1
|
Jin M, Ye K, Hu D, Chen J, Wu S, Chi S. Identification of diagnose related therapeutic targets of Danggui buxue decoction in Parkinson's disease. Brain Res 2024; 1842:149097. [PMID: 38950810 DOI: 10.1016/j.brainres.2024.149097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is the fastest growing neurological disease. Currently, there is no disease-modifying therapy to slow the progression of the disease. Danggui buxue decoction (DBD) is widely used in the clinic because of its therapeutic effect. However, little is known about the molecular mechanism of DBD against PD. This study intends to explore the possible molecular mechanisms involved in DBD treatment of PD based on network pharmacology, and provide potential research directions for future research. METHODS Firstly, the active components and target genes of DBD were screened from the traditional Chinese medicine systems pharmacology (TCMSP), DrugBank and UniProt database. Secondly, target genes of PD were identified from the (GEO) dataset, followed by identification of common target genes of DBD and PD. Thirdly, analysis of protein-protein interaction (PPI), functional enrichment and diagnosis was performed on common target genes, followed by correlation analysis between core target genes, immune cell, miRNAs, and transcription factors (TFs). Finally, molecular docking between core target genes and active components, and real-time PCR were performed. RESULTS A total of 72 common target genes were identified between target genes of DBD and target genes of PD. Among which, 11 target genes with potential diagnostic value were further identified, including TP53, AKT1, IL1B, MMP9, NOS3, RELA, MAPK14, HMOX1, TGFB1, NOS2, and ERBB2. The combinations with the best docking binding were identified, including kaempferol-AKT1/HMOX1/NOS2/NOS3, quercetin-AKT1/ERBB2/IL1B/HMOX1/MMP9/TP53/NOS3/TGFB1. Moreover, IL1B and NOS2 respectively positively and negatively correlated with neutrophil and Type 1 T helper cell. Some miRNA-core target gene regulatory pairs were identified, such as hsa-miR-185-5p-TP53/TGFB1/RELA/MAPK14/IL1B/ERBB2/AKT1 and hsa-miR-214-3p-NOS3. These core target genes were significantly enriched in focal adhesion, TNF, HIF-1, and ErbB signaling pathway. CONCLUSION Diagnostic TP53, AKT1, IL1B, MMP9, NOS3, RELA, MAPK14, HMOX1, TGFB1, NOS2, and ERBB2 may be considered as potential therapeutic targets of DBD in the treatment of PD.
Collapse
Affiliation(s)
- Man Jin
- Department of Neurology, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310063, China
| | - Kaisheng Ye
- Department of Traditional Chinese Medicine, Hangzhou Kanghui Integrated Traditional and Western Medicine Clinic, Hangzhou, Zhejiang Province 310019, China.
| | - Defeng Hu
- Department of Psychiatry, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310063, China
| | - Jiefang Chen
- Department of Neurology, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310063, China
| | - Sha Wu
- Intensive Care Units, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310063, China
| | - Shumei Chi
- Department of Psychiatry, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310063, China
| |
Collapse
|
2
|
Wang C, Jiang H, Liu H, Chen S, Guo H, Ma S, Han W, Li Y, Wang D. Isoforsythiaside confers neuroprotection against Alzheimer’s disease by attenuating ferroptosis and neuroinflammation in vivo and in vitro. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
3
|
Atef MM, Mostafa YM, Ahmed AAM, El-Sayed NM. Simvastatin attenuates aluminium chloride-induced neurobehavioral impairments through activation of TGF-β1/ SMAD2 and GSK3β/β-catenin signalling pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104220. [PMID: 37454825 DOI: 10.1016/j.etap.2023.104220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterised by the presence of β-amyloid plaques and acetylcholine depletion leading to neurobehavioral defects. AD was contributed also with downregulation of TGF-β1/SMAD2 and GSK3β/β-catenin pathways. Simvastatin (SMV) improved memory function experimentally and clinically. Hence, this study aimed to investigate the mechanistic role of SMV against aluminium chloride (AlCl3) induced neurobehavioral impairments. AD was induced by AlCl3 (50 mg/kg) for 6 weeks. Mice received Simvastatin (10 or 20 mg/kg) or Donepezil (3 mg/kg) for 6 weeks after that the histopathological, immunohistochemical and biochemical test were examined. Treatment with SMV improved the memory deterioration induced by AlCl3 with significant recovery of the histopathological changes. This was concomitant with the decrease of AChE and Aβ (1-42). SMV provides its neuroprotective effect through upregulating the protein expression of β-catenin, TGF-β1 and downregulating the expression of GSK3β, TLR4 and p-SMAD2.
Collapse
Affiliation(s)
| | - Yasser M Mostafa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo, Egypt
| | - Amal A M Ahmed
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Norhan M El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
4
|
Estrada E. Cascading from SARS-CoV-2 to Parkinson's Disease through Protein-Protein Interactions. Viruses 2021; 13:897. [PMID: 34066091 PMCID: PMC8150712 DOI: 10.3390/v13050897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
Extensive extrapulmonary damages in a dozen of organs/systems, including the central nervous system (CNS), are reported in patients of the coronavirus disease 2019 (COVID-19). Three cases of Parkinson's disease (PD) have been reported as a direct consequence of COVID-19. In spite of the scarce data for establishing a definitive link between COVID-19 and PD, some hypotheses have been proposed to explain the cases reported. They, however, do not fit well with the clinical findings reported for COVID-19 patients, in general, and for the PD cases reported, in particular. Given the importance of this potential connection, we present here a molecular-level mechanistic hypothesis that explains well these findings and will serve to explore the potential CNS damage in COVID-19 patients. The model explaining the cascade effects from COVID-19 to CNS is developed by using bioinformatic tools. It includes the post-translational modification of host proteins in the lungs by viral proteins, the transport of modified host proteins via exosomes out the lungs, and the disruption of protein-protein interaction in the CNS by these modified host proteins. Our hypothesis is supported by finding 44 proteins significantly expressed in the CNS which are associated with PD and whose interactions can be perturbed by 24 host proteins significantly expressed in the lungs. These 24 perturbators are found to interact with viral proteins and to form part of the cargoes of exosomes in human tissues. The joint set of perturbators and PD-vulnerable proteins form a tightly connected network with significantly more connections than expected by selecting a random cluster of proteins of similar size from the human proteome. The molecular-level mechanistic hypothesis presented here provides several routes for the cascading of effects from the lungs of COVID-19 patients to PD. In particular, the disruption of autophagy/ubiquitination processes appears as an important mechanism that triggers the generation of large amounts of exosomes containing perturbators in their cargo, which would insult several PD-vulnerable proteins, potentially triggering Parkinsonism in COVID-19 patients.
Collapse
Affiliation(s)
- Ernesto Estrada
- Institute of Mathematics and Applications, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain;
- ARAID Foundation, Government of Aragon, 50018 Zaragoza, Spain
- Institute for Cross-Disciplinary Physics and Complex Systems (IFISC, UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
5
|
Wang H, Wang W, Yi Z, Zhao P, Zhang H, Pan P. Inflammatory cytokine levels in multiple system atrophy: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21509. [PMID: 32756187 PMCID: PMC7402900 DOI: 10.1097/md.0000000000021509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is a fatal neurodegenerative disease that progresses very rapidly and has a poor prognosis. Some studies indicate that the level of inflammatory cytokines may be related to MSA. However, no consistent conclusion has been drawn yet. The purpose of our research is to perform a meta-analysis to investigate whether the level of inflammatory cytokines is altered in MSA. METHODS Case-control studies on inflammatory cytokine levels in MSA will be searched in the following 3 databases: PubMed, Embase, and Web of Science from the database start time to March 17, 2020. Two independent authors will conduct research selection, data extraction, and quality evaluation. Data synthesis, subgroup analysis, sensitivity analysis, and the meta-analysis will be performed using Stata15.0 software. RESULTS This study will provide a comprehensive review of all studies on inflammatory cytokine levels in MSA. CONCLUSION To the best of our knowledge, this study will be the first meta-analysis that provides the quantitative evidence of inflammatory cytokine levels in MSA. REGISTRATION NUMBER INPLASY202060034.
Collapse
Affiliation(s)
- HongZhou Wang
- Department of Neurology, Kunshan Hospital, Affiliated to Jiangsu University, Kunshan
| | - WanHua Wang
- Department of Neurology, Kunshan Hospital, Affiliated to Jiangsu University, Kunshan
| | - ZhongQuan Yi
- Department of Central Laboratory, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng
| | - PanWen Zhao
- Department of Central Laboratory, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng
| | - Hui Zhang
- Department of Central Laboratory, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng
| | - PingLei Pan
- Department of Neurology and Department of Central Laboratory, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, PR China
| |
Collapse
|
6
|
Galbiati M, Crippa V, Rusmini P, Cristofani R, Messi E, Piccolella M, Tedesco B, Ferrari V, Casarotto E, Chierichetti M, Poletti A. Multiple Roles of Transforming Growth Factor Beta in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:ijms21124291. [PMID: 32560258 PMCID: PMC7352289 DOI: 10.3390/ijms21124291] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor beta (TGFB) is a pleiotropic cytokine known to be dysregulated in many neurodegenerative disorders and particularly in amyotrophic lateral sclerosis (ALS). This motor neuronal disease is non-cell autonomous, as it affects not only motor neurons but also the surrounding glial cells, and the target skeletal muscle fibers. Here, we analyze the multiple roles of TGFB in these cell types, and how TGFB signaling is altered in ALS tissues. Data reported support a crucial involvement of TGFB in the etiology and progression of ALS, leading us to hypothesize that an imbalance of TGFB signaling, diminished at the pre-symptomatic stage and then increased with time, could be linked to ALS progression. A reduced stimulation of the TGFB pathway at the beginning of disease blocks its neuroprotective effects and promotes glutamate excitotoxicity. At later disease stages, the persistent activation of the TGFB pathway promotes an excessive microglial activation and strengthens muscular dysfunction. The therapeutic potential of TGFB is discussed, in order to foster new approaches to treat ALS.
Collapse
|
7
|
Microglial Phenotyping in Neurodegenerative Disease Brains: Identification of Reactive Microglia with an Antibody to Variant of CD105/Endoglin. Cells 2019; 8:cells8070766. [PMID: 31340569 PMCID: PMC6678308 DOI: 10.3390/cells8070766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammation is considered a key pathological process in neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD), but there are still mechanisms not understood. In the brain, most microglia are performing essential homeostatic functions, but can also respond to pathogenic stimuli by producing harmful pro-inflammatory cytokines or free radicals. Distinguishing between damaging and homeostatic microglia in human diseased brain tissues is a challenge. This report describes findings using a monoclonal antibody to CD105/Endoglin (R&D Systems MAB1097) that identifies subtypes of activated microglia. CD105/Endoglin is a co-receptor for transforming growth factor beta (TGFβ) receptor that antagonizes TGFβ signaling. CD105/Endoglin is a marker for vascular endothelial cells, but was originally identified as a marker for activated macrophages. This antibody did not identify endothelial cells in brain sections, only microglia-like cells. In this study, we examined with this antibody tissue section from middle temporal gyrus derived from human brains from normal control subjects with low-plaque pathology, high-plaque pathology, and AD cases, and also substantia nigra samples from control and PD cases, in conjunction with antibodies to markers of pathology and microglia. In low-plaque pathology cases, CD105-positive microglia were mostly absent, but noticeably increased with increasing pathology. CD105-positive cells strongly colocalized with amyloid-beta plaques, but not phosphorylated tau positive tangles. In substantia nigra, strong microglial CD105 staining was observed in microglia associated with degenerating dopaminergic neurons and neuromelanin. In PD cases with few surviving dopaminergic neurons, this staining had decreased. By Western blot, this antibody identified polypeptide bands of 70 kDa in brain samples, and samples from microglia, macrophages, and brain endothelial cells. In comparison with other tested CD105 antibodies, this antibody did not recognize the glycosylated forms of CD105 on Western blots. Overall, the data indicate that this antibody and this marker could have utility for subtyping of microglia in pathologically-involved tissue.
Collapse
|
8
|
Hu Y, Chen W, Wu L, Jiang L, Liang N, Tan L, Liang M, Tang N. TGF-β1 Restores Hippocampal Synaptic Plasticity and Memory in Alzheimer Model via the PI3K/Akt/Wnt/β-Catenin Signaling Pathway. J Mol Neurosci 2018; 67:142-149. [PMID: 30539409 DOI: 10.1007/s12031-018-1219-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disturbances. Dysfunction of synaptic plasticity and decline in cognitive functions are the most prominent features of AD, but the mechanisms of pathogenesis have not been well elucidated. In this paper, transforming growth factor-β1 (TGF-β1) was found to be reduced in the hippocampus of AD mouse which was accompanied by impaired pine density, synaptic plasticity, and memory function. Hippocampal injection of TGF-β1 rescued the AD-induced memory function impairment. In addition, TGF-β1 ameliorated synaptic plasticity and increased synaptic plasticity-associated protein expression including Arc, NR2B, and PSD-95 in mouse model of AD. Furthermore, we demonstrated that Akt/Wnt/β-catenin pathway protein expression in the hippocampus was suppressed in a mouse model of AD and TGF-β1 significantly enhanced the phosphorylation Akt, GSK3β, and increased the nuclear β-catenin. These results indicate that TGF-β1activates PI3K/Akt/Wnt/β-catenin signaling in mouse model of AD, which is important for promoting synaptic plasticity related to memory function. More importantly, suppression of PI3K/Akt/Wnt/β-catenin pathway compromised the beneficial effects of TGFβ1 in Alzheimer's model. Hence, TGF-β1 shows protective effect on neurons, which might be through the PI3K/Akt/Wnt/β-catenin signaling pathway, serving as a potential target in AD pathology.
Collapse
Affiliation(s)
- Yueqiang Hu
- Department of Neurology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China.,Key Laboratory of Guangxi Basic Chinese, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Wei Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China.,Key Laboratory of Guangxi Basic Chinese, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Lin Wu
- Key Laboratory of Guangxi Basic Chinese, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China.,Scientific Laboratorial Centre Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Lingfei Jiang
- Graduate College of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Ni Liang
- Department of Neurology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Lulu Tan
- Department of Neurology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Minghui Liang
- Department of Neurology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Nong Tang
- Department of Neurology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China. .,Key Laboratory of Guangxi Basic Chinese, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China. .,Scientific Laboratorial Centre Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China.
| |
Collapse
|
9
|
Astrocytes and the TGF-β1 Pathway in the Healthy and Diseased Brain: a Double-Edged Sword. Mol Neurobiol 2018; 56:4653-4679. [DOI: 10.1007/s12035-018-1396-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022]
|
10
|
Chen X, Hu Y, Cao Z, Liu Q, Cheng Y. Cerebrospinal Fluid Inflammatory Cytokine Aberrations in Alzheimer's Disease, Parkinson's Disease and Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Front Immunol 2018; 9:2122. [PMID: 30283455 PMCID: PMC6156158 DOI: 10.3389/fimmu.2018.02122] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022] Open
Abstract
It has been suggested that cytokine-mediated inflammation plays a key role for the onset and/or development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). However, clinical studies have yielded inconsistent results for the aberrant cytokine levels in circulation of patients with AD, PD, and ALS. Previous studies have used meta-analysis to address the inconsistent data for blood cytokine levels in the patients with AD, PD, and ALS. Here, we performed a systemic review of cerebrospinal fluid inflammatory cytokine data in patients with AD, PD and ALS, and sought to quantitatively summarize the CSF inflammatory cytokine data with a meta-analytical technique. The systematic search from Pubmed and Web of Science identified 71 articles with 2629 patients and 2049 controls for the meta-analysis. Random-effects meta-analysis demonstrated that CSF TGF-β, MCP-1, and YKL-40 levels were significantly elevated in AD patients when compared with controls. In addition, patients with PD had heightened levels of TGF-β1, IL-6, and IL-1β in CSF. Furthermore, G-CSF, IL-2, IL-15, IL-17, MCP-1, MIP-1α, TNF-α, and VEGF levels were significantly increased in patients with ALS as compared with controls. Taken together, these results not only strengthen the clinical evidence that neurodegenerative diseases are accompanied by the increased inflammatory response, but also reveal the unique inflammatory response profile in the central nervous system of patients with AD, PD and ALS. Given the robust associations between some cytokines and neurodegenerative diseases found in this meta-analysis, CSF inflammatory cytokines may be used as biomarkers for these diseases in the future.
Collapse
Affiliation(s)
| | | | | | - Qingshan Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
11
|
Tapella L, Cerruti M, Biocotino I, Stevano A, Rocchio F, Canonico PL, Grilli M, Genazzani AA, Lim D. TGF-β2 and TGF-β3 from cultured β-amyloid-treated or 3xTg-AD-derived astrocytes may mediate astrocyte-neuron communication. Eur J Neurosci 2018; 47:211-221. [DOI: 10.1111/ejn.13819] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Laura Tapella
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Matteo Cerruti
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Isabella Biocotino
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Alessio Stevano
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Francesca Rocchio
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Pier Luigi Canonico
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| |
Collapse
|