1
|
Fryk E, Tompa A, Lind A, Bennet R, Faresjö M. Inflammatory Immune Markers Associated With Thyroid Peroxidase Autoantibodies in Children Diagnosed With Both Type 1 Diabetes and Celiac Disease. Scand J Immunol 2025; 101:e70015. [PMID: 40170218 PMCID: PMC11961787 DOI: 10.1111/sji.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/12/2025] [Accepted: 03/02/2025] [Indexed: 04/03/2025]
Abstract
Autoimmune thyroid disease (AITD) is associated with other autoimmune endocrine diseases such as type 1 diabetes (T1D) and celiac disease (CeD). Thyroid peroxidase autoantibodies (TPOA) are biomarkers of AITD but may also occur in patients with other autoimmune diseases. We examined cross-sectional correlations between TPOA and an array of immune markers in a cohort of 90 children with exclusively T1D (n = 27), CeD (n = 16) or a combination of these two diseases (n = 18), compared to a reference group of children without these diagnoses (n = 29). Children with exclusively T1D or T1D in combination with CeD had higher levels of TPOA with an overrepresentation among girls. The correlations between immune markers and TPOA were distinctly different between all study groups. In children with T1D, TPOA correlated mainly with the T helper 1 associated IFN-γ and pro-inflammatory IL-1β. In contrast, in children with combined diagnoses, TPOA was correlated with pro-inflammatory MCP-1, the acute phase proteins ferritin, fibrinogen, and serum albumin A, and adipocytokines resistin and visfatin. Children with exclusively CeD did not show the same strong association between immune markers and TPOA. In conclusion, TPOA positivity was mainly detected in patients with T1D and female sex. Several inflammatory markers correlated with TPOA, indicating a relation to autoimmune parameters in children with T1D, CeD or both, but preceding symptoms AITD.
Collapse
Affiliation(s)
- Emanuel Fryk
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of MedicineUniversity of GothenburgGothenburgSweden
| | - Andrea Tompa
- Department of Clinical Diagnostics, School of Health and WelfareJönköping UniversityJönköpingSweden
- Division of Medical Diagnostics, Department of Laboratory MedicineRegion Jönköping CountyJonkopingSweden
| | - Alexander Lind
- Department of Clinical Sciences Malmö, Lund University CRCSkåne University HospitalMalmöSweden
| | - Rasmus Bennet
- Department of Clinical Sciences Malmö, Lund University CRCSkåne University HospitalMalmöSweden
| | - Maria Faresjö
- Division of Systems and Synthetic Biology, Department of Life SciencesChalmers University of TechnologyGothenburgSweden
| |
Collapse
|
2
|
Kim D, Ansari MM, Ghosh M, Heo Y, Choi KC, Son YO. Implications of obesity-mediated cellular dysfunction and adipocytokine signaling pathways in the pathogenesis of osteoarthritis. Mol Aspects Med 2025; 103:101361. [PMID: 40156972 DOI: 10.1016/j.mam.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation, bone sclerosis, and chronic low-grade inflammation. Aging and injury play key roles in OA pathogenesis by triggering the release of proinflammatory factors from adipose tissue and other sources. Obesity and aging impair the function of endoplasmic reticulum (ER) chaperones, leading to ER stress, protein misfolding, and cellular apoptosis. Obesity also induces mitochondrial dysfunction in OA through oxidative stress and disrupts mitochondrial dynamics, exacerbating chondrocyte damage. These factors contribute to inflammation, matrix imbalance, and chondrocyte apoptosis. Adipocytes, the primary source of adipokines, release inflammatory mediators that affect joint cells. Several adipocytokines have a central role in the regulation of many aspects of inflammation. Adiponectin and leptin are the two most abundant adipocytokines that are strongly associated with OA progression. This literature review suggests that adipokines activate many signaling pathways to exert downstream effects and play significant roles in obesity-induced OA. Understanding this rapidly growing family of mainly adipocyte-derived mediators and obesity-mediated cellular dysfunction may be important in the development of new therapies for obesity-associated OA management.
Collapse
Affiliation(s)
- Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| | - Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Ki-Choon Choi
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan, 31000, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
3
|
Ratajczak-Pawłowska AE, Szymczak-Tomczak A, Hryhorowicz S, Zawada A, Skoracka K, Rychter AM, Skrzypczak-Zielińska M, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. Relationship of visfatin with obesity and osteoporosis in patients with inflammatory bowel disease: a narrative review. Front Immunol 2025; 16:1533955. [PMID: 40170859 PMCID: PMC11959099 DOI: 10.3389/fimmu.2025.1533955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/21/2025] [Indexed: 04/03/2025] Open
Abstract
Background Inflammatory bowel disease (IBD) is an increasingly prevalent condition in developed countries. Alongside the growing number of patients, there is a rising incidence of disease-related complications, including osteoporosis. While well-established risk factors for low bone mineral density in IBD-such as low body mass or steroid therapy-are widely recognized, other contributing factors warrant further investigation. One such factor is visfatin, a proinflammatory adipokine encoded by the NAMPT gene. Objectives This review aimed to explore the association between visfatin level, bone health, and obesity among patients with inflammatory bowel disease. Key findings Although visfatin is primarily associated with metabolic syndrome, it may also influence bone mineral density by affecting osteoblast and osteoclast differentiation and function. Additionally, some studies have identified a correlation between visfatin levels and bone mineral density. A deeper understanding of visfatin's role in osteoporosis development may contribute to the identification of novel therapeutic strategies. Therefore, lower bone mineral density in inflammatory bowel disease may be associated with obesity and visfatin levels. However, visfatin concentrations depend on many factors, including genetics, immunology, and nutritional factors, which may affect visfatin levels. Implications Current research highlights visfatin as both a potential biomarker and a therapeutic target for osteoporosis treatment. Nevertheless, limited studies have specifically examined the relationship between visfatin and bone mineral density in IBD. Further research is required to clarify this association and to explore how variations in visfatin levels impact bone density in IBD patients.
Collapse
Affiliation(s)
- Alicja Ewa Ratajczak-Pawłowska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Szymczak-Tomczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences Poznan, Poznan, Poland
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Ryszard Słomski
- Institute of Medical Sciences, College of Social and Media Culture in Torun, Torun, Poland
- Laboratory of Molecular Genetics, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
4
|
Feng X, Qin Y, Ma S, Ming S, Weng Z, Xuan Y, Gong S, Fan F, Chen P, Chu Q, Li Z. Liubao tea extract restrains obesity-related hyperlipidemia via regulation of AMPK/p38/NF-κB pathway and intestinal microbiota. Food Chem 2025; 464:141910. [PMID: 39522375 DOI: 10.1016/j.foodchem.2024.141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Liubao tea, a traditional dark tea, has gained widespread recognition for various health benefits. In this study, the effects of Liubao tea extract (LTE) on obesity-related hyperlipidemia and the potential mechanism involved were explored. Anti-obesity compounds such as tricetin, isovitexin, tiliroside, etc. in LTE were identified. In high-fat diet mouse models, LTE effectively reduced tissues, organs, and body weight growth, and restored abnormal serum lipid levels. LTE could reverse adipocyte enlargement, lipid accumulation, and hepatic microstructure abnormalities. Notably, LTE reshaped gut microbiota by boosting beneficial bacteria (e.g., Bacteroides, Akkermansia, Psychrobacter) and suppressing harmful bacteria (e.g., Dubosiella, Faecalibaculum). Spearman correlation analysis unveiled significant associations between serum lipid levels, weight gain, LTE dosage, and gut microbiota, underlining the modulatory effects of LTE on metabolic disorders via the regulation of intestinal microbiota. Collectively, LTE could serve as a potential therapy for obesity-related hyperlipidemia prevention.
Collapse
Affiliation(s)
- Xinyu Feng
- Wuzhou Gongren Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China; Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yuechao Qin
- Wuzhou Gongren Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, China
| | - Shengjin Ming
- Wuzhou Gongren Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China
| | - Zhihang Weng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yuqi Xuan
- Cangwu County Liuwang Forestry Industry Development Co., Ltd, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou, China.
| | - Zhongxia Li
- Wuzhou Gongren Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China
| |
Collapse
|
5
|
Mahmoud AM, Alfadl EMA, Ahmed ARH, Abouelella AMA, Alshazly O, Mohamed MFA, Allaf HE, Allam RM. Disclosing the impact of metformin and methotrexate in adjuvant arthritis in female rats: molecular docking and biochemical insights on visfatin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03823-7. [PMID: 39878818 DOI: 10.1007/s00210-025-03823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
Rheumatoid arthritis (RA) is one of the most common systemic autoimmune inflammatory diseases, with a progressive etiology that results in serious complications and a higher chance of early death. Visfatin, an adipokine, is correlated with disease pathologic features and becomes a key biomarker and therapeutic target for RA. This study aimed to evaluate the anti-arthritic activity of metformin (an antidiabetic drug with anti-inflammatory activities) and methotrexate (the first choice for disease-modifying antirheumatic drugs in RA, with diverse adverse effects) in complete Freund's adjuvant (CFA)-induced arthritis in female rats. Treatment outcomes were assessed using arthritis severity, serum levels of inflammatory markers, and pro-inflammatory adipokine (visfatin). In addition to radiological and histopathological examination, and docking analysis. Results showed that Met, MTX, and Met/MTX significantly (p ≤ 0.05) lowered paw swelling and arthritic score, as well as attenuated serum levels of rheumatoid factor (RF), C-reactive protein (CRP), and visfatin. The combined treatment gives the best results. The previously mentioned findings were further confirmed through radiological and histopathological examinations. In conclusion, the co-administration of metformin could potentiate the anti-arthritic activity of methotrexate, providing a medical strategy for arthritis management.
Collapse
Affiliation(s)
- Ahmed Mostafa Mahmoud
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Department of Basic Medical Sciences, Aqaba Medical Sciences University, Aqaba, Jordan
| | - Esam Mohamed Abu Alfadl
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ahmed R H Ahmed
- Department of Pathology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Azza M A Abouelella
- Department of Pharmacology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Omar Alshazly
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt.
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Hasan El Allaf
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Department of Basic Medical Sciences, Aqaba Medical Sciences University, Aqaba, Jordan
| | - Rasha M Allam
- Pharmacology Department, Medical and Clinical Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
6
|
Poomani MS, Regurajan R, Perumal R, Ramachandran A, Mariappan I, Muthan K, Subramanian V. Differentiation of placenta-derived MSCs cultured in human platelet lysate: a xenofree supplement. 3 Biotech 2024; 14:116. [PMID: 38524240 PMCID: PMC10959853 DOI: 10.1007/s13205-024-03966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
In the last few decades, mesenchymal stem cells (MSCs)-based regenerative therapies in clinical applications have gradually become a hot topic due to their long-term self-renewal and multilineage differentiation ability. In this scenario, placenta (p) has been considered as a good source of MSCs. As a tissue of fetal origin with abundant number of stem cells compared to other sources, their non-invasive acquisition, strong immunosuppression, and lack of ethical concerns make placenta an indispensable source of MSC in stem cell research and therapy. The mesenchymal stem cells were derived from human term placenta (p-MSCs) in xenofree condition using platelet lysate (PL) as a suitable alternative to fetal bovine serum (FBS). Upon isolation, p-MSCs showed plastic adherence with spindle-shaped, fibroblast-like morphology under microscope. p-MSCs flourished well in PL-containing media. Immunophenotyping showed classical MSC markers (> 90%) and lack expression of hematopoietic and HLA-DR (< 1%). Surprisingly, differentiation study showed differentiation of p-MSCs to mature adipocytes in both induced cells and control (spontaneous differentiation), as observed via oil red staining. This is in line with gene expression data where both control and induced cells were positive for visfatin and leptin. Thus, we propose that p-MSCs can be used for clinical applications in the treatment of various chronic and degenerative diseases.
Collapse
Affiliation(s)
- Merlin Sobia Poomani
- Genetic Engineering and Regenerative Biology Lab, Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012 India
| | - Rathika Regurajan
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012 India
| | | | | | - Iyyadurai Mariappan
- Genetic Engineering and Regenerative Biology Lab, Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012 India
| | - Krishnaveni Muthan
- Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012 India
| | - Venkatesh Subramanian
- Genetic Engineering and Regenerative Biology Lab, Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012 India
| |
Collapse
|
7
|
Danev N, Li G, Duan J(E, Van de Walle GR. Comparative transcriptomic analysis of bovine mesenchymal stromal cells reveals tissue-source and species-specific differences. iScience 2024; 27:108886. [PMID: 38318381 PMCID: PMC10838956 DOI: 10.1016/j.isci.2024.108886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) have the potential to be used as therapeutics, but their efficacy varies due to cellular heterogeneity, which is not fully understood. After characterizing donor-matched bovine MSC from adipose tissue (AT), bone marrow (BM), and peripheral blood (PB), we performed single-cell RNA sequencing (scRNA-seq) to evaluate overarching similarities and differences across these three tissue-derived MSCs. Next, the transcriptomic profiles of the bovine MSCs were compared to those of equine MSCs, derived from the same tissue sources and previously published by our group, and revealed species-specific differences. Finally, the transcriptomic profile from bovine BM-MSCs was compared to mouse and human BM-MSCs and demonstrated that bovine BM-MSCs share more common functionally relevant gene expression profiles with human BM-MSCs than compared to murine BM-MSCs. Collectively, this study presents the cow as a potential non-traditional animal model for translational MSC studies based on transcriptomic profiles similar to human MSCs.
Collapse
Affiliation(s)
- Nikola Danev
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Guangsheng Li
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jingyue (Ellie) Duan
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Shen J, Tao SS, Wang RY, Shi SK, Jiang C, Mei YJ. Increased serum visfatin level is associated with fat deposition of the lumbar spine in ankylosing spondylitis patients. Heliyon 2024; 10:e23730. [PMID: 38192832 PMCID: PMC10772616 DOI: 10.1016/j.heliyon.2023.e23730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Objectives To assess the serum visfatin levels in patients with ankylosing spondylitis (AS), as well as its correlation with fat deposition of the lumbar spine. Methods Serum visfatin levels were detected by enzyme-linked immunosorbent assay (ELISA) in 50 AS patients and 75 sex-and age-matched healthy controls. The clinical and laboratory indexes of AS patients were recorded, and the lumbar spine magnetic resonance scan was performed to evaluate the lumbar spine fat deposition in AS patients. The level of serum visfatin and its correlation with lumbar fat deposition were analyzed, and the risk factors of AS lumbar MRI fat deposition were evaluated by Logistic regression. Results Serum visfatin levels in AS patients were elevated compared with that in healthy controls (p < 0.001), and were more significant in patients with fat deposition and syndesmophyte formation (p = 0.017 and p = 0.014, respectively). Serum visfatin levels were positively correlated with CRP, BASDAI, mSASSS and fat deposition (all p < 0.05). Age (OR = 1.085, 95% CI: 1.005-1.173, p = 0.038), disease duration (OR = 1.267, 95% CI: 1.017-1.578, p = 0.035), and visfatin (OR = 1.846, 95% CI: 1.004-3.393, p = 0.048) were risk factors for fat deposition in AS patients. Conclusions The level of serum visfatin in AS patients is significantly increased, which is associated with fat deposition on lumbar MRI. Elevated visfatin level is an independent risk factor for AS lumbar fat deposition.
Collapse
Affiliation(s)
- Jie Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, 2600 Donghai Avenue, Bengbu, Anhui, 233030, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rui-Yuan Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, 2600 Donghai Avenue, Bengbu, Anhui, 233030, China
| | - Shi-Kui Shi
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, China
| | - Chao Jiang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, 2600 Donghai Avenue, Bengbu, Anhui, 233030, China
| | - Yong-Jun Mei
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, 2600 Donghai Avenue, Bengbu, Anhui, 233030, China
| |
Collapse
|
9
|
Bilski J, Schramm-Luc A, Szczepanik M, Mazur-Biały AI, Bonior J, Luc K, Zawojska K, Szklarczyk J. Adipokines in Rheumatoid Arthritis: Emerging Biomarkers and Therapeutic Targets. Biomedicines 2023; 11:2998. [PMID: 38001998 PMCID: PMC10669400 DOI: 10.3390/biomedicines11112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease manifested by joint involvement, extra-articular manifestations, and general symptoms. Adipose tissue, previously perceived as an inert energy storage organ, has been recognised as a significant contributor to RA pathophysiology. Adipokines modulate immune responses, inflammation, and metabolic pathways in RA. Although most adipokines have a pro-inflammatory and aggravating effect on RA, some could counteract this pathological process. The coexistence of RA and sarcopenic obesity (SO) has gained attention due to its impact on disease severity and outcomes. Sarcopenic obesity further contributes to the inflammatory milieu and metabolic disturbances. Recent research has highlighted the intricate crosstalk between adipose tissue and skeletal muscle, suggesting potential interactions between these tissues in RA. This review summarizes the roles of adipokines in RA, particularly in inflammation, immune modulation, and joint destruction. In addition, it explores the emerging role of adipomyokines, specifically irisin and myostatin, in the pathogenesis of RA and their potential as therapeutic targets. We discuss the therapeutic implications of targeting adipokines and adipomyokines in RA management and highlight the challenges and future directions for research in this field.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Agata Schramm-Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Marian Szczepanik
- Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Agnieszka Irena Mazur-Biały
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| | - Kevin Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Klaudia Zawojska
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Szklarczyk
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| |
Collapse
|
10
|
Xu ZH, Xiong CW, Miao KS, Yu ZT, Zhang JJ, Yu CL, Huang Y, Zhou XD. Adipokines regulate mesenchymal stem cell osteogenic differentiation. World J Stem Cells 2023; 15:502-513. [PMID: 37424950 PMCID: PMC10324509 DOI: 10.4252/wjsc.v15.i6.502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/26/2023] [Accepted: 04/24/2023] [Indexed: 06/26/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into various tissue cell types including bone, adipose, cartilage, and muscle. Among those, osteogenic differentiation of MSCs has been widely explored in many bone tissue engineering studies. Moreover, the conditions and methods of inducing osteogenic differentiation of MSCs are continuously advancing. Recently, with the gradual recognition of adipokines, the research on their involvement in different pathophysiological processes of the body is also deepening including lipid metabolism, inflammation, immune regulation, energy disorders, and bone homeostasis. At the same time, the role of adipokines in the osteogenic differentiation of MSCs has been gradually described more completely. Therefore, this paper reviewed the evidence of the role of adipokines in the osteogenic differentiation of MSCs, emphasizing bone formation and bone regeneration.
Collapse
Affiliation(s)
- Zhong-Hua Xu
- Department of Orthopedics, Jintan Hospital Affiliated to Jiangsu University, Changzhou 213200, Jiangsu Province, China
| | - Chen-Wei Xiong
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Kai-Song Miao
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Zhen-Tang Yu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Jun-Jie Zhang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Chang-Lin Yu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Yong Huang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Xin-Die Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
- Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture 811800, Qinghai Province, China
| |
Collapse
|
11
|
Deepika F, Bathina S, Armamento-Villareal R. Novel Adipokines and Their Role in Bone Metabolism: A Narrative Review. Biomedicines 2023; 11:644. [PMID: 36831180 PMCID: PMC9953715 DOI: 10.3390/biomedicines11020644] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
The growing burden of obesity and osteoporosis is a major public health concern. Emerging evidence of the role of adipokines on bone metabolism has led to the discovery of novel adipokines over the last decade. Obesity is recognized as a state of adipose tissue inflammation that adversely affects bone health. Adipokines secreted from white adipose tissue (WAT) and bone marrow adipose tissue (BMAT) exerts endocrine and paracrine effects on the survival and function of osteoblasts and osteoclasts. An increase in marrow fat is implicated in osteoporosis and, hence, it is crucial to understand the complex interplay between adipocytes and bone. The objective of this review is to summarize recent advances in our understanding of the role of different adipokines on bone metabolism. METHODS This is a comprehensive review of the literature available in PubMED and Cochrane databases, with an emphasis on the last five years using the keywords. RESULTS Leptin has shown some positive effects on bone metabolism; in contrast, both adiponectin and chemerin have consistently shown a negative association with BMD. No significant association was found between resistin and BMD. Novel adipokines such as visfatin, LCN-2, Nesfatin-1, RBP-4, apelin, and vaspin have shown bone-protective and osteoanabolic properties that could be translated into therapeutic targets. CONCLUSION New evidence suggests the potential role of novel adipokines as biomarkers to predict osteoporosis risk, and as therapeutic targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Fnu Deepika
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
| | - Siresha Bathina
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
| |
Collapse
|
12
|
Pham DV, Nguyen TK, Park PH. Adipokines at the crossroads of obesity and mesenchymal stem cell therapy. Exp Mol Med 2023; 55:313-324. [PMID: 36750692 PMCID: PMC9981593 DOI: 10.1038/s12276-023-00940-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 02/09/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy is an emerging treatment strategy to counteract metabolic syndromes, including obesity and its comorbid disorders. However, its effectiveness is challenged by various factors in the obese environment that negatively impact MSC survival and function. The identification of these detrimental factors will provide opportunities to optimize MSC therapy for the treatment of obesity and its comorbidities. Dysregulated production of adipokines, a group of cytokines and hormones derived from adipose tissue, has been postulated to play a pivotal role in the development of obesity-associated complications. Intriguingly, adipokines have also been implicated in the modulation of viability, self-renewal, proliferation, and other properties of MSC. However, the involvement of adipokine imbalance in impaired MSC functionality has not been completely understood. On the other hand, treatment of obese individuals with MSC can restore the serum adipokine profile, suggesting the bidirectionality of the adipokine-MSC relationship. In this review, we aim to discuss the current knowledge on the central role of adipokines in the crosstalk between obesity and MSC dysfunction. We also summarize recent advances in the use of MSC for the treatment of obesity-associated diseases to support the hypothesis that adipokines modulate the benefits of MSC therapy in obese patients.
Collapse
Affiliation(s)
- Duc-Vinh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Thi-Kem Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea. .,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea.
| |
Collapse
|
13
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|
14
|
González-Rodríguez M, Ruiz-Fernández C, Cordero-Barreal A, Ait Eldjoudi D, Pino J, Farrag Y, Gualillo O. Adipokines as targets in musculoskeletal immune and inflammatory diseases. Drug Discov Today 2022; 27:103352. [PMID: 36099964 DOI: 10.1016/j.drudis.2022.103352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022]
Abstract
Adipokines are the principal mediators in adipose signaling. Nevertheless, besides their role in energy storage, these molecules can be produced by other cells, such as immune cells or chondrocytes. Given their pleiotropic effects, research over the past few years has also focused on musculoskeletal diseases, showing that these adipokines might have relevant roles in worsening the disease or improving the treatment response. In this review, we summarize recent advances in our understanding of adipokines and their role in the most prevalent musculoskeletal immune and inflammatory disorders.
Collapse
Affiliation(s)
- María González-Rodríguez
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Programme in Drug Research and Development, Santiago de Compostela, Spain
| | - Clara Ruiz-Fernández
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Programme in Medicine Clinical Research, Santiago de Compostela, Spain
| | - Alfonso Cordero-Barreal
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Programme in Molecular Medicine, Santiago de Compostela, Spain
| | - Djedjiga Ait Eldjoudi
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; Departamento de Cirurgía y Especialidades Médico-Cirúrgicas Área de Traumatología e Ortopedia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Yousof Farrag
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| |
Collapse
|
15
|
Interplay between fat cells and immune cells in bone: Impact on malignant progression and therapeutic response. Pharmacol Ther 2022; 238:108274. [DOI: 10.1016/j.pharmthera.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
|
16
|
Tariq S, Tariq S, Khaliq S, Lone KP. Serum Resistin Levels and Related Genetic Variants Are Associated With Bone Mineral Density in Postmenopausal Women. Front Endocrinol (Lausanne) 2022; 13:868120. [PMID: 35992125 PMCID: PMC9389046 DOI: 10.3389/fendo.2022.868120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Osteoporosis is a multifactorial disorder and a number of genetic variants or loci responsible for bone mineral density (BMD) have been identified. Resistin, a novel adipokine has diverse role in human body including its function in bone remodeling. The objective of this study was to see the association of serum resistin levels and related genetic variants (rs3931020, rs13144478) with BMD in postmenopausal females. METHODS This comparative analytical study was conducted on postmenopausal osteoporotic (n=101), osteopenic (n=77) and non-osteoporotic (n=74) females. For comparison and correlational analysis, Kruskal-Wallis test and Spearman's rho correlation were used respectively. Hardy-Weinberg equilibrium (HWE) was calculated by using Chi-square test (χ2). RESULTS There was significant difference in the serum levels of resistin (p <0.001), among the three groups. Significant negative correlation of resistin was observed with BMD at various sites. Serum resistin levels were significantly low in the rs3931020 AA homozygous genotype (p = 0.010), and significantly high in the rs13144478 AT heterozygous genotype (p = 0.020), BMD at all sites except left femoral neck was significantly high in rs3931020 AA genotype, while BMD at lumbar spine, left hip and total BMD were significantly low in the rs13144478 TT homozygotes. CONCLUSION High serum resistin levels are associated with low BMD and single nucleotide variation in rs3931020 and rs13144478 may lead to high serum resistin levels and low bone mineral density. Resistin can serve as a new genetic marker, potential therapeutic target and predictor of osteoporosis.
Collapse
Affiliation(s)
- Sundus Tariq
- Physiology, University Medical & Dental College, The University of Faisalabad, Faisalabad, Pakistan
- Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Saba Tariq
- Pharmacology and Therapeutics, University Medical & Dental College, The University of Faisalabad, Faisalabad, Pakistan
- Pharmacology and Therapeutics, University of Health Sciences, Lahore, Pakistan
| | - Saba Khaliq
- Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Khalid Parvez Lone
- Physiology/Metabolic Disorders, Government College University, Lahore, Pakistan
| |
Collapse
|
17
|
Wang Q, Wang H, Yan H, Tian H, Wang Y, Yu W, Dai Z, Chen P, Liu Z, Tang R, Jiang C, Fan S, Liu X, Lin X. Suppression of osteoclast multinucleation via a posttranscriptional regulation-based spatiotemporally selective delivery system. SCIENCE ADVANCES 2022; 8:eabn3333. [PMID: 35767605 PMCID: PMC9242458 DOI: 10.1126/sciadv.abn3333] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Redundancy of multinucleated mature osteoclasts, which results from the excessive fusion of mononucleated preosteoclasts (pOCs), leads to osteolytic diseases such as osteoporosis. Unfortunately, the currently available clinical drugs completely inhibit osteoclasts, thus interfering with normal physiological bone turnover. pOC-specific regulation may be more suitable for maintaining bone homeostasis. Here, circBBS9, a previously unidentified circular RNA, was found to exert regulatory effects via the circBBS9/miR-423-3p/Traf6 axis in pOCs. To overcome the long-standing challenge of spatiotemporal RNA delivery to cells, we constructed biomimetic nanoparticles to achieve the pOC-specific targeted delivery of circBBS9. pOC membranes (POCMs) were extracted to camouflage cationic polymer for RNA interference with circBBS9 (POCM-NPs@siRNA/shRNAcircBBS9). POCM-NPs endowed the nanocarriers with improved stability, accurate pOC targeting, fusogenic uptake, and reactive oxygen species-responsive release. In summary, our findings may provide an alternative strategy for multinucleated cell-related diseases that involves restriction of mononucleated cell multinucleation through a spatiotemporally selective delivery system.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Haoli Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Huige Yan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Hongsen Tian
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Yining Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Wei Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhanqiu Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhaoming Liu
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ruikang Tang
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Chao Jiang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Corresponding author. (S.F.); (X.L.); (X.L.)
| | - Xin Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Corresponding author. (S.F.); (X.L.); (X.L.)
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Corresponding author. (S.F.); (X.L.); (X.L.)
| |
Collapse
|
18
|
Wang J, Zhang K, Zhang S, Guan Z. Vaspin promotes chondrogenic differentiation of BMSCs via Akt activation in osteoarthritis. BMC Musculoskelet Disord 2022; 23:344. [PMID: 35410202 PMCID: PMC8996515 DOI: 10.1186/s12891-022-05295-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background The aim of this study was to investigate the role of Vaspin on the chondrogenic differentiation of bone mesenchymal stem cells (BMSCs), and its effect on chondrocyte survival and ECM secretion. We also assessed whether the Akt activation participates in these processes. Methods In vivo, immunohistochemistry was used to examine the positive rate of the protein expressions of Akt in Wistar rat articular cartilage and subchondral bone after Vaspin intraperitoneal injection for 14 days. In vitro, we isolated and expanded BMSCs from Wistar rats, and further cultured BMSCs as pellets in a chondrogenic-differentiation medium supplemented with different concentrations of Vaspin. After 21 days, the pellets were processed for cell counting kit assay. The mRNA level of Akt, SOX9 and COL2A1 in the pellets were investigated using quantitative Real-Time polymerase chain reaction, and the protein level of COMP was detected using western blot. Results During the chondrogenic differentiation of BMSCs, Vaspin promoted the chondrogenic differentiation of BMSCs and chondrocyte survival by activating the Akt pathway. These effects were significantly reduced by treatment with an Akt inhibitor. Moreover, Vaspin promoted chondrogenic differentiation of BMSCs by increasing the expression of markers in cartilage formation and extracellular matrix secretion. Furthermore, our study also found that Vaspin could increase Akt expression in cartilage cavities and subchondral bone in vivo. Conclusion These findings demonstrate that Vaspin can promote the chondrogenic differentiation of BMSCs and chondrocyte survival via Akt activation. Our study provides new insights into the potential ability of Vaspin to ameliorate the chondrogenic differentiation of BMSCs and chondrocyte survival in OA. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05295-9.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Orthopedics, Peking University International Hospital, Beijing, 102206, China
| | - Keshi Zhang
- Department of Orthopedics, Peking University Shougang Hospital, Beijing, 100144, China
| | - Shaolong Zhang
- Department of Orthopedics, Peking University Shougang Hospital, Beijing, 100144, China
| | - Zhenpeng Guan
- Department of Orthopedics, Peking University Shougang Hospital, Beijing, 100144, China.
| |
Collapse
|
19
|
The Influence of Nesfatin-1 on Bone Metabolism Markers Concentration, Densitometric, Tomographic and Mechanical Parameters of Skeletal System of Rats in the Conditions of Established Osteopenia. Animals (Basel) 2022; 12:ani12050654. [PMID: 35268222 PMCID: PMC8909152 DOI: 10.3390/ani12050654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Nesfatin-1 is an adipokine with little known effect on the skeletal system. In this study, we examined the effect of 8-wk administration of nesfatin-1 on densitometric, tomographic, and mechanical parameters of bones, as well as the concentration of bone metabolism markers in rats with experimentally induced established osteopenia. Abstract Our study aimed to evaluate the impact of nesfatin-1 administration on bone metabolism and properties in established osteopenia in ovariectomized female rats. In total, 21 female Wistar rats were assigned to two groups: sham-operated (SHAM, n = 7) and ovariectomized (OVA, n = 14). After 12 weeks of osteopenia induction in the OVA females, the animals were given i.p. physiological saline (OVA, n = 7) or 2 µg/kg body weight of nesfatin-1(NES, n = 7) for the next 8 weeks. The SHAM animals received physiological saline at the same time. Final body weight, total bone mineral density and content of the skeleton were estimated. Then, isolated femora and tibias were subjected to densitometric, tomographic, and mechanical tests. Bone metabolism markers, i.e., osteocalcin, bone specific alkaline phosphatase (bALP), and crosslinked N-terminal telopeptide of type I collagen (NTx) were determined in serum using an ELISA kit. Ovariectomy led to negative changes in bone metabolism associated with increased resorption, thus diminishing the densitometric, tomographic, and mechanical parameters. In turn, the administration of nesfatin-1 led to an increase in the value of the majority of the tested parameters of bones. The lowest bALP concentration and the highest NTx concentration were found in the OVA females. The bALP concentration was significantly higher after nesfatin-1 administration in comparison to the OVA rats. In conclusion, the results indicate that nesfatin-1 treatment limits bone loss, preserves bone architecture, and increases bone strength in condition of established osteopenia.
Collapse
|
20
|
Teufelsbauer M, Lang C, Plangger A, Rath B, Moser D, Staud C, Radtke C, Neumayer C, Hamilton G. Effects of metformin on human bone-derived mesenchymal stromal cell-breast cancer cell line interactions. Med Oncol 2022; 39:54. [PMID: 35150338 PMCID: PMC8840908 DOI: 10.1007/s12032-022-01655-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
Metformin is used to treat patients with type 2 diabetes mellitus and was found to lower the incidence of cancer. Bone metastasis is a common impairment associated with advanced breast cancer. The present study investigated the effects of metformin on human bone-derived mesenchymal stromal cells (BM-MSC)—breast cancer cell line interactions. BM-MSCs grown from box chisels were tested for growth-stimulating and migration-controlling activity on four breast cancer cell lines either untreated or after pretreatment with metformin. Growth stimulation was tested in MTT tests and migration in scratch assays. Furthermore, the expression of adipokines of BM-MSCs in response to metformin was assessed using Western blot arrays. Compared to breast cancer cell lines (3.6 ± 1.4% reduction of proliferation), 500 µM metformin significantly inhibited the proliferation of BM-MSC lines (mean 12.3 ± 2.2 reduction). Pretreatment of BM-MSCs with metformin showed variable effects of the resulting conditioned media (CM) on breast cancer cell lines depending on the specific BM-MSC—cancer line combination. Metformin significantly reduced the migration of breast cancer cell lines MDA-MB-231 and MDA-MB-436 in response to CM of drug-pretreated BM-MSCs. Assessment of metformin-induced alterations in the expression of adipokines by BM-MSC CM indicated increased osteogenic signaling and possibly impairment of metastasis. In conclusion, the anticancer activities of metformin are the result of a range of direct and indirect mechanisms that lower tumor proliferation and progression. A lower metformin-induced protumor activity of BM-MSCs in the bone microenvironment seem to contribute to the positive effects of the drug in selected breast cancer patients.
Collapse
Affiliation(s)
- Maryana Teufelsbauer
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Clemens Lang
- Department of Trauma Surgery, Sozialmedizinisches Zentrum Ost, Donauspital, Vienna, Austria
| | - Adelina Plangger
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Doris Moser
- Department of Cranio, Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - Clement Staud
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Christine Radtke
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Neumayer
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Ma Z, Wei Y, Zhang L, Shi X, Xing R, Liao T, Yang N, Li X, Jie L, Wang P. GCTOF-MS Combined LC-QTRAP-MS/MS Reveals Metabolic Difference Between Osteoarthritis and Osteoporotic Osteoarthritis and the Intervention Effect of Erxian Decoction. Front Endocrinol (Lausanne) 2022; 13:905507. [PMID: 35966099 PMCID: PMC9365991 DOI: 10.3389/fendo.2022.905507] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE OP and OA are chronic bone diseases with high incidence in the middle-aged and elderly populations. The latest research shows that the pathological environment of OP may be involved in the aggravation of the pathological process of OA, and the pathological state of OP plays an important role in the aggravation of OA pathology. EXD is a traditional Chinese medicine decoction that has been used to treat osteoporosis. Therefore, we further study whether OA will be aggravated in the OP environment and whether EXD can alleviate OA by intervening in the OP environment. The purpose of this study was to analyze the effect of OP on OA metabolites by using metabolomic methods and to explore the intervention mechanism of EXD on osteoporotic OA. METHOD Thirty-two SD rats were randomly divided into normal group, OA group, OP-OA group, and EXD group. EXD was administered by gavage. Histopathological evaluation of cartilage tissue was performed using Saffron fast green and HE staining. Western blot and qRT-PCR were used to detect the expression levels of chondrogenesis genes SOX9, COL2A1, and COMP in cartilage tissue. GC-TOFMS and LC-QTRAP-MS/MS metabolomics methods were used to analyze the changes of metabolites in serum samples of rats in each group. RESULT The slice results showed that the cartilage damage in the OP-OA group was more serious than that in the OA group, which was significantly relieved after EXD intervention, indicating that the cartilage damage in the OP-OA group was more severe than that in the OA group and further reduced the protein and gene expressions of cartilage markers SOX9, COL2A1, and COMP. Thirty-seven substances were identified, and gentiopicroside, emodin, quercetin, and diosmetin were analyzed as possible active components of EXD. EXD treatment significantly reduced cartilage damage and reversed the expression of these markers. Metabolomics showed that EXD attenuated cartilage destruction by modulating the expression of cystine, chenodeoxycholate, and D-Turanose, involving glycolysis/gluconeogenesis, pantothenate, and CoA biosynthesis metabolic pathways. CONCLUSION The OP environment may promote the progression of OA through metabolic factors. The benign intervention of EXD in osteoporotic OA involves cystine, chenodeoxycholate, and D-Turanose, and their associated glycolysis/gluconeogenesis, pantothenate, and CoA biosynthesis metabolic pathways. Therefore, we have a deep understanding of the metabolic-related intervention of EXD in osteoporotic OA and are eager to better understand the mechanism of multi-targeted intervention of EXD in bone metabolic lesions.
Collapse
Affiliation(s)
- Zhenyuan Ma
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yibao Wei
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Zhang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoqing Shi
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Runlin Xing
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Taiyang Liao
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nan Yang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaochen Li
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Lishi Jie
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peimin Wang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- *Correspondence: Peimin Wang,
| |
Collapse
|
22
|
Du G, Cheng X, Zhang Z, Han L, Wu K, Li Y, Lin X. TGF-Beta Induced Key Genes of Osteogenic and Adipogenic Differentiation in Human Mesenchymal Stem Cells and MiRNA-mRNA Regulatory Networks. Front Genet 2021; 12:759596. [PMID: 34899844 PMCID: PMC8656281 DOI: 10.3389/fgene.2021.759596] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The clinical efficacy of osteoporosis therapy is unsatisfactory. However, there is currently no gold standard for the treatment of osteoporosis. Recent studies have indicated that a switch from osteogenic to adipogenic differentiation in human bone marrow mesenchymal stem cells (hMSCs) induces osteoporosis. This study aimed to provide a more comprehensive understanding of the biological mechanisms involved in this process and to identify key genes involved in osteogenic and adipogenic differentiation in hMSCs to provide new insights for the prevention and treatment of osteoporosis. Methods: Microarray and bioinformatics approaches were used to identify the differentially expressed genes (DEGs) involved in osteogenic and adipogenic differentiation, and the biological functions and pathways of these genes were analyzed. Hub genes were identified, and the miRNA–mRNA interaction networks of these hub genes were constructed. Results: In an optimized microenvironment, transforming growth factor-beta (TGF-beta) could promote osteogenic differentiation and inhibit adipogenic differentiation of hMSCs. According to our study, 98 upregulated genes involved in osteogenic differentiation and 66 downregulated genes involved in adipogenic differentiation were identified, and associated biological functions and pathways were analyzed. Based on the protein–protein interaction (PPI) networks, the hub genes of the upregulated genes (CTGF, IGF1, BMP2, MMP13, TGFB3, MMP3, and SERPINE1) and the hub genes of the downregulated genes (PPARG, TIMP3, ANXA1, ADAMTS5, AGTR1, CXCL12, and CEBPA) were identified, and statistical analysis revealed significant differences. In addition, 36 miRNAs derived from the upregulated hub genes were screened, as were 17 miRNAs derived from the downregulated hub genes. Hub miRNAs (hsa-miR-27a/b-3p, hsa-miR-128-3p, hsa-miR-1-3p, hsa-miR-98-5p, and hsa-miR-130b-3p) coregulated both osteogenic and adipogenic differentiation factors. Conclusion: The upregulated hub genes identified are potential targets for osteogenic differentiation in hMSCs, whereas the downregulated hub genes are potential targets for adipogenic differentiation. These hub genes and miRNAs play important roles in adipogenesis and osteogenesis of hMSCs. They may be related to the prevention and treatment not only of osteoporosis but also of obesity.
Collapse
Affiliation(s)
- Genfa Du
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinyuan Cheng
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhen Zhang
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Linjing Han
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Keliang Wu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yongjun Li
- Department of Orthopedics, Shunde Hospital Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiaosheng Lin
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
23
|
Li J, Zhang T, Huang C, Xu M, Xie W, Pei Q, Xie X, Wang B, Li X. Chemerin located in bone marrow promotes osteogenic differentiation and bone formation via Akt/Gsk3β/β-catenin axis in mice. J Cell Physiol 2021; 236:6042-6054. [PMID: 33492671 DOI: 10.1002/jcp.30290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
Chemerin, a secreted protein mainly produced by adipocytes and hepatocytes, plays a variety of roles in endocrine or paracrine signaling. As reported in human epidemiology, chemerin was correlated with osteoporosis. And the previous in vitro study found that chemerin knockdown promoted osteogenesis and inhibited adipogenesis. However, the function of chemerin in bone metabolism and the underlying mechanism remains unclear. In this study, we uncovered the in vivo function of chemerin in bone homeostasis. We discovered that in obese mice, chemerin was increased in serum, while decreased in the bone marrow; and the chemerin expression in bone tissue was positively correlated with osteogenic genes. To further investigate the function of chemerin in bone metabolism, we generated chemerin deficiency and overexpression mice. We found bone mass and osteogenesis were decreased in chemerin deficiency mice, while were increased in chemerin overexpression mice. Furthermore, we observed that the chemerin expression increased during osteogenic differentiation of MSCs. Besides, we verified that chemerin promoted osteogenic differentiation in C3H10T1/2 cells and BMSCs through Akt/Gsk3β/β-catenin axis. Treatment with Akt inhibitor (MK2206) abolished the promoting effect of chemerin on osteogenic differentiation and active β-catenin. Together, our results suggest chemerin in bone marrow, not in serum, promotes osteogenic differentiation and bone formation via Akt/Gsk3β/β-catenin axis. Chemerin may serve as a therapeutic strategy for osteoporosis.
Collapse
Affiliation(s)
- Jun Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ting Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chenglong Huang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Min Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenhua Xie
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qilin Pei
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinxin Xie
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
24
|
Vimentin-Rab7a Pathway Mediates the Migration of MSCs and Lead to Therapeutic Effects on ARDS. Stem Cells Int 2021; 2021:9992381. [PMID: 34367295 PMCID: PMC8342148 DOI: 10.1155/2021/9992381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/14/2021] [Indexed: 01/29/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is difficult to treat and has a high mortality rate. Mesenchymal stem cells (MSCs) have an important therapeutic effect in ARDS. While the mechanism of MSC migration to the lungs remains unclear, the role of MSCs is of great clinical significance. To this end, we constructed vimentin knockout mice, extracted bone MSCs from the mice, and used them for the treatment of LPS-induced ARDS. H&E staining and Masson staining of mouse lung tissue allowed us to assess the degree of damage and fibrosis of mouse lung tissue. By measuring serum TNF-α, TGF-β, and INF-γ, we were able to monitor the release of inflammatory factors. Finally, through immunoprecipitation and gene knockout experiments, we identified upstream molecules that regulate vimentin and elucidated the mechanism that mediates MSC migration. As a result, we found that MSCs from wild-type mice can significantly alleviate ARDS and reduce lung inflammation, while vimentin gene knockout reduced the therapeutic effect of MSCs in ARDS. Cytological experiments showed that vimentin gene knockout can significantly inhibit the migration of MSCs and showed that it changes the proliferation and differentiation status of MSCs. Further experiments found that vimentin's regulation of MSC migration is mainly mediated by Rab7a. Rab7a knockout blocked the migration of MSCs and weakened the therapeutic effect of MSCs in ARDS. In conclusion, we have shown that the Vimentin-Rab7a pathway mediates migration of MSCs and leads to therapeutic effects in ARDS.
Collapse
|
25
|
Nwabo Kamdje AH, Seke Etet PF, Simo Tagne R, Vecchio L, Lukong KE, Krampera M. Tumor Microenvironment Uses a Reversible Reprogramming of Mesenchymal Stromal Cells to Mediate Pro-tumorigenic Effects. Front Cell Dev Biol 2020; 8:545126. [PMID: 33330442 PMCID: PMC7710932 DOI: 10.3389/fcell.2020.545126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
The role of mesenchymal stromal cells (MSCs) in the tumor microenvironment is well described. Available data support that MSCs display anticancer activities, and that their reprogramming by cancer cells in the tumor microenvironment induces their switch toward pro-tumorigenic activities. Here we discuss the recent evidence of pro-tumorigenic effects of stromal cells, in particular (i) MSC support to cancer cells through the metabolic reprogramming necessary to maintain their malignant behavior and stemness, and (ii) MSC role in cancer cell immunosenescence and in the establishment and maintenance of immunosuppression in the tumor microenvironment. We also discuss the mechanisms of tumor microenvironment mediated reprogramming of MSCs, including the effects of hypoxia, tumor stiffness, cancer-promoting cells, and tumor extracellular matrix. Finally, we summarize the emerging strategies for reprogramming tumor MSCs to reactivate anticancer functions of these stromal cells.
Collapse
Affiliation(s)
- Armel H. Nwabo Kamdje
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences (FMBS), University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Paul F. Seke Etet
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences (FMBS), University of Ngaoundéré, Ngaoundéré, Cameroon
- Center for Sustainable Health and Development, Garoua, Cameroon
| | - Richard Simo Tagne
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences (FMBS), University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Lorella Vecchio
- Center for Sustainable Health and Development, Garoua, Cameroon
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mauro Krampera
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
26
|
Nwabo Kamdje AH, Seke Etet PF, Simo RT, Vecchio L, Lukong KE, Krampera M. Emerging data supporting stromal cell therapeutic potential in cancer: reprogramming stromal cells of the tumor microenvironment for anti-cancer effects. Cancer Biol Med 2020; 17:828-841. [PMID: 33299638 PMCID: PMC7721102 DOI: 10.20892/j.issn.2095-3941.2020.0133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/20/2020] [Indexed: 02/03/2023] Open
Abstract
After more than a decade of controversy on the role of stromal cells in the tumor microenvironment, the emerging data shed light on pro-tumorigenic and potential anti-cancer factors, as well as on the roots of the discrepancies. We discuss the pro-tumorigenic effects of stromal cells, considering the effects of tumor drivers like hypoxia and tumor stiffness on these cells, as well as stromal cell-mediated adiposity and immunosuppression in the tumor microenvironment, and cancer initiating cells' cellular senescence and adaptive metabolism. We summarize the emerging data supporting stromal cell therapeutic potential in cancer, discuss the possibility to reprogram stromal cells of the tumor microenvironment for anti-cancer effects, and explore some causes of discrepancies on the roles of stromal cells in cancer in the available literature.
Collapse
Affiliation(s)
- Armel Hervé Nwabo Kamdje
- Department of Biomedical Sciences, University of Ngaoundere, Faculty of Science, Ngaoundere 454, Cameroon
| | - Paul Faustin Seke Etet
- Department of Physiological Sciences and Biochemistry, University of Ngaoundéré, Garoua 454, Cameroon
- Center for Sustainable Health and Development, Garoua 454, Cameroon
| | - Richard Tagne Simo
- Department of Biomedical Sciences, University of Ngaoundere, Faculty of Science, Ngaoundere 454, Cameroon
| | - Lorella Vecchio
- Center for Sustainable Health and Development, Garoua 454, Cameroon
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, College of Medicine, Saskatoon SK S7N 5E5, Canada
| | - Mauro Krampera
- Department of Medicine, University of Verona, Section of Hematology, Stem Cell Research Laboratory, Verona 37134, Italy
| |
Collapse
|
27
|
Peek V, Neumann E, Inoue T, Koenig S, Pflieger FJ, Gerstberger R, Roth J, Matsumura K, Rummel C. Age-Dependent Changes of Adipokine and Cytokine Secretion From Rat Adipose Tissue by Endogenous and Exogenous Toll-Like Receptor Agonists. Front Immunol 2020; 11:1800. [PMID: 32973755 PMCID: PMC7466552 DOI: 10.3389/fimmu.2020.01800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/06/2020] [Indexed: 01/04/2023] Open
Abstract
White adipose tissue but recently also brown adipose tissue have emerged as endocrine organs. Age-associated obesity is accompanied by prolonged and elevated lipopolysaccharide (LPS)-induced sickness symptoms and increased cytokine and adipokine levels in the circulation partially originating from adipose tissue. In the present study, ex vivo fat explants were used to investigate how the exogenous pathogen-associated molecular pattern (PAMP) LPS or the endogenous danger-associated molecular patterns (DAMPs) high mobility group box-1 protein (HMGB1) and biglycan modulate the release of cytokines and adipokines/batokines and, thus, could influence systemic and/or local inflammation. The response of adipose tissue (epididymal, retroperitoneal, subcutaneous, and brown) was compared between young lean and old obese rats (2 vs. 24 months old). LPS induced a strong interleukin (IL)-6 and tumor necrosis factor (TNF) alpha release into the supernatant of all adipose tissue types investigated. HMGB1 (subcutaneous) and biglycan (retroperitoneal) led to an increased release of IL-6 and TNFalpha (HMGB1) and decreased visfatin and adiponectin (biglycan) secretion from epididymal adipose tissue (young rats). Visfatin was also decreased by HMGB1 in retroperitoneal adipose tissue of old rats. We found significantly higher leptin (all fat pads) and adiponectin (subcutaneous) levels in supernatants of adipose tissue from old compared to young rats, whereas visfatin secretion showed the opposite. The expression of the biglycan receptor Toll-like receptor (TLR) 2 as well as the LPS and HMGB1 receptors TLR4 and receptor for advanced glycation end products (RAGE) were reduced with age (TLR4/RAGE) and by stimulation with their ligands (subcutaneous). Overall, we revealed that adipokines/adipose-tissue released cytokines show some modulation of their release caused by mediators of septic (batokines) and sterile inflammation with potential implication for acute and chronic disease. Moreover, aging may increase or decrease the release of fat-derived mediators. These data show that DAMPS and LPS locally modulate cytokine secretion while only DAMPS but not LPS can locally alter adipokine secretion during inflammation.
Collapse
Affiliation(s)
- Verena Peek
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Elena Neumann
- Department of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus Liebig University Gießen, Bad Nauheim, Germany
| | - Tomohiro Inoue
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Sandy Koenig
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Rüdiger Gerstberger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany.,Joachim Roth and Christoph Rummel, Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Kiyoshi Matsumura
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany.,Joachim Roth and Christoph Rummel, Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| |
Collapse
|
28
|
Han DF, Li Y, Xu HY, Li RH, Zhao D. An Update on the Emerging Role of Visfatin in the Pathogenesis of Osteoarthritis and Pharmacological Intervention. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8303570. [PMID: 32831881 PMCID: PMC7429770 DOI: 10.1155/2020/8303570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases that affects millions of people worldwide, mainly the aging population. Despite numerous published reports, little is known about the pathology of this disease, and no feasible treatment plan exists to stop OA progression. Recently, extensive basic and clinical studies have shown that adipokines play a key role in OA development. Moreover, some drugs associated with adipokines have shown chondroprotective and anti-inflammatory effects on OA. Visfatin has been shown to play a detrimental role in the progression of OA. It increases the production of matrix metalloproteinases and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), induces the production of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, affects the differentiation of mesenchymal stem cells to adipocytes, and induces osteophyte formation by inhibiting osteoclastogenesis. Although some side effects of chemical visfatin inhibitors have been reported, they were shown to be successful in the treatment of diabetes, cancer, and other diseases that can utilize Chinese herbs, further suggesting that similar therapeutic strategies could be used in OA prevention and treatment. Here, we describe the pathophysiological mechanism of visfatin in OA and discuss some potential pharmacological interventions using Chinese herbs.
Collapse
Affiliation(s)
- Dong-Feng Han
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hui-Ying Xu
- Department of Ultrasound, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Rong-Hang Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ding Zhao
- Department of Orthopedic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
29
|
Fintini D, Cianfarani S, Cofini M, Andreoletti A, Ubertini GM, Cappa M, Manco M. The Bones of Children With Obesity. Front Endocrinol (Lausanne) 2020; 11:200. [PMID: 32390939 PMCID: PMC7193990 DOI: 10.3389/fendo.2020.00200] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Excess adiposity in childhood may affect bone development, ultimately leading to bone frailty. Previous reports showing an increased rate of extremity fractures in children with obesity support this fear. On the other hand, there is also evidence suggesting that bone mineral content is higher in obese children than in normal weight peers. Both adipocytes and osteoblasts derive from multipotent mesenchymal stem cells (MSCs) and obesity drives the differentiation of MSCs toward adipocytes at the expense of osteoblast differentiation. Furthermore, adipocytes in bone marrow microenvironment release a number of pro-inflammatory and immunomodulatory molecules that up-regulate formation and activation of osteoclasts, thus favoring bone frailty. On the other hand, body adiposity represents a mechanical load, which is beneficial for bone accrual. In this frame, bone quality, and structure result from the balance of inflammatory and mechanical stimuli. Diet, physical activity and the hormonal milieu at puberty play a pivotal role on this balance. In this review, we will address the question whether the bone of obese children and adolescents is unhealthy in comparison with normal-weight peers and discuss mechanisms underlying the differences in bone quality and structure. We anticipate that many biases and confounders affect the clinical studies conducted so far and preclude us from achieving robust conclusions. Sample-size, lack of adequate controls, heterogeneity of study designs are the major drawbacks of the existing reports. Due to the increased body size of children with obesity, dual energy absorptiometry might overestimate bone mineral density in these individuals. Magnetic resonance imaging, peripheral quantitative CT (pQCT) scanning and high-resolution pQCT are promising techniques for the accurate estimate of bone mineral content in obese children. Moreover, no longitudinal study on the risk of incident osteoporosis in early adulthood of children and adolescents with obesity is available. Finally, we will address emerging dietary issues (i.e., the likely benefits for the bone health of polyunsaturated fatty acids and polyphenols) since an healthy diet (i.e., the Mediterranean diet) with balanced intake of certain nutrients associated with physical activity remain the cornerstones for achieving an adequate bone accrual in young individuals regardless of their adiposity degree.
Collapse
Affiliation(s)
- Danilo Fintini
- Endocrinology Unit, Pediatric University Department, Bambino Gesù Children's Hospital, Rome, Italy
- *Correspondence: Danilo Fintini
| | - Stefano Cianfarani
- Diabetes and Growth Disorders Unit, Dipartimento Pediatrico Universitario Ospedaliero Bambino Gesù Children's Hospital, Tor Vergata University, Rome, Italy
- Department of Women's and Children's Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Marta Cofini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Angela Andreoletti
- Pediatric Resident, Pediatric Clinic, University of Brescia, Brescia, Italy
| | - Grazia Maria Ubertini
- Endocrinology Unit, Pediatric University Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Marco Cappa
- Endocrinology Unit, Pediatric University Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Melania Manco
- Research Area for Multifactorial Diseases, Bambino Gesù Children's Hospital, Rome, Italy
- Melania Manco
| |
Collapse
|
30
|
Visfatin Mediates Malignant Behaviors through Adipose-Derived Stem Cells Intermediary in Breast Cancer. Cancers (Basel) 2019; 12:cancers12010029. [PMID: 31861872 PMCID: PMC7016886 DOI: 10.3390/cancers12010029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) have been implicated in tumor growth and metastasis in breast cancer. ADSCs exhibit tumor tropism, and are of increasing clinical relevance due to the autologous fat grafting for breast reconstruction. Although we have previously shown that a high level of the adipocytokine visfatin in human breast cancer tissues correlated with tumor progression mediated by cAbl and STAT3, the effects of visfatin in the tumor microenvironment are unclear. To understand how visfatin modulates breast cancer within the tumor-stromal environment, we examined determinants of breast cancer progression using a visfatin-primed ADSCs-tumor co-culture model. ADSCs were isolated from tumor-free adipose tissue adjacent to breast tumors. ADSCs were treated with or without visfatin for 48 h and then collected for co-culture with breast cancer cell line MDA-MB-231 for 72 h in a transwell system. We found that the MDA-MB-231 cells co-cultured with visfatin-treated ADSCs (vADSCs) had higher levels of cell viability, anchorage independent growth, migration, invasion, and tumorsphere formation than that co-cultured with untreated ADSCs (uADSCs). Growth differentiation factor 15 (GDF15) upregulation was found in the co-culture conditioned medium, with GDF15 neutralizing antibody blocking the promoting effect on MDA-MB-231 in co-culture. In addition, a GDF15-induced AKT pathway was found in MDA-MB-231 and treatment with PI3K/AKT inhibitor also reversed the promoting effect. In an orthotopic xenograft mouse model, MDA-MB-231 co-injected with vADSCs formed a larger tumor mass than with uADSCs. Positive correlations were noted between visfatin, GDF15, and phosphor-AKT expressions in human breast cancer specimens. In conclusion, visfatin activated GDF15-AKT pathway mediated via ADSCs to facilitate breast cancer progression.
Collapse
|
31
|
Rezaei M, Bayani M, Tasorian B, Mahdian S. The comparison of visfatin levels of gingival crevicular fluid in systemic lupus erythematosus and chronic periodontitis patients with healthy subjects. Clin Rheumatol 2019; 38:3139-3143. [PMID: 31372850 DOI: 10.1007/s10067-019-04708-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/14/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Visfatin is an adipokine and has a crucial role in pro-inflammatory response. The aim of this study was investigating the visfatin levels of gingival crevicular fluid (GCF) in patients with systemic lupus erythematosus (SLE) and chronic periodontitis and healthy subjects. MATERIALS AND METHODS Sixty non-obese females were selected based on their clinical parameters into four groups: 15 healthy subjects (H-H), 15 systemically healthy individuals with chronic periodontitis (H-CP), 15 SLE patient with CP (SLE-CP), and 15 SLE patients without CP (SLE-H). GCF samples were collected to estimate the levels of visfatin using enzyme-linked immunosorbent assay (ELISA). RESULTS Investigating the amount of visfatin in the GCF showed that there is a significant difference between visfatin amount of GCF in SLE patients and chronic periodontitis (L-CP) in comparison with other groups (P < 0.001). CONCLUSION Visfatin levels have correlated positively with all the clinical periodontal parameters and its levels in (L-CP) group are highest in comparative with other groups. This finding suggests visfatin has a possible role in association between these two inflammatory conditions. Key Point • Visfatin in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Maryam Rezaei
- Student Research Committee, School of Dentistry, Arak University of Medical Sciences, Arak, Iran
| | - Mojtaba Bayani
- Department of Periodontics, School of Dentistry, Arak University of Medical Science, Arak, Iran.
| | - Baharak Tasorian
- Department of Rheumatology, School of Medicine, Arak University of Medical Science, Arak, Iran
| | - Soroush Mahdian
- Student Research Committee, School of Dentistry, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|