTH treatment. CONCLUSIONS In summary, PTH may reduce the accumulation of senescent cells in subchondral bone by inhibiting p16ink4a and improve bone marrow microenvironment to active bone remodelling process, indicating PTH administration could be a potential preventative and therapeutic treatment for age-related TMJ OA.
Collapse
Affiliation(s)
- Chen Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jun Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China.,School of Stomatology, Kunming Medical University, Kunming, China
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| |
Collapse
|
22
|
Rolling-sliding load decreases the loss of chondrocyte viability and the mechanical properties of cartilage explants preserved in vitro. Cell Tissue Bank 2019; 20:545-555. [PMID: 31571025 DOI: 10.1007/s10561-019-09789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/26/2019] [Indexed: 11/27/2022]
Abstract
The viability of cartilage explants preserved in vitro decreases with time, which limits its use for transplantation. The effect of mechanical stimulation to cartilage explants in vitro is unknown. In this study, we observed the effects of mechanical stimulation on chondrocyte viability and the mechanical properties of cartilage explants preserved in vitro using a rolling-sliding loading device designed by us, and the optimal stimulation protocol was established. A cylindrical osteochondral mass drilled on the femoral condyle of a healthy pig was divided into two groups (loading group and control group), and changes in the chondrocyte survival rate, matrix composition and cartilage biomechanical properties was observed at different time points. Additionally, the mRNA expression of the apoptosis-related proteins caspase-3/Bax/Bcl-2, the cytoskeletal proteins actin/vimentin, and the matrix-related protein MMP13 were detected. The loading group exhibited delayed collagen and aggrecan degeneration and improved chondrocyte viability for three days. Protein and mRNA detection showed that apoptotic factors such as caspase-3 and Bax decreased rapidly in cartilage tissue after loading. The cytoskeletal proteins actin and vimentin showed no significant changes in mRNA expression in the control group, but was significantly higher in the loading group. MMP-13 mRNA expression was significantly higher in both the control group and loading group. Overall, this study suggests that suitable mechanical stimulation decreases the loss of chondrocyte viability and the mechanical properties of cartilage explants in vitro and improves cartilage preservation.
Collapse
|
23
|
Thielen NGM, van der Kraan PM, van Caam APM. TGFβ/BMP Signaling Pathway in Cartilage Homeostasis. Cells 2019; 8:cells8090969. [PMID: 31450621 PMCID: PMC6769927 DOI: 10.3390/cells8090969] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/15/2023] Open
Abstract
Cartilage homeostasis is governed by articular chondrocytes via their ability to modulate extracellular matrix production and degradation. In turn, chondrocyte activity is regulated by growth factors such as those of the transforming growth factor β (TGFβ) family. Members of this family include the TGFβs, bone morphogenetic proteins (BMPs), and growth and differentiation factors (GDFs). Signaling by this protein family uniquely activates SMAD-dependent signaling and transcription but also activates SMAD-independent signaling via MAPKs such as ERK and TAK1. This review will address the pivotal role of the TGFβ family in cartilage biology by listing several TGFβ family members and describing their signaling and importance for cartilage maintenance. In addition, it is discussed how (pathological) processes such as aging, mechanical stress, and inflammation contribute to altered TGFβ family signaling, leading to disturbed cartilage metabolism and disease.
Collapse
Affiliation(s)
- Nathalie G M Thielen
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Arjan P M van Caam
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Qu P, Qi J, Han Y, Zhou L, Xie D, Song H, Geng C, Zhang K, Wang G. Effects of Rolling-Sliding Mechanical Stimulation on Cartilage Preserved In Vitro. Cell Mol Bioeng 2019; 12:301-310. [PMID: 31719916 DOI: 10.1007/s12195-019-00584-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/26/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction Mechanical stimulation is important for maintaining cartilage function. We used a loading device to exert rolling-sliding mechanical stimulation on cartilage preserved in vitro to investigate cartilage viability and the involved mechanisms. Methods Osteochondral grafts from pig knees were randomly classified into loading and control groups. The loading group cartilage was subjected to cycles of mechanical stimulation with specified frequency/time/pressure combinations every 3 days; Then the DMEM was refreshed, and the cartilage was preserved in vitro. The control group cartilage was preserved in DMEM throughout the process and was changed every 3 days. On days 14 and 28, the chondrocyte survival rate, histology, and Young's modulus of the cartilage were measured. Western blots were performed after 2 h of loading to evaluate the protein expression. Results The loading group showed a significantly higher chondrocyte survival rate, proteoglycan and type II collagen content, and Young's modulus than did the control group on day 14, but no statistically significant differences were found on day 28. After two hours of the loading, the phosphorylation levels of MEK and ERK1/2 increased, and the expression of caspase-3, cleaved caspase-3 and bax decreased. Conclusion These results suggest that periodic rolling-sliding mechanical stimulation can increase cartilage vitality in 2 weeks; a possible mechanism is that mechanical stimulation activates the MEK/ERK signalling pathway, thus inhibiting apoptotic protein expression. This loading preservation scheme could be used by cartilage tissue banks to improve cartilage preservation in vitro and enhance the quality of cartilage repair.
Collapse
Affiliation(s)
- Pengwei Qu
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Jianhong Qi
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Yunning Han
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Lu Zhou
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Di Xie
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Hongqiang Song
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Caiyun Geng
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Kaihong Zhang
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Guozhu Wang
- College of Radiology, Shandong First Medical University&Shandong Academy of Medical Science, Taian, 271016 Shandong China
| |
Collapse
|
25
|
Grote C, Reinhardt D, Zhang M, Wang J. Regulatory mechanisms and clinical manifestations of musculoskeletal aging. J Orthop Res 2019; 37:1475-1488. [PMID: 30919498 PMCID: PMC9202363 DOI: 10.1002/jor.24292] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/13/2019] [Indexed: 02/04/2023]
Abstract
Aging is the strongest risk factor for degenerative bone and joint diseases. Clinical therapies for age-related musculoskeletal disorders face significant challenges as their pathogenic mechanisms remain largely unclear. This review article focuses on the recent advances in the understanding of regulatory mechanisms of musculoskeletal aging and their clinical relevance. We begin with the prevalence and socioeconomic impacts of major age-related musculoskeletal disorders such as sarcopenia, osteoporosis, osteoarthritis, and degenerative tendinopathy. The current understanding of responsible biological mechanisms involved in general aging is then summarized. Proposed molecular, cellular, and biomechanical mechanisms relevant to the clinical manifestations of aging in the musculoskeletal system are discussed in detail, with a focus on the disorders affecting muscle, bone, articular cartilage, and tendon. Although musculoskeletal aging processes share many common pathways with the aging of other body systems, unique molecular and cellular mechanisms may be involved in the aging processes of musculoskeletal tissues. Advancements in the understanding of regulatory mechanisms of musculoskeletal aging may promote the development of novel treatments for age-related musculoskeletal disorders. Finally, future research directions for major musculoskeletal tissues including functional interaction between the tissues and their clinical relevance to age-related musculoskeletal disorders are highlighted in the Future Prospects section. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1475-1488, 2019.
Collapse
Affiliation(s)
- Caleb Grote
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Daniel Reinhardt
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mingcai Zhang
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jinxi Wang
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
26
|
Glatt V, Evans CH, Stoddart MJ. Regenerative rehabilitation: The role of mechanotransduction in orthopaedic regenerative medicine. J Orthop Res 2019; 37:1263-1269. [PMID: 30561813 PMCID: PMC6546504 DOI: 10.1002/jor.24205] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/28/2018] [Indexed: 02/04/2023]
Abstract
Regenerative rehabilitation is an emerging area of investigation that seeks to integrate regenerative medicine with rehabilitation medicine. It is based on the realization that combining these two areas of medicine at an early stage of treatment will produce a better clinical outcome than the traditional linear approach of first administering the elements of regeneration followed, after a delay, by rehabilitation. Indeed, in certain settings, a case can be made for initiating rehabilitation protocols before starting regenerative intervention. This review summarizes the contents of a workshop held during the 2018 annual meeting of the Orthopaedic Research Society. It introduced the concept of regenerative rehabilitation and then provided two orthopaedic examples drawn from the domains of cartilage repair and bone healing. Rehabilitation medicine can supply a variety of physical stimuli, including electrical stimulation, thermal stimulation and mechanical stimulation. Of these, mechanical stimulation has the most obvious relevance to orthopaedics. The mechano-responsiveness of cartilage and bone has been known for a long time, but is poorly understood and has led to only limited clinical application. Improved bioreactor designs that allow multi-axial loading enable new insights into the responsiveness of chondrocytes and chondroprogenitor cells to specific types of load, especially shear. Recent studies on the mechanobiology of bone healing show that modulating the mechanical environment of an experimental osseous lesion by a process of "Reverse Dynamization" soon after injury considerably enhances healing. Future studies are needed to probe the molecular mechanisms responsible for these phenomena and to translate these findings into clinical practice. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1263-1269, 2019.
Collapse
Affiliation(s)
- Vaida Glatt
- Department of Orthopaedic Surgery, University of Texas Health Science Center, San Antonio, Texas
| | | | | |
Collapse
|
27
|
Aberrant activation of latent transforming growth factor-β initiates the onset of temporomandibular joint osteoarthritis. Bone Res 2018; 6:26. [PMID: 30210898 PMCID: PMC6131160 DOI: 10.1038/s41413-018-0027-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 02/05/2023] Open
Abstract
There is currently no effective medical treatment for temporomandibular joint osteoarthritis (TMJ-OA) due to a limited understanding of its pathogenesis. This study was undertaken to investigate the key role of transforming growth factor-β (TGF-β) signalling in the cartilage and subchondral bone of the TMJ using a temporomandibular joint disorder (TMD) rat model, an ageing mouse model and a Camurati–Engelmann disease (CED) mouse model. In the three animal models, the subchondral bone phenotypes in the mandibular condyles were evaluated by µCT, and changes in TMJ condyles were examined by TRAP staining and immunohistochemical analysis of Osterix and p-Smad2/3. Condyle degradation was confirmed by Safranin O staining, the Mankin and OARSI scoring systems and type X collagen (Col X), p-Smad2/3a and Osterix immunohistochemical analyses. We found apparent histological phenotypes of TMJ-OA in the TMD, ageing and CED animal models, with abnormal activation of TGF-β signalling in the condylar cartilage and subchondral bone. Moreover, inhibition of TGF-β receptor I attenuated TMJ-OA progression in the TMD models. Therefore, aberrant activation of TGF-β signalling could be a key player in TMJ-OA development. Blocking the activity of a critical growth factor could help treat degenerative disease of the jaw joint, according to experiments in three rodent models. Xuedong Zhou from Sichuan University in Chengdu, China, examined the cartilage and adjoining layer of bone found at the ends of the jawbone in a rat model of temporomandibular joint disorder and in two related mouse models. In all three, the researchers observed tissue abnormalities consistent with what’s seen in humans with osteoarthritis of the jaw joint, a condition with no effective therapeutic options. They showed that transforming growth factor-β, a master regulatory protein, displayed aberrant signalling patterns in these tissues and that blocking this protein’s receptor with a drug attenuated the disease process. The findings help explain what drives jaw joint osteoarthritis — and point to a strategy for treating it.
Collapse
|
28
|
Vincent TL, Wann AKT. Mechanoadaptation: articular cartilage through thick and thin. J Physiol 2018; 597:1271-1281. [PMID: 29917242 DOI: 10.1113/jp275451] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022] Open
Abstract
The articular cartilage is exquisitely sensitive to mechanical load. Its structure is largely defined by the mechanical environment and destruction in osteoarthritis is the pathophysiological consequence of abnormal mechanics. It is often overlooked that disuse of joints causes profound loss of volume in the articular cartilage, a clinical observation first described in polio patients and stroke victims. Through the 1980s, the results of studies exploiting experimental joint immobilisation supported this. Importantly, this substantial body of work was also the first to describe metabolic changes that resulted in decreased synthesis of matrix molecules, especially sulfated proteoglycans. The molecular mechanisms that underlie disuse atrophy are poorly understood despite the identification of multiple mechanosensing mechanisms in cartilage. Moreover, there has been a tendency to equate cartilage loss with osteoarthritic degeneration. Here, we review the historic literature and clarify the structural, metabolic and clinical features that clearly distinguish cartilage loss due to disuse atrophy and those due to osteoarthritis. We speculate on the molecular sensing pathways in cartilage that may be responsible for cartilage mechanoadaptation.
Collapse
Affiliation(s)
- Tonia L Vincent
- Arthritis Research UK Centre for OA Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Angus K T Wann
- Arthritis Research UK Centre for OA Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Nickien M, Heuijerjans A, Ito K, van Donkelaar CC. Comparison between in vitro and in vivo cartilage overloading studies based on a systematic literature review. J Orthop Res 2018; 36:2076-2086. [PMID: 29644716 PMCID: PMC6120482 DOI: 10.1002/jor.23910] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/27/2018] [Indexed: 02/04/2023]
Abstract
Methodological differences between in vitro and in vivo studies on cartilage overloading complicate the comparison of outcomes. The rationale of the current review was to (i) identify consistencies and inconsistencies between in vitro and in vivo studies on mechanically-induced structural damage in articular cartilage, such that variables worth interesting to further explore using either one of these approaches can be identified; and (ii) suggest how the methodologies of both approaches may be adjusted to facilitate easier comparison and therewith stimulate translation of results between in vivo and in vitro studies. This study is anticipated to enhance our understanding of the development of osteoarthritis, and to reduce the number of in vivo studies. Generally, results of in vitro and in vivo studies are not contradicting. Both show subchondral bone damage and intact cartilage above a threshold value of impact energy. At lower loading rates, excessive loads may cause cartilage fissuring, decreased cell viability, collagen network de-structuring, decreased GAG content, an overall damage increase over time, and low ability to recover. This encourages further improvement of in vitro systems, to replace, reduce, and/or refine in vivo studies. However, differences in experimental set up and analyses complicate comparison of results. Ways to bridge the gap include (i) bringing in vitro set-ups closer to in vivo, for example, by aligning loading protocols and overlapping experimental timeframes; (ii) synchronizing analytical methods; and (iii) using computational models to translate conclusions from in vitro results to the in vivo environment and vice versa. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-11, 2018.
Collapse
Affiliation(s)
- Mieke Nickien
- Department of Biomedical Engineering, Orthopaedic BiomechanicsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Ashley Heuijerjans
- Department of Biomedical Engineering, Orthopaedic BiomechanicsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Keita Ito
- Department of Biomedical Engineering, Orthopaedic BiomechanicsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Corrinus C. van Donkelaar
- Department of Biomedical Engineering, Orthopaedic BiomechanicsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| |
Collapse
|
30
|
Fahy N, Alini M, Stoddart MJ. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering. J Orthop Res 2018; 36:52-63. [PMID: 28763118 DOI: 10.1002/jor.23670] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/24/2017] [Indexed: 02/04/2023]
Abstract
Articular cartilage is a load-bearing tissue playing a crucial mechanical role in diarthrodial joints, facilitating joint articulation, and minimizing wear. The significance of biomechanical stimuli in the development of cartilage and maintenance of chondrocyte phenotype in adult tissues has been well documented. Furthermore, dysregulated loading is associated with cartilage pathology highlighting the importance of mechanical cues in cartilage homeostasis. The repair of damaged articular cartilage resulting from trauma or degenerative joint disease poses a major challenge due to a low intrinsic capacity of cartilage for self-renewal, attributable to its avascular nature. Bone marrow-derived mesenchymal stem cells (MSCs) are considered a promising cell type for cartilage replacement strategies due to their chondrogenic differentiation potential. Chondrogenesis of MSCs is influenced not only by biological factors but also by the environment itself, and various efforts to date have focused on harnessing biomechanics to enhance chondrogenic differentiation of MSCs. Furthermore, recapitulating mechanical cues associated with cartilage development and homeostasis in vivo, may facilitate the development of a cellular phenotype resembling native articular cartilage. The goal of this review is to summarize current literature examining the effect of mechanical cues on cartilage homeostasis, disease, and MSC chondrogenesis. The role of biological factors produced by MSCs in response to mechanical loading will also be examined. An in-depth understanding of the impact of mechanical stimulation on the chondrogenic differentiation of MSCs in terms of endogenous bioactive factor production and signaling pathways involved, may identify therapeutic targets and facilitate the development of more robust strategies for cartilage replacement using MSCs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:52-63, 2018.
Collapse
Affiliation(s)
- Niamh Fahy
- AO Research Institute Davos, Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
31
|
Armiento AR, Stoddart MJ, Alini M, Eglin D. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater 2018; 65:1-20. [PMID: 29128537 DOI: 10.1016/j.actbio.2017.11.021] [Citation(s) in RCA: 378] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/05/2017] [Accepted: 11/07/2017] [Indexed: 12/27/2022]
Abstract
Articular cartilage is commonly described as a tissue that is made of up to 80% water, is devoid of blood vessels, nerves, and lymphatics, and is populated by only one cell type, the chondrocyte. At first glance, an easy tissue for clinicians to repair and for scientists to reproduce in a laboratory. Yet, chondral and osteochondral defects currently remain an open challenge in orthopedics and tissue engineering of the musculoskeletal system, without considering osteoarthritis. Why do we fail in repairing and regenerating articular cartilage? Behind its simple and homogenous appearance, articular cartilage hides a heterogeneous composition, a high level of organisation and specific biomechanical properties that, taken together, make articular cartilage a unique material that we are not yet able to repair or reproduce with high fidelity. This review highlights the available therapies for cartilage repair and retraces the research on different biomaterials developed for tissue engineering strategies. Their potential to recreate the structure, including composition and organisation, as well as the function of articular cartilage, intended as cell microenvironment and mechanically competent replacement, is described. A perspective of the limitations of the current research is given in the light of the emerging technologies supporting tissue engineering of articular cartilage. STATEMENT OF SIGNIFICANCE The mechanical properties of articular tissue reflect its functionally organised composition and the recreation of its structure challenges the success of in vitro and in vivo reproduction of the native cartilage. Tissue engineering and biomaterials science have revolutionised the way scientists approach the challenge of articular cartilage repair and regeneration by introducing the concept of the interdisciplinary approach. The clinical translation of the current approaches are not yet fully successful, but promising results are expected from the emerging and developing new generation technologies.
Collapse
Affiliation(s)
- A R Armiento
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - M J Stoddart
- AO Research Institute Davos, Davos Platz, Switzerland; University Medical Center, Albert-Ludwigs University, Freiburg, Germany.
| | - M Alini
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - D Eglin
- AO Research Institute Davos, Davos Platz, Switzerland.
| |
Collapse
|
32
|
Rahmati M, Nalesso G, Mobasheri A, Mozafari M. Aging and osteoarthritis: Central role of the extracellular matrix. Ageing Res Rev 2017; 40:20-30. [PMID: 28774716 DOI: 10.1016/j.arr.2017.07.004] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/10/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA), is a major cause of severe joint pain, physical disability and quality of life impairment in the aging population across the developed and developing world. Increased catabolism in the extracellular matrix (ECM) of the articular cartilage is a key factor in the development and progression of OA. The molecular mechanisms leading to an impaired matrix turnover have not been fully clarified, however cellular senescence, increased expression of inflammatory mediators as well as oxidative stress in association with an inherently limited regenerative potential of the tissue, are all important contributors to OA development. All these factors are linked to and tend to be maximized by aging. Nonetheless the role of aging in compromising joint stability and function in OA has not been completely clarified yet. This review will systematically analyze cellular and structural changes taking place in the articular cartilage and bone in the pathogenesis of OA which are linked to aging. A particular emphasis will be placed on age-related changes in the phenotype of the articular chondrocytes.
Collapse
Affiliation(s)
- Maryam Rahmati
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Giovanna Nalesso
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Ali Mobasheri
- The D-BOARD European Consortium for Biomarker Discovery, The APPROACH Innovative Medicines Initiative (IMI) Consortium, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK; Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC) and Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King AbdulAziz University, Jeddah, 21589, Saudi Arabia
| | - Masoud Mozafari
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran; Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran, Iran.
| |
Collapse
|
33
|
How a decreased fibrillar interconnectivity influences stiffness and swelling properties during early cartilage degeneration. J Mech Behav Biomed Mater 2017; 75:390-398. [PMID: 28803113 DOI: 10.1016/j.jmbbm.2017.07.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/10/2017] [Accepted: 07/26/2017] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The functional coupling between the fibrillar network and the high-swelling proteoglycans largely determines the mechanical properties of the articular cartilage matrix. The objective of this new study was to show specifically how changes in fibrillar interconnectivity arising from early cartilage degeneration influence transverse stiffness and swelling properties at the tissue level. DESIGN Radial zone transverse layers of cartilage matrix were obtained from intact and mildly degenerate bovine patellae. Each layer was then subdivided to assess tensile stiffness, free-swelling response, glycosaminoglycan (GAG) content, and micro- and ultra-structural features. RESULTS The tensile modulus was significantly lower and the degree of swelling significantly higher for the degenerate matrix compared to the intact. Scanning electron microscopy revealed a homogeneous response to transverse strain in the intact cartilage, whereas large non-fibrillar spaces between fibril aggregates were visible in the degenerate matrix. Although there were no significant differences in GAG content it did correlate significantly with stiffness and swelling in the intact samples but not in the degenerate. CONCLUSIONS The lower degree of fibril network interconnectivity in the degenerate matrix led to both a decreased transverse stiffness and reduced resistance to osmotic swelling. This network 'de-structuring' also resulted in a reduced functional interaction between the fibrillar network and the proteoglycans. The study provides new insights into the role of the fibrillar network and how changes in the network arising from the degenerative cascade will influence tissue level behaviour.
Collapse
|
34
|
|
35
|
Roles of hypoxia inducible factor-1α in the temporomandibular joint. Arch Oral Biol 2016; 73:274-281. [PMID: 27816790 DOI: 10.1016/j.archoralbio.2016.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/20/2016] [Accepted: 10/25/2016] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Temporomandibular joint osteoarthritis (TMJ-OA) is a degenerative disease characterized by permanent cartilage loss. Articular cartilage is maintained in a low-oxygen environment. The chondrocyte response to hypoxic conditions involves expression of hypoxia inducible factor 1α (HIF-1α), which induces chondrocytes to increase expression of vascular endothelial growth factor (VEGF). Here, we investigated the role of HIF-1α in mechanical load effects on condylar cartilage and subchondral bone in heterozygous HIF-1α-deficient mice (HIF-1α+/-). DESIGN Mechanical stress was applied to the TMJ of C57BL/6NCr wild-type (WT) and HIF-1α+/- mice with a sliding plate for 10 days. Histological analysis was performed by HE staining, Safranin-O/Fast green staining, and immunostaining specific for articular cartilage homeostasis. RESULTS HIF-1α+/- mice had thinner cartilage and smaller areas of proteoglycan than WT controls, without and with mechanical stress. Mechanical stress resulted in prominent degenerative changes with increased expression of HIF-1α, VEGF, and the apoptosis factor cleaved Caspase-3 in condylar cartilage. CONCLUSION Our results indicate that HIF-1α may be important for articular cartilage homeostasis and protective against articular cartilage degradation in the TMJ under mechanical stress condition, therefore HIF-1α could be an important new therapeutic target in TMJ-OA.
Collapse
|
36
|
Madej W, van Caam A, Blaney Davidson E, Buma P, van der Kraan PM. Unloading results in rapid loss of TGFβ signaling in articular cartilage: role of loading-induced TGFβ signaling in maintenance of articular chondrocyte phenotype? Osteoarthritis Cartilage 2016; 24:1807-1815. [PMID: 27268943 DOI: 10.1016/j.joca.2016.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/28/2016] [Accepted: 05/23/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Recently it was shown that loading of articular cartilage explants activates TGFβ signaling. Here we investigated if in vivo chondrocytes express permanently high TGFβ signaling, and the consequence of the loss of compressive loading-mediated TGFβ signaling on chondrocyte function and phenotype. METHOD Bovine articular cartilage explants were collected within 10 min post mortem and stained immediately and after 30, 60 and 360 min for phosphorylated-Smad2, indicating active TGFβ signaling. Explants were unloaded for 48 h and subsequently repeatedly loaded with a compressive load of 3 MPa. In addition, explants were cultured unloaded for 2 weeks and the effect of loading or exogenous TGFβ on proteoglycan level and chondrocyte phenotype (Col10a1 mRNA expression) was analyzed. RESULTS Unloading of articular cartilage results in rapid loss of TGFβ signaling while subsequent compressive loading swiftly restored this. Loading and exogenous TGFβ enhanced expression of TGFβ1 and ALK5. Unloading of explants for 2 weeks resulted in proteoglycan loss and increased Col10a1 expression. Both loading and exogenous TGFβ inhibited elevated Col10a1 expression but not proteoglycan loss. CONCLUSION Our data might imply that in vivo regular physiological loading of articular cartilage leads to enduring TGFβ signaling and TGFβ-induced gene expression. We propose a hypothetical model in which loading activates a self-perpetuating system that prevents hypertrophic differentiation of chondrocytes and is crucial for cartilage homeostasis.
Collapse
Affiliation(s)
- W Madej
- Orthopedic Research Laboratory, Radboudumc, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - A van Caam
- Experimental Rheumatology, Radboudumc, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - E Blaney Davidson
- Experimental Rheumatology, Radboudumc, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - P Buma
- Orthopedic Research Laboratory, Radboudumc, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - P M van der Kraan
- Experimental Rheumatology, Radboudumc, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
37
|
van der Kraan P, Matta C, Mobasheri A. Age-Related Alterations in Signaling Pathways in Articular Chondrocytes: Implications for the Pathogenesis and Progression of Osteoarthritis - A Mini-Review. Gerontology 2016; 63:29-35. [PMID: 27595269 DOI: 10.1159/000448711] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/27/2016] [Indexed: 11/19/2022] Open
Abstract
Musculoskeletal conditions are a major burden on individuals, healthcare systems, and social care systems throughout the world, with indirect costs having a predominant economic impact. Aging is a major contributing factor to the development and progression of arthritic and musculoskeletal diseases. Indeed, aging and inflammation (often referred to as 'inflammaging') are critical risk factors for the development of osteoarthritis (OA), which is one of the most common forms of joint disease. The term 'chondrosenescence' has recently been introduced to define the age-dependent deterioration of chondrocyte function and how it undermines cartilage function in OA. An important component of chondrosenescence is the age-related deregulation of subcellular signaling pathways in chondrocytes. This mini-review discusses the role of age-related alterations in chondrocyte signaling pathways. We focus our attention on two major areas: age-dependent alterations in transforming growth factor-β signaling and changes in protein kinase and phosphoprotein phosphatase activities in aging chondrocytes. A better understanding of the basic signaling mechanisms underlying aging in chondrocytes is likely to facilitate the development of new therapeutic and preventive strategies for OA and a range of other age-related osteoarticular disorders.
Collapse
Affiliation(s)
- Peter van der Kraan
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | |
Collapse
|
38
|
van Caam A, Madej W, Thijssen E, Garcia de Vinuesa A, van den Berg W, Goumans MJ, Ten Dijke P, Blaney Davidson E, van der Kraan PM. Expression of TGFβ-family signalling components in ageing cartilage: age-related loss of TGFβ and BMP receptors. Osteoarthritis Cartilage 2016; 24:1235-45. [PMID: 26975812 DOI: 10.1016/j.joca.2016.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/11/2016] [Accepted: 02/26/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Ageing is the main risk factor for osteoarthritis (OA). We investigated if expression of transforming growth factor β (TGFβ)-family components, a family which is crucial for the maintenance of healthy articular cartilage, is altered during ageing in cartilage. Moreover, we investigated the functional significance of selected age-related changes. DESIGN Age-related changes in expression of TGFβ-family members were analysed by quantitative PCR in healthy articular cartilage obtained from 42 cows (age: ¾-10 years). To obtain functional insight of selected changes, cartilage explants were stimulated with TGFβ1 or bone morphogenetic protein (BMP) 9, and TGFβ1 and BMP response genes were measured. RESULTS Age-related cartilage thinning and loss of collagen type 2a1 expression (∼256-fold) was observed, validating our data set for studying ageing in cartilage. Expression of the TGFβ-family type I receptors; bAlk2, bAlk3, bAlk4 and bAlk5 dropped significantly with advancing age, whereas bAlk1 expression did not. Of the type II receptors, expression of bBmpr2 decreased significantly. Type III receptor expression was unaffected by ageing. Expression of the ligands bTgfb1 and bGdf5 also decreased with age. In explants, an age-related decrease in TGFβ1-response was observed for the pSmad3-dependent gene bSerpine1 (P = 0.016). In contrast, ageing did not affect BMP9 signalling, an Alk1 ligand, as measured by expression of the pSmad1/5 dependent gene bId1. CONCLUSIONS Ageing negatively affects both the TGFβ-ALK5 and BMP-BMPR signalling routes, and aged chondrocytes display a lowered pSmad3-dependent response to TGFβ1. Because pSmad3 signalling is essential for cartilage homeostasis, we propose that this change contributes to OA development.
Collapse
Affiliation(s)
- A van Caam
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - W Madej
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands; Orthopaedics Research Lab, Radboud University Medical Center, Nijmegen, The Netherlands
| | - E Thijssen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Garcia de Vinuesa
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - W van den Berg
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M-J Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - P Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - E Blaney Davidson
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - P M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
39
|
Bian Q, Jain A, Xu X, Kebaish K, Crane JL, Zhang Z, Wan M, Ma L, Riley LH, Sponseller PD, Guo XE, Lu WW, Wang Y, Cao X. Excessive Activation of TGFβ by Spinal Instability Causes Vertebral Endplate Sclerosis. Sci Rep 2016; 6:27093. [PMID: 27256073 PMCID: PMC4891769 DOI: 10.1038/srep27093] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/12/2016] [Indexed: 12/18/2022] Open
Abstract
Narrowed intervertebral disc (IVD) space is a characteristic of IVD degeneration. EP sclerosis is associated with IVD, however the pathogenesis of EP hypertrophy is poorly understood. Here, we employed two spine instability mouse models to investigate temporal and spatial EP changes associated with IVD volume, considering them as a functional unit. We found that aberrant mechanical loading leads to accelerated ossification and hypertrophy of EP, decreased IVD volume and increased activation of TGFβ. Overexpression of active TGFβ in CED mice showed a similar phenotype of spine instability model. Administration of TGFβ Receptor I inhibitor attenuates pathologic changes of EP and prevents IVD narrowing. The aberrant activation of TGFβ resulting in EPs hypertrophy-induced IVD space narrowing provides a pharmacologic target that could have therapeutic potential to delay DDD.
Collapse
Affiliation(s)
- Qin Bian
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Institute of Spine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, P. R. China
| | - Amit Jain
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xin Xu
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Khaled Kebaish
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Janet L. Crane
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Zhendong Zhang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lei Ma
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lee H. Riley
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Paul D. Sponseller
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - X. Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Willian Weijia Lu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, China
| | - Yongjun Wang
- Institute of Spine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, P. R. China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
40
|
Abstract
Age is the strongest independent risk factor for the development of osteoarthritis (OA) and for many years this was assumed to be due to repetitive microtrauma of the joint surface over time, the so-called 'wear and tear' arthritis. As our understanding of OA pathogenesis has become more refined, it has changed our appreciation of the role of ageing on disease. Cartilage breakdown in disease is not a passive process but one involving induction and activation of specific matrix-degrading enzymes; chondrocytes are exquisitely sensitive to changes in the mechanical, inflammatory and metabolic environment of the joint; cartilage is continuously adapting to these changes by altering its matrix. Ageing influences all of these processes. In this review, we will discuss how ageing affects tissue structure, joint use and the cellular metabolism. We describe what is known about pathways implicated in ageing in other model systems and discuss the potential value of targeting these pathways in OA.
Collapse
|
41
|
Abstract
Ageing-associated changes that affect articular tissues promote the development of osteoarthritis (OA). Although ageing and OA are closely linked, they are independent processes. Several potential mechanisms by which ageing contributes to OA have been elucidated. This Review focuses on the contributions of the following factors: age-related inflammation (also referred to as 'inflammaging'); cellular senescence (including the senescence-associated secretory phenotype (SASP)); mitochondrial dysfunction and oxidative stress; dysfunction in energy metabolism due to reduced activity of 5'-AMP-activated protein kinase (AMPK), which is associated with reduced autophagy; and alterations in cell signalling due to age-related changes in the extracellular matrix. These various processes contribute to the development of OA by promoting a proinflammatory, catabolic state accompanied by increased susceptibility to cell death that together lead to increased joint tissue destruction and defective repair of damaged matrix. The majority of studies to date have focused on articular cartilage, and it will be important to determine whether similar mechanisms occur in other joint tissues. Improved understanding of ageing-related mechanisms that promote OA could lead to the discovery of new targets for therapies that aim to slow or stop the progression of this chronic and disabling condition.
Collapse
Affiliation(s)
- Richard F Loeser
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, 3300 Thurston Building, Campus Box 7280, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7280, USA
| | - John A Collins
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, 3300 Thurston Building, Campus Box 7280, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7280, USA
| | - Brian O Diekman
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 450 West Drive, Campus Box 7295, Chapel Hill, North Carolina 27599-7295, USA
| |
Collapse
|
42
|
Mechanobiology of TGFβ signaling in the skeleton. Matrix Biol 2016; 52-54:413-425. [PMID: 26877077 DOI: 10.1016/j.matbio.2016.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
Abstract
Physical and biochemical cues play fundamental roles in the skeleton at both the tissue and cellular levels. The precise coordination of these cues is essential for skeletal development and homeostasis, and disruption of this coordination can drive disease progression. The growth factor TGFβ is involved in both the regulation of and cellular response to the physical microenvironment. It is essential to summarize the current findings regarding the mechanisms by which skeletal cells integrate physical and biochemical cues so that we can identify and address remaining gaps that could ultimately improve skeletal health. In this review, we describe the role of TGFβ in mechanobiological signaling in bone and cartilage at the tissue and cellular levels. We provide detail on how static and dynamic physical cues at the macro-level are transmitted to the micro-level, ultimately leading to regulation at each level of the TGFβ pathway and to cell differentiation. The continued integration of engineering and biological approaches is needed to answer many remaining questions, such as the mechanisms by which cells generate a coordinated response to physical and biochemical cues. We propose one such mechanism, through which the combination of TGFβ and an optimal physical microenvironment leads to synergistic induction of downstream TGFβ signaling.
Collapse
|