1
|
Silva EJNL, Pinto KP, Riche FNSJ, Carestiato MGH, Martins JNR, Duncan HF, Versiani MA, De-Deus G. A meta-analysis of calcium silicate-based cements and calcium hydroxide as promoters of hard tissue bridge formation. Int Endod J 2025; 58:685-714. [PMID: 39988950 DOI: 10.1111/iej.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/06/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND The formation of a reparative hard tissue bridge is a key indicator of defensive pulp response and successful vital pulp treatment (VPT); however, there is a lack of comprehensive information regarding the impact of bioactive materials on hard tissue formation. OBJECTIVES This systematic review with meta-analyses aimed to evaluate the hard tissue bridge formation in direct pulp capping and pulpotomies in humans, comparing the use of ProRoot MTA with other calcium silicate-based cements (CSCs) and calcium hydroxide. METHODS The search was conducted in six electronic databases, until May 2024. The selection process followed the PICOS criteria. Clinical trials that evaluated the hard tissue bridge formation in VPTs using ProRoot MTA compared with other CSCs or calcium hydroxide, were included. The quality of the studies was assessed using the RoB-2 tool for randomized clinical trials, and ROBINS-I for nonrandomized trials. Meta-analyses were performed to compare the frequency of complete bridge formation using RevMan software 5.3. The GRADE tool was used to determine the overall certainty of evidence. RESULTS Twenty-six studies were included, and the majority showed high risk of bias. Meta-analyses revealed that using ProRoot MTA resulted in significantly higher frequency of complete hard tissue bridge formation compared with using other CSCs and calcium hydroxide. Subgroup analyses indicated that using ProRoot MTA led to higher complete bridge formation compared with Biodentine. The certainty of evidence was low. CONCLUSIONS The use of ProRoot MTA resulted in significantly higher frequency of complete hard tissue bridge formation, greater hard tissue thickness and better morphology compared with various other CSCs and calcium hydroxide. Almost all studies were performed in premolars extracted due to orthodontic reasons or third molars. This scenario does not represent the clinical setting and therefore results should be interpreted with caution.
Collapse
Affiliation(s)
- Emmanuel J N L Silva
- Department of Endodontics, Fluminense Federal University, Rio de Janeiro, Brazil
- Department of Endodontics, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Endodontics, Grande Rio University, Rio de Janeiro, Brazil
| | - Karem P Pinto
- Department of Endodontics, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda N S J Riche
- Department of Endodontics, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jorge N R Martins
- Department of Endodontics, Faculdade de Medicina Dentária, Universidade de Lisboa, Lisbon, Portugal
- Unidade de Investigação Em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, Lisbon, Portugal
- Faculdade de Medicina Dentária, Centro de Estudo de Medicina Dentária Baseada na Evidência (CEMDBE), Universidade de Lisboa, Lisbon, Portugal
| | - Henry F Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Marco A Versiani
- Dental Specialty Center, Brazilian Military Police, Rio de Janeiro, Brazil
| | - Gustavo De-Deus
- Department of Endodontics, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Usta SN, Keskin C, Pirimoğlu B, Aksoy A. Histological response of inflamed pulp to hydraulic calcium silicate cements in direct pulp capping: Systematic review of pulpitis models. AUST ENDOD J 2024; 50:729-741. [PMID: 38963183 DOI: 10.1111/aej.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
This systematic review aimed to compare the histological response of inflamed pulpodentinal complex to the hydraulic calcium silicate cements in experimental animal models of pulpitis. Articles that evaluated the histological response of inflamed pulp to mineral trioxide aggregate (MTA) in comparison with other restorative materials were selected and analysed in detail. The risk of bias assessment was conducted using SYRCLE's RoB tool. The GRADEpro tool was used to determine the overall quality of evidence. Out of the 2947 retrieved articles from databases, five articles fulfilled the inclusion criteria. MTA induced significantly more hard tissue formation compared to calcium hydroxide. The use of pulp-capping material containing fluocinolone acetonide and ASP/PLGA-ASP/ACP/PLLA-PLGA composite membrane was comparable. This systematic review could not demonstrate enhanced efficiency of capping materials compared to MTA. Future well-conducted animal studies are warranted for demonstrating the hard tissue formation abilities of pulp-capping materials with convenient inflammatory conditions.
Collapse
Affiliation(s)
- Sıla Nur Usta
- Department of Endodontics, Gulhane Faculty of Dentistry, University of Health Sciences, Ankara, Turkey
| | - Cangül Keskin
- Department of Endodontics, Faculty of Dentistry, University of Ondokuz Mayıs, Samsun, Turkey
| | - Burcu Pirimoğlu
- Department of Endodontics, Faculty of Dentistry, University of Ondokuz Mayıs, Samsun, Turkey
| | - Abdurrahman Aksoy
- Department of Veterinary Pharmacology and Toxicology, University of Ondokuz Mayıs, Samsun, Turkey
| |
Collapse
|
3
|
Bahammam LA, Alsharqawi W, Bahammam HA, Mounir M. Histological Evaluation of Pulpal Response and Dentin Bridge Formation After Direct Pulp Capping Using Recombinant Amelogenin and Mineral Trioxide Aggregate (MTA). Cureus 2024; 16:e54560. [PMID: 38516479 PMCID: PMC10957103 DOI: 10.7759/cureus.54560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/23/2024] Open
Abstract
The purpose of the study was to compare and histologically investigate pulpal response and dentin bridge formation after direct pulp capping using recombinant amelogenin and mineral trioxide aggregate (MTA). Recombinant amelogenin protein and MTA were used as pulp capping materials in 120 teeth from eight mongrel dogs. Dogs were sacrificed at two different evaluation times. Regenerative changes were evaluated histologically. At two weeks, in contrast to the MTA group, most of the amelogenin group showed moderately formed hard tissue formation and the pulp tissue was completely filling the entire pulp chamber. These results were statistically significant. At two months, all the samples of the amelogenin group showed complete dentin bridge formation and the pulp chamber was filled entirely with tissue-mimicking the authentic pulp in all the specimens of the amelogenin group. These results were statistically significant. In conclusion, direct pulp capping by recombinant amelogenin protein resulted in significantly better regeneration of the dentin-pulp complex than MTA.
Collapse
Affiliation(s)
- Laila A Bahammam
- Department of Endodontics, King Abdulaziz University, Jeddah, SAU
| | | | - Hammam A Bahammam
- Department of Pediatric Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Maha Mounir
- Department of Oral Diagnostic Sciences, King Abdulaziz University, Jeddah, SAU
- Department of Oral Biology, Future University, Cairo, EGY
| |
Collapse
|
4
|
Islam R, Islam MRR, Tanaka T, Alam MK, Ahmed HMA, Sano H. Direct pulp capping procedures - Evidence and practice. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:48-61. [PMID: 36880059 PMCID: PMC9985044 DOI: 10.1016/j.jdsr.2023.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/11/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
The aim of direct pulp capping (DPC) is to promote pulp healing and mineralized tissue barrier formation by placing a dental biomaterial directly over the exposed pulp. Successful application of this approach avoids the need for further and more extensive treatment. In order to ensure a complete pulp healing with the placement of restorative materials, a mineralized tissue barrier must form to protect the pulp from microbial invasion. The formation of mineralized tissue barrier can only be induced when there is a significant reduction in pulp inflammation and infection. Consequently, promoting the healing of pulp inflammation may provide a favorable therapeutic opportunity to maintain the sustainability of DPC treatment. Mineralized tissue formation was observed as the favorable reaction of exposed pulp tissue against a variety of dental biomaterials utilized for DPC. This observation reveals an intrinsic capacity of pulp tissue for healing. Therefore, this review focuses on the DPC and its healing procedure as well as the materials used for DPC treatment and their mechanisms of action to promote pulpal healing. In addition, the factors that can affect the healing process of DPC, clinical considerations and future perspective has been described.
Collapse
Affiliation(s)
- Rafiqul Islam
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan
| | - Md Refat Readul Islam
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan
| | - Toru Tanaka
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan
| | - Mohammad Khursheed Alam
- Preventive Dentistry Department, College of Dentistry, Jouf University, 72345 Sakaka, Saudi Arabia
| | - Hany Mohamed Aly Ahmed
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Hidehiko Sano
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan
| |
Collapse
|
5
|
Li Y, Liu C, Han G. Research progress of odontogenic extracellular vesicles in regeneration of dental pulp. Oral Dis 2023; 29:2565-2577. [PMID: 36415913 DOI: 10.1111/odi.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
It is well understood that maintaining viable pulp is critical for tooth retention. This review focused on cell-free therapy based on extracellular vesicles (EVs), a novel minimally invasive treatment strategy for endodontic restoration. This study was conducted by searching mainstream electronic databases such as Web of Science and PubMed for relevant studies on the therapeutic role of odontogenic EVs in pulp healing published in the last five years. We selected 89 relevant articles and discovered that dental stem cells (DSCs) derived EVs (DSC-EVs) have become a research hotspot in oral regenerative medicine, with significant advantages over cell transplantation in terms of low immunogenicity, ease of isolation, preservation, and management. Here, we introduce in detail the therapeutic effects of DSC-EVs for pulp restoration from three perspectives: excellent odontogenic properties, clinical applications, and possible molecular mechanisms. This article contributes a new viewpoint to the field of regenerative endodontics.
Collapse
Affiliation(s)
- Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
6
|
Singh DVV, Taneja S, Fatima S. Comparative evaluation of treatment outcome of partial pulpotomy using different agents in permanent teeth-a randomized controlled trial. Clin Oral Investig 2023; 27:5171-5180. [PMID: 37460903 DOI: 10.1007/s00784-023-05136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/26/2023] [Indexed: 09/10/2023]
Abstract
AIM To compare and evaluate the clinical and radiographic performance, post-operative pain, and anti-inflammatory intake after partial pulpotomy (PP) with calcium hydroxide (CH), mineral trioxide aggregate (MTA), Biodentine (BD), and Emdogain (EMD) as pulp capping agents in mature permanent molars with definitive diagnosis of reversible pulpitis. MATERIALS AND METHODS As part of this prospective, randomized clinical trial with four parallel arms (CTRI Registration No.: CTRI/2020/11/029329 dated 24/11/2020), hundred and ten permanent molars with a clinical diagnosis of reversible pulpitis and normal apical tissues, from patients between the ages of 15 and 45 years, were recruited and randomly assigned to four groups-CH, MTA, BD, and EMD. Operative procedure was performed under local anesthesia and dental dam isolation. After carious pulpal exposure, 2 mm of superficially inflamed coronal pulp tissue was amputated and either of the four pulp capping materials was placed. The outcome assessment was carried out at 1, 3, 6, and 12 month(s) and was categorized as success (asymptomatic patients with PAI score = 1) or failure (symptomatic patients or PAI score > 1). RESULTS There was a significant difference in post-operative pain and anti-inflammatory medication intake after partial pulpotomy with Emdogain vis-à-vis other three capping agents. No difference in both clinical and radiographic performances was observed among the four capping agents. CONCLUSION Partial pulpotomy when performed following evidence-based guidelines results in high success rates regardless of capping agent employed. EMD can be considered a valid and suitable pulp capping agent in PP. CLINICAL RELEVANCE Meticulous examination and removal of superficially inflamed pulp under magnification and complete asepsis lead to successful pulpal healing regardless of capping agent employed.
Collapse
Affiliation(s)
- Dev Veer Vikram Singh
- Department of Conservative Dentistry and Endodontics, I.T.S.C.D.S.R., Muradnagar, India.
| | - Sonali Taneja
- Department of Conservative Dentistry and Endodontics, I.T.S.C.D.S.R., Muradnagar, India.
| | - Sana Fatima
- Department of Conservative Dentistry and Endodontics, I.T.S.C.D.S.R., Muradnagar, India
| |
Collapse
|
7
|
A comparative histological study of the effect of TheraCal LC and biodentine on direct pulp capping in rabbits: an experimental study. Clin Oral Investig 2023; 27:1013-1022. [PMID: 35947203 PMCID: PMC9985587 DOI: 10.1007/s00784-022-04658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/30/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES This study histologically compared the effect of TheraCal LC and biodentine on direct pulp capping using a rabbit model. MATERIALS AND METHODS A direct pulp capping procedure was performed on 40 mandibular central incisors of 20 healthy, male New Zealand white rabbits. TheraCal LC and biodentine were applied to exposed pulp and 10 randomly selected rabbits were euthanized after the first and second week. Incisors were extracted and prepared for histological processing and examination to check the dentine bridge thickness, continuity, and extent of pulp inflammation. A blinded data analysis was performed, and groups were compared using a Wilcoxon signed-rank test while changes across time within each group were assessed using the Mann-Whitney U test. RESULTS When comparing the dentine bridge thickness, biodentine showed a significantly thicker dentine bridge in the first and second week (mean 28.16 µm, 33.66 µm), while TheraCal LC showed a dentine bridge in the second week only (mean 15.93 µm). Regarding dentine bridge continuity, biodentine showed a significantly better dentine bridge in the first week. Additionally, there was no difference in the second week. Furthermore, there was no statistically significant difference between each of the materials regarding the extent of inflammation. CONCLUSIONS Biodentine in vivo showed better results concerning thickness and continuity of the dentine bridge after direct pulp capping in rabbit incisors. Both biodentine and TheraCal LC had a similar inflammatory effect on the pulp. CLINICAL RELEVANCE Biodentine is more successful as a direct pulp capping material compared to TheraCal LC.
Collapse
|
8
|
Palczewska-Komsa MP, Gapiński B, Nowicka A. The Influence of New Bioactive Materials on Pulp–Dentin Complex Regeneration in the Assessment of Cone Bone Computed Tomography (CBCT) and Computed Micro-Tomography (Micro-CT) from a Present and Future Perspective—A Systematic Review. J Clin Med 2022; 11:jcm11113091. [PMID: 35683478 PMCID: PMC9181092 DOI: 10.3390/jcm11113091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
The present paper is the first article providing a systematic literature review on the visualization of tertiary dentin influenced by modern bioactive materials in CBCT and micro-CT. Six database searches of studies on tertiary dentin visualization using CBCT produced 622 records in total, and the search of the studies on tertiary dentin using micro-CT produced 502 records in total. The results were thoroughly selected considering the inclusion criteria, and five research papers using CBCT and nine research papers using micro-CT for visualization of tertiary dentin were eventually qualified for the analysis. All the non-randomized and randomized studies presented good and high levels of quality evidence, respectively. Among the bioactive materials used, the most frequently analysed were: MTA, Biodentine dentin matrix hydrogel, Pro Root MTA, and EndoSequence root repair material. The highest thickness of the tertiary dentin was achieved after the use of MTA material in both imaging techniques. The remaining parameters had different results, taking into account the CBCT and micro-CT analysis. The possibilities of the qualitative and quantitative assessment of the particular parameters of tertiary dentin using CBCT and micro-CT techniques were presented and analysed. CBCT and micro-CT analyses can be useful in the assessment of tertiary dentin formed beneath the bioactive material applied during vital pulp treatment. The research argues that the presented results differ depending on the material applied to the pulp, the study duration (4–6 weeks), difference in teeth, species (rats, human), as well as the applied technique and differences in computer software used for the analysis.
Collapse
Affiliation(s)
- Mirona Paula Palczewska-Komsa
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland;
- Correspondence:
| | - Bartosz Gapiński
- Division of Metrology and Measurement Systems, Institute of Mechanical Technology, Poznan University of Technology, Jana Pawła II 24, 60-965 Poznań, Poland;
| | - Alicja Nowicka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland;
| |
Collapse
|
9
|
Camilleri J, Atmeh A, Li X, Meschi N. Present status and future directions: Hydraulic materials for endodontic use. Int Endod J 2022; 55 Suppl 3:710-777. [PMID: 35167119 PMCID: PMC9314068 DOI: 10.1111/iej.13709] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Hydraulic materials are used in Endodontics due to their hydration characteristics namely the formation of calcium hydroxide when mixing with water and also because of their hydraulic properties. These materials are presented in various consistencies and delivery methods. They are composed primarily of tricalcium and dicalcium silicate, and also include a radiopacifier, additives and an aqueous or a non-aqueous vehicle. Only materials whose primary reaction is with water can be classified as hydraulic. OBJECTIVES Review of the classification of hydraulic materials by Camilleri and the literature pertaining to specific uses of hydraulic cements in endodontics namely intra-coronal, intra-radicular and extra-radicular. Review of the literature on the material properties linked to specific uses providing the current status of these materials after which future trends and gaps in knowledge could be identified. METHODS The literature was reviewed using PUBMED, and for each clinical use, the in vitro properties such as physical, chemical, biological and antimicrobial characteristics and clinical data were extracted and evaluated. RESULTS A large number of publications were retrieved for each clinical use and these were grouped depending on the property type being investigated. CONCLUSIONS The hydraulic cements have made a difference in clinical outcomes. The main shortcoming is the poor testing methodologies employed which provide very limited information and also inhibits adequate clinical translation. Furthermore, the clinical protocols need to be updated to enable the materials to be employed effectively.
Collapse
Affiliation(s)
- Josette Camilleri
- School of DentistryCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Amre Atmeh
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM)Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU)DubaiUnited Arab Emirates
| | - Xin Li
- Department of Oral Health SciencesBIOMAT – Biomaterials Research GroupKU Leuven and DentistryUniversity Hospitals LeuvenLeuvenBelgium
| | - Nastaran Meschi
- Department of Oral Health SciencesBIOMAT – Biomaterials Research GroupKU Leuven and DentistryUniversity Hospitals LeuvenLeuvenBelgium
| |
Collapse
|
10
|
Yoshida S, Sugii H, Itoyama T, Kadowaki M, Hasegawa D, Tomokiyo A, Hamano S, Ipposhi K, Yamashita K, Maeda H. Development of a novel direct dental pulp-capping material using 4-META/MMA-TBB resin with nano hydroxyapatite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112426. [PMID: 34702511 DOI: 10.1016/j.msec.2021.112426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 01/09/2023]
Abstract
In the case of dental pulp exposure, direct pulp capping is often performed to preserve vital dental pulp tissue. Numerous studies regarding the development of direct pulp-capping materials have been conducted, but materials with an appropriate sealing ability, which induce dense reparative dentin formation, have not been developed. Although nano hydroxyapatite (naHAp) is a bone-filling material with bioactivity and biocompatibility, the inductive effects of naHAp on reparative dentin formation remain unclear. In the present study, the effects of dental adhesive material 4-methacryloxyethyl trimellitate anhydride/methyl methacrylate tri-n-butylborane [4-META/MMA-TBB or Super-bond (SB)], which included 10%, 30%, and 50% naHAp (naHAp/SB) on odontoblastic differentiation of dental pulp stem cells (DPSCs) and reparative dentin formation were investigated. Scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer analysis were performed to verify the existence of naHAp particles on the surface of naHAp/SB discs. The tensile adhesive strength of naHAp/SB was measured using a universal testing machine. As a result, 10% naHAp/SB and 30% naHAp/SB showed almost the same tensile adhesive strength as SB but 50% naHAp/SB showed significantly lower than the other experimental group. WST-1 proliferation assay and SEM analysis revealed that naHAp/SB did not affect the proliferation of DPSCs. Calcium release assay, quantitative RT-PCR, and western blotting analysis demonstrated that naHAp/SB did not release calcium ion but 30% naHAp/SB increased the expression of calcium-sensing receptor (CaSR) in DPSCs. Additionally, quantitative RT-PCR, western blotting analysis, Alizarin Red S- and von Kossa staining revealed that 30% naHAp/SB induced odontoblastic differentiation of DPSCs, which was inhibited by a MEK/ERK inhibitor and CaSR antagonist. Furthermore, 30% naHAp/SB promoted dense reparative dentin formation in an experimentally-formed rat dental pulp exposure model. These findings suggest that 30% naHAp/SB can be used as an ideal direct pulp capping material.
Collapse
Affiliation(s)
- Shinichiro Yoshida
- Division of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomohiro Itoyama
- Division of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masataka Kadowaki
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daigaku Hasegawa
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Atsushi Tomokiyo
- Division of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keita Ipposhi
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kozue Yamashita
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hidefumi Maeda
- Division of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
11
|
Secreted Frizzled-Related Protein 1 Promotes Odontoblastic Differentiation and Reparative Dentin Formation in Dental Pulp Cells. Cells 2021; 10:cells10092491. [PMID: 34572140 PMCID: PMC8468928 DOI: 10.3390/cells10092491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023] Open
Abstract
Direct pulp capping is an effective treatment for preserving dental pulp against carious or traumatic pulp exposure via the formation of protective reparative dentin by odontoblast-like cells. Reparative dentin formation can be stimulated by several signaling molecules; therefore, we investigated the effects of secreted frizzled-related protein (SFRP) 1 that was reported to be strongly expressed in odontoblasts of newborn molar tooth germs on odontoblastic differentiation and reparative dentin formation. In developing rat incisors, cells in the dental pulp, cervical loop, and inner enamel epithelium, as well as ameloblasts and preodontoblasts, weakly expressed Sfrp1; however, Sfrp1 was strongly expressed in mature odontoblasts. Human dental pulp cells (hDPCs) showed stronger expression of SFRP1 compared with periodontal ligament cells and gingival cells. SFRP1 knockdown in hDPCs abolished calcium chloride-induced mineralized nodule formation and odontoblast-related gene expression and decreased BMP-2 gene expression. Conversely, SFRP1 stimulation enhanced nodule formation and expression of BMP-2. Direct pulp capping treatment with SFRP1 induced the formation of a considerable amount of reparative dentin that has a structure similar to primary dentin. Our results indicate that SFRP1 is crucial for dentinogenesis and is important in promoting reparative dentin formation in response to injury.
Collapse
|
12
|
Abdul MSM, Murali N, Rai P, Mirza MB, Salim S, Aparna M, Singh S. Clinico-Histological Evaluation of Dentino-Pulpal Complex of Direct Pulp Capping Agents: A Clinical Study. J Pharm Bioallied Sci 2021; 13:S194-S198. [PMID: 34447074 PMCID: PMC8375854 DOI: 10.4103/jpbs.jpbs_665_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 11/21/2022] Open
Abstract
Introduction: Direct pulp capping treatment (DPC) maintains pulp vitality by promoting healing or repair in dentistry, which can be attributed to the advent of bioceramic materials. Aim: This examination looked to evaluate the clinical and histological effectuality of Biodentine with Dycal for DPC. Materials and Methodology: In this study, 30 intact human orthodontic teeth undergoing therapeutic extraction were chosen to perform DPC. They were arbitrarily divided into two groups (n = 15) and DPC with Biodentine and Dycal was performed. Composite resin was used as permanent restoration. After a period of 1 and 6 weeks, clinical as well as electric pulp tests were carried out. Asymptomatic patients were re-called after 6 weeks; follow-up radiograph was taken. Electric pulp testing and thermal testing was done to check the pulpal status of the teeth. This was followed by atraumatic extraction, and the teeth were sent for histological examination. SPSS Version 21.0. Armonk, NY: IBM Corp.was used for data analysis. Results: There was no pain and sensitivity in using Biodentine. Whereas, sensitivity and pain was noted when Dycal was used. The dentinal bridge was better with Biodentine when compared with Dycal. Conclusion: In accordance with the obtained results, it was concluded that on clinical and histological evaluation, Biodentine performed better as DPC agent. Subsequently, Biodentine is more dependable for the long-haul protection of dental pulp than Dycal.
Collapse
Affiliation(s)
| | - Nikhil Murali
- Department of Conservative Dentistry and Endodontics, PMS College of Dental Science and Research, Thiruvananthapuram, Kerala, India
| | - Priyank Rai
- Department of Oral and Maxillofacial Surgery, Pacific Dental College and Research Center, Udaipur, Rajasthan, India
| | - Mubashir Baig Mirza
- Department of Conservative Dental Science, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Shazia Salim
- Department of Conservative Dentistry and Endodontics, Mahe Institute of Dental Sciences and Hospital, Pondicherry University, Puducherry, India
| | - M Aparna
- Department of Oral Medicine and Radiology, P.S.M College of Dental Science and Research, Thrissur, Kerala, India
| | - Shalini Singh
- Department of Conservative Dentistry and Endodontics, Dr. H.S.R.S.M. Dental College and Hospital, Hingoli, Maharashtra, India
| |
Collapse
|
13
|
Holiel AA, Mahmoud EM, Abdel-Fattah WM. Tomographic evaluation of direct pulp capping using a novel injectable treated dentin matrix hydrogel: a 2-year randomized controlled clinical trial. Clin Oral Investig 2021; 25:4621-4634. [PMID: 33507394 DOI: 10.1007/s00784-021-03775-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To assess clinically and radiographically the success of pulp capping procedure done in traumatically exposed permanent posterior teeth using a novel injectable treated dentin matrix hydrogel (TDMH), Biodentine, and MTA and to evaluate the formed dentin bridge under the capping materials using CBCT imaging. MATERIALS AND METHODS 45 patients subjected to accidental traumatic pulp exposures by undergraduate dental students are allocated for this study. For each patient, a pulp capping procedure was done. TDMH was formed of TDM powder and sodium alginate to be injected and then hardened in the defect area. Patients were assigned to 3 groups: TDMH, Biodentine, and MTA, respectively, and returned to the clinic after 3, 6, 12, 18, and 24 months for clinical and radiographic examinations. Tomographic data, including thickness and density of formed dentin bridges, were evaluated at the end of the study period compared to the base line. Pulp sensitivity was evaluated throughout the study period using thermal testing and electric pulp tester. RESULTS During the follow-up period, all patients were asymptomatic with no clinical signs and symptoms and revealed no radiographic signs of pathosis. However, tomographic evaluation showed the tested materials to have different levels of impact on formed dentin bridges with TDMH group resulted in significantly superior dentin bridges of a higher radiodensity and thickness than Biodentine and MTA. CONCLUSIONS TDMH has a greater potential to induce dentin bridge formation than Biodentine and MTA under standardized conditions. Additionally, CBCT imaging was confirmed as a non-invasive and inclusive approach to evaluate the formed dentin bridges after pulp capping procedure. CLINICAL RELEVANCE Direct pulp capping can be done successfully with this novel injectable pulp capping material in future clinical applications. TRIAL REGISTRATION PACTR201901866476410.
Collapse
Affiliation(s)
- Ahmed A Holiel
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Elsayed M Mahmoud
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Wegdan M Abdel-Fattah
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
14
|
EDTA Promotes the Mineralization of Dental Pulp In Vitro and In Vivo. J Endod 2020; 47:458-465. [PMID: 33352150 DOI: 10.1016/j.joen.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Dentin regeneration is one of the main goals of vital pulp treatment in which the biological properties of dental pulp cells (DPCs) need to be considered. In our previous study, we showed that EDTA could enhance the stromal cell-derived factor 1 alpha-induced migration of DPCs. The purpose of this study was to explore the effects of EDTA on the mineralization of dental pulp in vitro and in vivo. METHODS DPCs were obtained from human premolars or third molars. Alkaline phosphatase assays and alizarin red S staining were used to examine the degree of differentiation and mineralized nodule formation of DPCs. Real-time polymerase chain reaction and Western blot analysis were performed to detect the messenger RNA and protein expressions of mineralization-related markers in DPCs. Extracellular-regulated protein kinase and Smad inhibitors were used to study the roles of these 2 signaling pathways in this process. In addition, pulp exposures were created on 18 premolars of 2 beagle dogs (>12 months) using a high-speed dental handpiece. The experimental group (n = 9) was treated with 12% EDTA for 5 minutes, and the control group (n = 9) was treated with sterile saline for the same duration. Mineral trioxide aggregate was used for direct pulp capping followed by glass ionomer cement sealing. Samples were collected 3 months later, and the regenerated dentin was assessed by micro-computed tomographic and histologic analyses. RESULTS Exposure to 12% EDTA promoted the activity of alkaline phosphatase, the formation of mineralized nodules, and the messenger RNA and protein expressions of mineralization-related markers in DPCs. Furthermore, the process of 12% EDTA enhancing the differentiation of DPCs was mediated by the extracellular-regulated protein kinase 1/2 signaling pathway and inhibited by the Smad2/3 signaling pathway. In vivo, compared with the control group, more regenerated dentin that had fewer tunnel defects was formed in the 12% EDTA-treated group. CONCLUSIONS Our results showed that 12% EDTA could promote the mineralization of dental pulp in vitro and in vivo.
Collapse
|
15
|
Chicarelli LPG, Webber MBF, Amorim JPA, Rangel ALCA, Camilotti V, Sinhoreti MAC, Mendonça MJ. Effect of Tricalcium Silicate on Direct Pulp Capping: Experimental Study in Rats. Eur J Dent 2020; 15:101-108. [PMID: 32898869 PMCID: PMC7902116 DOI: 10.1055/s-0040-1715986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objectives
Conduct a histological comparison of the pulp response to different materials, with a focus on the continuity and morphology of the mineralized barrier after direct pulp capping.
Materials and Methods
One hundred and eight maxillary first molars of 54 Wistar rats were subject to direct pulp capping and divided into three groups according to the materials used: calcium hydroxide (CH), mineral trioxide aggregate (MTA), and Biodentine. All cavities were sealed, and the animals were euthanized at 7, 14, and 21 days. Descriptive histological evaluation of the inflammation and formation of the mineralized barrier was performed.
Statistical Analysis
Statistical analyses were performed using the Kruskal–Wallis test, which was complemented by the Dunn test; differences with
p
< 0.05 were considered statistically significant.
Results
The results showed that MTA and Biodentine elicited less intense inflammatory reactions than CH. With respect to the formation and quality of the dentin barrier formed, differences were observed at 21 days between the analyzed groups; the best results being obtained following treatment with MTA and Biodentine.
Conclusion
MTA and Biodentine induced formation of a more continuous and uniform mineralized barrier with less intense pulp response than CH.
Collapse
Affiliation(s)
| | - Mariana B F Webber
- Dental School, State University of Western Paraná, Cascavel, Paraná, Brazil
| | - João P A Amorim
- Dental School, State University of Western Paraná, Cascavel, Paraná, Brazil
| | - Ana L C A Rangel
- Dental School, State University of Western Paraná, Cascavel, Paraná, Brazil
| | | | - Mario A C Sinhoreti
- Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Marcio J Mendonça
- Dental School, State University of Western Paraná, Cascavel, Paraná, Brazil
| |
Collapse
|
16
|
da Silva GS, Moreira MS, Fukushima KA, Raggio DP, V Mello-Moura AC, Lara JS, Gimenez T, Junior SA, Morimoto S, Tedesco TK. Current evidence of tissue engineering for dentine regeneration in animal models: a systematic review. Regen Med 2020; 15:1345-1360. [PMID: 32148166 DOI: 10.2217/rme-2019-0005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: The aim of this study is to verify the type of scaffold effect on tissue engineering for dentine regeneration in animal models. Materials & methods: Strategic searches were conducted through MEDLINE/PubMed, Web of Science and Scopus databases. The studies were included with the following eligibility criteria: studies evaluating dentine regeneration, and being an in vivo study. Results: From 1392 identified potentially relevant studies, 15 fulfilled the eligibility criteria. All studies described characteristics of neoformed dentine, being that the most reported reparative dentine formation. Most of included studies presented moderate risk of bias. Conclusion: Up to date scientific evidence shows a positive trend to dentine regeneration when considering tissue engineering in animal models, regardless the type of scaffolds used.
Collapse
Affiliation(s)
- Gabriela S da Silva
- Graduate Program in Dentistry, Ibirapuera University, São Paulo, SP, 04661-100, Brazil
| | - Maria Stella Moreira
- Graduate Program in Dentistry, Ibirapuera University, São Paulo, SP, 04661-100, Brazil
| | - Karen A Fukushima
- Graduate Program in Dentistry, Ibirapuera University, São Paulo, SP, 04661-100, Brazil
| | - Daniela P Raggio
- Department of Orthodontic & Pediatric Dentistry, School of Dentistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | | | - Juan S Lara
- Department of Cariology, Operative Dentistry & Dental Public Health, School of Dentistry, Indiana University, Indianapolis, IN 46202-2876, USA
| | - Thais Gimenez
- Graduate Program in Dentistry, Ibirapuera University, São Paulo, SP, 04661-100, Brazil
| | | | - Susana Morimoto
- Graduate Program in Dentistry, Ibirapuera University, São Paulo, SP, 04661-100, Brazil
| | - Tamara K Tedesco
- Graduate Program in Dentistry, Ibirapuera University, São Paulo, SP, 04661-100, Brazil
| |
Collapse
|
17
|
Abdelaz P, ElZoghbi A, Shokry M, Ahmed AZ, Rasha H. Reparative Dentin Formation Using Stem Cell Therapy versus Calcium Hydroxide in Direct Pulp Capping: An Animal Study. Braz Dent J 2019; 30:542-549. [PMID: 31800747 DOI: 10.1590/0103-6440201902711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/17/2019] [Indexed: 01/09/2023] Open
Abstract
Direct pulp capping process is a therapeutic method aimed at maintenance of pulp vitality and health by using a biocompatible material placed directly over the exposed pulp. The aim of this study was to evaluate and compare the effect of direct pulp capping procedures by dental pulp stem cells (DPSCs) or calcium hydroxide on dentin tissue formation. Three mongrel dogs were used as experimental model. Two access cavities were prepared in the right and left mandibular fourth premolars in all dogs to expose and extirpate the pulp tissues which were processed in the lab to obtain a single-cell suspensions. The isolated cells were cultures in odontogenic medium for subsequent differentiation. The maxillary teeth (3 incisors and one canine) of the corresponding dog number were subjected to class V cavities to expose their pulps which were assigned into 2 groups of 12 teeth each ( group I - pulp capping with calcium hydroxide) and (group II - pulp capping with dental stem cells DPSCs). The operated teeth were collected after 3 months and processed for histological and electron microscopic examinations. Specimens were subjected to elemental analysis of calcium and phosphorus. EDX elemental analysis revealed significant differences in the calcium and phosphorous wt, % in the reparative dentin of calcium hydroxide treated group which confirmed histologically. Direct pulp capping by DPSCs has shown promising generative potential for regaining normal dentin.
Collapse
Affiliation(s)
- Possy Abdelaz
- Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Amira ElZoghbi
- Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Mohamed Shokry
- Department of Surgery, Anesthesiology ?αμπ; Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abo-Zeid Ahmed
- Basic Dental Sciences, Dental Research Division, National Research Center, Giza, Egypt
| | - Hassan Rasha
- Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Emara R, Elhennawy K, Schwendicke F. Effects of calcium silicate cements on dental pulp cells: A systematic review. J Dent 2018; 77:18-36. [DOI: 10.1016/j.jdent.2018.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 02/03/2023] Open
|
19
|
Cardoso M, Dos Anjos Pires M, Correlo V, Reis R, Paulo M, Viegas C. Biodentine for Furcation Perforation Repair: An Animal Study with Histological, Radiographic and Micro-Computed Tomographic Assessment. IRANIAN ENDODONTIC JOURNAL 2018; 13:323-330. [PMID: 30083201 PMCID: PMC6064015 DOI: 10.22037/iej.v13i3.19890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Biodentine has been scarcely studied as a furcation perforation (FP) repair material, mostly by in vitro methodologies. This animal study aimed to compare the histological responses, radiographic, and micro-computed tomographic (micro-CT) outcomes after FP repair with Biodentine or ProRoot MTA (MTA) in dogs’ teeth. Methods and Materials: Fifty teeth from five dogs were divided into 4 groups: MTA (n=20, FP repaired with ProRoot MTA), BDT (n=20, FP repaired with Biodentine), PC (n=5, positive control, FP without repair) and NC (n=5, negative control, without perforation). The animals were euthanized after 4 months. Histological assessment included inflammatory cell infiltration, hard tissue resorption, hard tissue repair, and cement repair in the furcation area. Immediate postoperative and 4 months follow-up radiographs were compared for radiolucency in the furcation region. The volume of extruded material was quantified using micro-CT images. Results: The tested materials showed equivalent radiographic response, together with similar hard tissue resorption and repair but, BDT group showed significantly less inflammation, lower volume of extruded material and higher cement repair than MTA group. Conclusion: The outcomes of this study, taken together with other favorable results in literature, are highly suggestive that Biodentine is a promising biomaterial to be used for FP repair.
Collapse
Affiliation(s)
- Miguel Cardoso
- University of Trás-os-Montes e Alto Douro, School of Agrarian and Veterinary Sciences, Department of Veterinary Sciences, Quinta de Prados, Vila Real, Portugal.,Health Sciences Institute of Universidade Católica Portuguesa, Department of Endodontics; Estrada da Circunvalação, Viseu, Portugal
| | - Maria Dos Anjos Pires
- University of Trás-os-Montes e Alto Douro, School of Agrarian and Veterinary Sciences, Department of Veterinary Sciences, Quinta de Prados, Vila Real, Portugal
| | - Vitor Correlo
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering-School of Engineering, University of Minho, Guimarães, Portugal
| | - Rui Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering-School of Engineering, University of Minho, Guimarães, Portugal
| | - Manuel Paulo
- Health Sciences Institute of Universidade Católica Portuguesa, Department of Endodontics; Estrada da Circunvalação, Viseu, Portugal
| | - Carlos Viegas
- University of Trás-os-Montes e Alto Douro, School of Agrarian and Veterinary Sciences, Department of Veterinary Sciences, Quinta de Prados, Vila Real, Portugal.,3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering-School of Engineering, University of Minho, Guimarães, Portugal
| |
Collapse
|
20
|
Li X, Pedano MS, Camargo B, Hauben E, De Vleeschauwer S, Chen Z, De Munck J, Vandamme K, Van Landuyt K, Van Meerbeek B. Experimental tricalcium silicate cement induces reparative dentinogenesis. Dent Mater 2018; 34:1410-1423. [PMID: 29941352 DOI: 10.1016/j.dental.2018.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/24/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To overcome shortcomings of hydraulic calcium-silicate cements (hCSCs), an experimental tricalcium silicate (TCS) cement, named 'TCS 50', was developed. In vitro research showed that TCS 50 played no negative effect on the viability and proliferation of human dental pulp cells, and it induced cell odontogenic differentiation. The objective was to evaluate the pulpal repair potential of TCS 50 applied onto exposed minipig pulps. METHODS Twenty permanent teeth from three minipigs were mechanically exposed and capped using TCS 50; half of the teeth were scheduled for 7-day and the other half for 70-day examination (n=10). Commercial hCSCs ProRoot MTA and TheraCal LC were tested as references (n=8). Tooth discoloration was examined visually. After animal sacrifice, the teeth were scanned using micro-computed tomography; inflammatory response at day 7 and day 70, mineralized tissue formation at day 70 were assessed histologically. RESULTS Up to 70 days, TCS 50 induced no discoloration, ProRoot MTA generated gray/black discoloration in all teeth. For TCS 50, 40.0% pulps exhibited a mild/moderate inflammation at day 7. No inflammation was detected and complete reparative dentin with tubular structures was formed in all pulps after 70 days. ProRoot MTA induced a similar response, TheraCal LC generated a less favorable response in terms of initial inflammation and reparative dentin formation; however, these differences were not significant (Chi-square test of independence: p>0.05). SIGNIFICANCE TCS 50 induced reparative dentinogenesis in minipig pulps. It can be considered as a promising pulp-capping agent, also for aesthetic areas.
Collapse
Affiliation(s)
- Xin Li
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium; Wuhan University, School and Hospital of Stomatology, Ministry of Education, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Wuhan, PR China
| | - Mariano Simón Pedano
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Bernardo Camargo
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium; Federal University of Rio de Janeiro, Nuclear Engineering Program, Rio de Janeiro, Brazil
| | - Esther Hauben
- Laboratory for Pathology, UZ Leuven & Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | | | - Zhi Chen
- Wuhan University, School and Hospital of Stomatology, Ministry of Education, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Wuhan, PR China
| | - Jan De Munck
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Katleen Vandamme
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Kirsten Van Landuyt
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium.
| |
Collapse
|
21
|
Saghiri MA, Asatourian A, Nguyen EH, Wang S, Sheibani N. Hydrogel Arrays and Choroidal Neovascularization Models for Evaluation of Angiogenic Activity of Vital Pulp Therapy Biomaterials. J Endod 2018; 44:773-779. [PMID: 29602530 PMCID: PMC6300997 DOI: 10.1016/j.joen.2018.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION This study intended to evaluate the angiogenic properties of vital pulp therapy materials including white mineral trioxide aggregate (WMTA), calcium hydroxide (Ca[OH]2), Geristore (Den-Mat, Santa Maria, CA), and nano WMTA biomaterials. METHODS WMTA, Ca(OH)2, Geristore, and nano WMTA disks were prepared, dispersed into 2 mL Milli-Q (Millipore, ThermoFisher, Hanover Park, IL) distilled water, and centrifuged to obtain 2 mL supernatant elution. Thirty-five wells of polyethylene glycol hydrogel arrays were prepared and divided into 5 groups of 7 (n = 7). Mice molar endothelial cells (ECs) were placed on hydrogel arrays. The elution prepared from each sample was diluted in growth medium (1:3) and added to the hydrogel arrays. The EC medium alone was used for the control. For the choroidal neovascularization (CNV) model, thirty-five 6-week-old female mice were lasered and divided into 5 groups, and elution from each sample (2 μL) or saline (control) was delivered by intravitreal injection on the day of the laser treatment and 1 week later. The mean number of nodes, the total length of the branches in the hydrogel arrays, and the mean area of CNV were calculated using ImageJ software (National Institutes of Health, Bethesda, MD) and analyzed by 1-way analysis of variance and post hoc Tukey honest significant difference tests. RESULTS The comparison of results regarding the number of nodes showed the values of control > Geristore > nano WMTA > WMTA > Ca(OH)2. Regarding the total branch length and the CNV area, the comparison of results showed values of Geristore > control > nano WMTA > WMTA > Ca(OH)2. CONCLUSIONS All tested materials showed minimal antiangiogenic activity, whereas Geristore and nano WMTA showed a higher proangiogenic activity than WMTA and Ca(OH)2.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin.
| | - Armen Asatourian
- Sector of Angiogenesis Regenerative Medicine, Dr Hajar Afsar Lajevardi Research Cluster, Shiraz, Iran
| | - Eric H Nguyen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin, Madison, Wisconsin
| | - Shoujian Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin; Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
22
|
Novel evaluation method of dentin repair by direct pulp capping using high-resolution micro-computed tomography. Clin Oral Investig 2018; 22:2879-2887. [DOI: 10.1007/s00784-018-2374-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
|
23
|
Parirokh M, Torabinejad M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. Int Endod J 2017; 51:177-205. [PMID: 28836288 DOI: 10.1111/iej.12841] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/21/2017] [Indexed: 01/09/2023]
Abstract
Mineral trioxide aggregate (MTA) is a bioactive endodontic cement (BEC) mainly comprised of calcium and silicate elements. The cement was introduced by Torabinejad in the 1990s and has been approved by the Food and Drug Administration to be used in the United States in 1997. A number of new BECs have also been introduced to the market, including BioAggregate, Biodentine, BioRoot RCS, calcium-enriched mixture cement, Endo-CPM, Endocem, EndoSequence, EndoBinder, EndoSeal MTA, iRoot, MicroMega MTA, MTA Bio, MTA Fillapex, MTA Plus, NeoMTA Plus, OrthoMTA, Quick-Set, RetroMTA, Tech Biosealer and TheraCal LC. It has been claimed that these materials have properties similar to those of MTA without its drawbacks. In this article, the chemical composition and the application of MTA and other BECs for vital pulp therapy (VPT), including indirect pulp cap, direct pulp cap, partial pulpotomy, pulpotomy and partial pulpectomy, have been reviewed and compared. Based on selected keywords, all papers regarding chemical composition and VPT applications of BECs had been reviewed. Most of the materials had calcium and silicate in their composition. Instead of referring to the cements based on their chemical compositions, we suggest the term 'bioactive endodontic cements (BECs)', which seems more appropriate for these materials because, in spite of differences in their chemical compositions, bioactivity is a common property for all of them. Numerous articles were found regarding use of BECs as VPT agents for indirect and direct pulp capping, partial pulpotomy and cervical pulpotomy. Most of these investigations used MTA for VPT. In most studies, newly introduced materials have been compared to MTA. Some of the BECs have shown promising results; however, the number of their studies compared to investigations on MTA is limited. Most studies had several methodological shortcomings. Future investigations with rigorous methods and materials are needed.
Collapse
Affiliation(s)
- M Parirokh
- Endodontology Research Center, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - M Torabinejad
- Department of Endodontics, School of Dentistry, Loma Linda University, Loma Linda, CA, USA
| | - P M H Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
24
|
Evaluation of Pulp Response to Novel Bioactive Glass Pulp Capping Materials. J Endod 2017; 43:1647-1650. [PMID: 28864220 DOI: 10.1016/j.joen.2017.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION This study aimed to investigate dental pulp responses to novel bioactive glass (BG) pulp capping materials after direct pulp capping in vivo. METHODS Novel BG pulp capping materials are composed of powder and fluid. The powder is BG (82.36% SiO2, 15.36% CaO, and 2.28% P2O5), and the fluid is provided in 2 kinds: (1) phosphate buffer solution (BG-PB) and (2) phosphate buffer solution with the addition of 1 wt% sodium alginate (BG-PB-SA). After mixing the powder and fluid, BG-PB and BG-PB-SA were prepared. Cavities with mechanical pulp exposure were prepared on maxillary first molars of Wistar rats. The exposures were randomly capped with BG-PB, BG-PB-SA, or mineral trioxide aggregate (MTA). After 1 (n = 6) and 4 weeks (n = 8), maxillary segments were obtained and prepared for histologic analysis with a scoring system. Statistical analysis was performed using the Kruskal-Wallis and Mann-Whitney U tests with the significance set at .05. RESULTS After 1 week, few inflammatory cells were present in the BG-PB, BG-PB-SA, and MTA groups. Moreover, a thin layer of newly generated matrix was observed in most specimens. After 4 weeks, all specimens from the 3 groups formed a heavy dentin bridge. BG-PB and BG-PB-SA groups exhibited no or slight inflammatory response, whereas the MTA group exhibited a slight to moderate inflammatory response. No significant difference was observed in pulp inflammation and dentin formation among the 3 groups at either time point (P > .05). CONCLUSIONS When used as a pulp capping agent, BG-PB and BG-PB-SA had similar favorable cellular and inflammatory pulp responses to those of MTA. Therefore, BG is a promising pulp capping material.
Collapse
|
25
|
Negm AM, Hassanien EE, Abu-Seida AM, Nagy MM. Biological evaluation of a new pulp capping material developed from Portland cement. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2017; 69:115-122. [PMID: 27986375 DOI: 10.1016/j.etp.2016.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/27/2016] [Accepted: 12/09/2016] [Indexed: 02/05/2023]
Abstract
This study evaluates the biological properties of a new pulp capping material developed from Portland cement. This study was conducted on 48 teeth in 4 dogs (12 teeth/dog). The dogs were classified into two equal groups (n=24 teeth) according to the evaluation period including: group A (3 weeks) and group B (3 months). Each group was further subdivided into three equal subgroups (n=8 teeth) according to the capping material including: subgroup 1: mineral trioxide aggregate (MTA), subgroup2: Portland cement+10% calcium hydroxide+20% bismuth oxide (Port Cal) and subgroup 3: Portland cement+bismuth oxide. After general anesthesia, a class V buccal cavity was prepared coronal to the gingival margin. After pulp exposure and hemostasis,the capping materials and glass ionomer filling were placed on the exposure sites. All histopathological findings, inflammatory cell count and dentin bridge formation were recorded. Data were analyzed statistically. After 3 months, the histopathological picture of the pulp in subgroup 1 showed normal pulp, continuous odontoblastic layer and complete dentin bridge formation while subgroup 2 showed partial and complete dentin bridge over a normal and necrotic pulps. Subgroup 3 showed loss of normal architecture, areas of necrosis, complete, or incomplete dentin bridge formation, attached and detached pulp stones and fatty degeneration in group B. For group A, MTA subgroup showed the least number of inflammatory cell infiltrate followed by Port Cal subgroup. While subgroup 3 showed the highest number of inflammatory cell infiltrate. For group B, the mean inflammatory cell count increased with the three tested materials with no statistical difference. Regarding dentin bridge formation at group A, no significant differences was found between subgroups, while at group B, MTA subgroup exhibited significantly higher scores than other subgroups. In conclusion, addition of calcium hydroxide to Portland cement improves the dentin bridge formation qualitatively and quantitatively.
Collapse
Affiliation(s)
- Ahmed M Negm
- Department of Endodontic, Faculty of Dentistry, October 6 University, Egypt
| | - Ehab E Hassanien
- Department of Endodontic, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Ashraf M Abu-Seida
- Department of Surgery, Anesthesiology & Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, P.O. Box: 12211, Egypt.
| | - Mohamed M Nagy
- Department of Endodontic, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
26
|
Chen J, Cui C, Qiao X, Yang B, Yu M, Guo W, Tian W. Treated dentin matrix paste as a novel pulp capping agent for dentin regeneration. J Tissue Eng Regen Med 2017; 11:3428-3436. [PMID: 28198096 DOI: 10.1002/term.2256] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 06/03/2016] [Accepted: 07/03/2016] [Indexed: 02/05/2023]
Abstract
Regenerating dentin and preserving pulp vitality are the two key targets for the treatment of dental pulp exposure. Calcium hydroxide (CH), the widely used capping agent, may induce potential tunnel defect in reparative dentin and cause inflammation or even necrosis in pulp tissues. This study aimed to produce a novel pulp capping agent with better bioactivities. Treated dentin matrix (TDM) paste (TDMP) was fabricated consisting of TDM powder and aqueous TDM extract. The chemical and biological characteristics of TDMP were investigated, and its effect on the odontogenic differentiation of dental pulp stem cells explored at gene and protein level; the therapeutic effect for pulp exposure in miniature swine was further verified. TDMP possessed better biocompatibility with neutral pH value, significantly promoted the proliferation of dental pulp stem cells, and enhanced the gene and protein expressions of alkaline phosphatase, bone sialoprotein, dentin sialoprotein etc., compared with CH. In vivo pulp capping using TDMP presented the formation of continuous reparative dentin bridge thicker and denser than CH group. Moreover, pulp tissues under TDMP capping sites showed relatively slight angiectasis than those induced by CH. TDMP could achieve both dentin regeneration and vital pulp conservation, and might serve as a feasible substitute for CH in dental pulp repair procedure. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jinlong Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Departments of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Caiyun Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiangchen Qiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Departments of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Departments of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Departments of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
LEE M, KANG CM, SONG JS, SHIN Y, KIM S, KIM SO, CHOI HJ. Biological efficacy of two mineral trioxide aggregate (MTA)-based materials in a canine model of pulpotomy. Dent Mater J 2017; 36:41-47. [DOI: 10.4012/dmj.2016-121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Myeongyeon LEE
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University
| | - Chung-Min KANG
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University
| | - Je Seon SONG
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University
- Oral Science Research Center, College of Dentistry, Yonsei University
| | - Yooseok SHIN
- Oral Science Research Center, College of Dentistry, Yonsei University
- Department of Conservative Dentistry, College of Dentistry, Yonsei University
| | - Seunghye KIM
- Department of Pediatric Dentistry, Institute of Oral Health Science, Ajou University School of Medicine
| | - Seong-Oh KIM
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University
- Oral Science Research Center, College of Dentistry, Yonsei University
| | - Hyung-Jun CHOI
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University
- Oral Science Research Center, College of Dentistry, Yonsei University
| |
Collapse
|
28
|
Saghiri MA, Asatourian A, Garcia-Godoy F, Sheibani N. Effect of biomaterials on angiogenesis during vital pulp therapy. Dent Mater J 2016; 35:701-709. [PMID: 27546854 DOI: 10.4012/dmj.2015-332] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review intended to provide an overview of the effects of dental materials, used in dentin-pulp complex and dental pulp regeneration, on angiogenesis processes during regenerative endodontic procedures. An electronic search was performed in PubMed and MEDLINE databases via OVID using the keywords mentioned in the PubMed and MeSH headings for English language published articles from January 2005-April 2014 that evaluated the angiogenic properties of different dental materials used in regenerative endodontic procedures. Of the articles identified in an initial search, only 40 articles met the inclusion criteria set for this review. Vital pulp therapy materials might have positive effects on angiogenesis events, while most of the canal irrigating solutions and antibiotic pastes have anti-angiogenic activity except for EDTA. Future clinical studies will be helpful in defining the mechanisms of action for dental materials that promote or inhibit angiogenesis events at applied areas.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Departments of Ophthalmology and Visual Science and Biomedical Engineering, University of Wisconsin, School of Medicine and Public Health
| | | | | | | |
Collapse
|
29
|
Han N, Chen Z, Zhang Q. Expression of KLF5 in odontoblastic differentiation of dental pulp cells during in vitro odontoblastic induction and in vivo dental repair. Int Endod J 2016; 50:676-684. [PMID: 27334851 DOI: 10.1111/iej.12672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/21/2016] [Indexed: 02/04/2023]
Abstract
AIM To identify whether Krüppel-like factor 5 (KLF5) was involved in odontoblastic differentiation during reparative dentine formation. METHODOLOGY Human Dental pulp cells (DPCs) were isolated from healthy human dental pulp tissue and induced for odontoblastic differentiation. Alizarin Red staining, alkaline phosphatase (ALPase) activity, quantitative real-time PCR and Western Blot were performed to evaluate in vitro odontoblastic differentiation. The expression profile of KLF5 during the in vitro odontoblastic differentiation was determined by quantitative real-time PCR and Western Blot. Knock-down of KLF5 by lentivirus-mediated shRNA was performed to determine the function of KLF5 in odontoblastic differentiation. After direct pulp capping with MTA, the maxillary first molar segments dissected from male Wistar rats were prepared for histology analysis and immunohistochemistry staining. RESULTS Odontoblastic differentiation was confirmed by significantly increased alkaline phosphatase (ALP; P = 0.004) activity and upregulated odontoblastic differentiation-related genes including dentine sialophosphoprotein (DSPP; P = 0.004) and dentine matrix protein-1 (DMP-1; P = <0.001). The expression of KLF5 was significantly upregulated during odontoblastic differentiation of in vitro cultured DPCs (P = 0.0002). KLF5 knock-down impaired odontoblastic differentiation. After direct pulp capping, dentine bridge-like calcified tissues were formed under the perforation sites. KLF5 was expressed in odontoblast-like cells and DPCs beneath the perforation sites during reparative dentine formation. CONCLUSIONS KLF5 might be involved in the process of odontoblastic differentiation during reparative dentine formation.
Collapse
Affiliation(s)
- N Han
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Z Chen
- Department of Conservative Dentistry, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Q Zhang
- Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
30
|
Negm A, Hassanien E, Abu-Seida A, Nagy M. Physical evaluation of a new pulp capping material developed from portland cement. J Clin Exp Dent 2016; 8:e278-e283. [PMID: 27398178 PMCID: PMC4930637 DOI: 10.4317/jced.52748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/13/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND This study examined the effects of addition of 10% and 25% by weight calcium hydroxide on the physicochemical properties of Portland cement associated with 20% bismuth oxide in order to develop a new pulp capping material. MATERIAL AND METHODS The solubility, pH value, setting time, compressive strength, and push out bond strength of modified Portland were evaluated and compared to those of mineral trioxide aggregate (MTA) and Portland cement containing 20% bismuth oxide. RESULTS The statistical analysis was performed with ANOVA and Duncan's post-hoc test. The results show that the strength properties and push out bond strength of Portland cement were adversely affected by addition of calcium hydroxide especially with a ratio of 25 wt%, however, the setting time and pH were not affected. MTA showed a statistically significant lower setting time than other cements (P≤0.001). Portland cement with bismuth oxide and Port Cal I showed a statistically significant higher Push out Bond strength than MTA and Port Cal II (P=0.001). CONCLUSIONS Taking the setting time, push out bond strength and pH value into account, addition of 10 wt% calcium hydroxide to Portland cement associated with 20% bismuth oxide produces a new pulp capping material with acceptable physical and adhesive properties. Further studies are recommended to test this cement biologically as a new pulp capping material. KEY WORDS Calcium hydroxide, MTA, Portland cement, setting time, solubility, strength.
Collapse
Affiliation(s)
- Ahmed Negm
- MSc. Assistant lecturer october 6 university, 3 mohamed kamel morsy dokki, Giza Egypt
| | - Ehab Hassanien
- PhD, Professor of Endodontics. Department of Endodontics. Faculty of Dentistry. Ain Shams University. Cairo. Egypt
| | - Ashraf Abu-Seida
- PhD, Professor. Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza-Egypt
| | - Mohamed Nagy
- PhD, Lecturer of Endodontics. Department of Endodontics. Faculty of Dentistry. Ain Shams University. Cairo. Egypt
| |
Collapse
|
31
|
AlShwaimi E, Majeed A, Ali AA. Pulpal Responses to Direct Capping with Betamethasone/Gentamicin Cream and Mineral Trioxide Aggregate: Histologic and Micro–Computed Tomography Assessments. J Endod 2016; 42:30-5. [DOI: 10.1016/j.joen.2015.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 10/22/2022]
|
32
|
Moore AN, Perez SC, Hartgerink JD, D'Souza RN, Colombo JS. Ex Vivo Modeling of Multidomain Peptide Hydrogels with Intact Dental Pulp. J Dent Res 2015; 94:1773-81. [PMID: 26285809 DOI: 10.1177/0022034515600380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Preservation of a vital dental pulp is a central goal of restorative dentistry. Currently, there is significant interest in the development of tissue engineering scaffolds that can serve as biocompatible and bioactive pulp-capping materials, driving dentin bridge formation without causing cytotoxic effects. Our earlier in vitro studies described the biocompatibility of multidomain peptide (MDP) hydrogel scaffolds with dental pulp-derived cells but were limited in their ability to model contact with intact 3-dimensional pulp tissues. Here, we utilize an established ex vivo mandible organ culture model to model these complex interactions. MDP hydrogel scaffolds were injected either at the interface of the odontoblasts and the dentin or into the pulp core of mandible slices and subsequently cultured for up to 10 d. Histology reveals minimal disruption of tissue architecture adjacent to MDP scaffolds injected into the pulp core or odontoblast space. Additionally, the odontoblast layer is structurally preserved in apposition to the MDP scaffold, despite being separated from the dentin. Alizarin red staining suggests mineralization at the periphery of MDP scaffolds injected into the odontoblast space. Immunohistochemistry reveals deposition of dentin sialophosphoprotein by odontoblasts into the adjacent MDP hydrogel, indicating continued functionality. In contrast, no mineralization or dentin sialophosphoprotein deposition is evident around MDP scaffolds injected into the pulp core. Collagen III expression is seen in apposition to gels at all experimental time points. Matrix metalloproteinase 2 expression is observed associated with centrally injected MDP scaffolds at early time points, indicating proteolytic digestion of scaffolds. Thus, MDP scaffolds delivered centrally and peripherally within whole dental pulp tissue are shown to be biocompatible, preserving local tissue architecture. Additionally, odontoblast function and pulp vitality are sustained when MDP scaffolds are intercalated between dentin and the odontoblast region, a finding that has significant implications when considering these materials as pulp-capping agents.
Collapse
Affiliation(s)
- A N Moore
- Department of Chemistry, Rice University, Houston, TX, USA
| | - S C Perez
- Department of Chemistry, Rice University, Houston, TX, USA
| | - J D Hartgerink
- Department of Chemistry, Rice University, Houston, TX, USA Department of Bioengineering, Rice University Houston, TX, USA
| | - R N D'Souza
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
| | - J S Colombo
- School of Dentistry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
33
|
Nowicka A, Wilk G, Lipski M, Kołecki J, Buczkowska-Radlińska J. Tomographic Evaluation of Reparative Dentin Formation after Direct Pulp Capping with Ca(OH)2, MTA, Biodentine, and Dentin Bonding System in Human Teeth. J Endod 2015; 41:1234-40. [DOI: 10.1016/j.joen.2015.03.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/03/2015] [Accepted: 03/06/2015] [Indexed: 12/30/2022]
|
34
|
Ramalingam S, Al-Rasheed A, ArRejaie A, Nooh N, Al-Kindi M, Al-Hezaimi K. Guided bone regeneration in standardized calvarial defects using beta-tricalcium phosphate and collagen membrane: a real-time in vivo micro-computed tomographic experiment in rats. Odontology 2015; 104:199-210. [DOI: 10.1007/s10266-015-0211-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 12/01/2014] [Indexed: 10/23/2022]
|
35
|
Liu S, Wang S, Dong Y. Evaluation of a Bioceramic as a Pulp Capping Agent In Vitro and In Vivo. J Endod 2015; 41:652-7. [DOI: 10.1016/j.joen.2014.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/13/2014] [Accepted: 12/13/2014] [Indexed: 10/24/2022]
|
36
|
Hydration characteristics of Biodentine and Theracal used as pulp capping materials. Dent Mater 2014; 30:709-15. [DOI: 10.1016/j.dental.2014.03.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 03/27/2014] [Indexed: 11/23/2022]
|
37
|
Nowicka A, Lipski M, Parafiniuk M, Sporniak-Tutak K, Lichota D, Kosierkiewicz A, Kaczmarek W, Buczkowska-Radlińska J. Response of Human Dental Pulp Capped with Biodentine and Mineral Trioxide Aggregate. J Endod 2013; 39:743-7. [DOI: 10.1016/j.joen.2013.01.005] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/04/2013] [Accepted: 01/30/2013] [Indexed: 11/28/2022]
|
38
|
|
39
|
Li X, Zhou M, Wang X, Li R, Han N, Zhang Q. Quantitative determination of high-temperature requirement protein A1 and its possible associated molecules during induced reparative dentin formation. J Endod 2012; 38:814-20. [PMID: 22595117 DOI: 10.1016/j.joen.2012.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/05/2012] [Accepted: 03/11/2012] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The equilibrium of inhibitors and inducers plays an important role in the mineralization of dentin during dentinogenesis. High-temperature requirement protein A1 (HtrA1) is a novel bone mineralization inhibitor involved in physiological and pathological bone formation. However, the expression of HtrA1 in tooth mineralization is unknown. The purpose of the present study was to investigate the localization and quantity of HtrA1 and its possible related molecules during induced reparative dentin formation. METHODS Rats were randomly sacrificed after direct pulp capping on days 0, 7, 14, and 21. Maxillary segments were obtained and routinely prepared for histological analysis, immunohistochemistry, quantum dots-based double immunofluorescence, and CRi's Nuance imaging system (CRI, Woburn, MA)-based quantitative determination. RESULTS The square measure values of reparative dentin significantly increased on day 7 and continued to increase until day 21. HtrA1, matrix Gla protein (MGP), nestin, and bone sialoprotein were positively stained and colocalized in the odontoblasts and/or odontoblast-like cells zone and reparative dentin during induced reparative dentin formation. The expressions of HtrA1 and MGP were significantly enhanced after direct pulp capping on day 7 and did not significantly change between days 7, 14, and day 21. Both expressions of HtrA1 and MGP were positively correlated with the square measure values of reparative dentin; however, no correlation was found between the expressions of HtrA1 and MGP. CONCLUSIONS HtrA1 could be observed and might possibly be involved in the process of reparative dentin formation associated with MGP.
Collapse
Affiliation(s)
- Xianyu Li
- Department of State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | | | | | | | | | | |
Collapse
|
40
|
A hybrid approach to direct pulp capping by using emdogain with a capping material. J Endod 2011; 37:667-72. [PMID: 21496668 DOI: 10.1016/j.joen.2011.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 01/29/2011] [Accepted: 02/03/2011] [Indexed: 11/20/2022]
Abstract
INTRODUCTION This study evaluated the formation of reparative hard tissues in baboon pulps after Emdogain (EMD) application in conjunction with 3 pulp-capping materials. METHODS Thirty-two premolars in four 3-year-old baboons were randomly assigned to 1 of 3 pulp-capping materials. A split-mouth design and intra-animal side randomization were applied to 3 experimental groups (calcium hydroxide, ProRoot White mineral trioxide aggregate, white Portland cement) and the control group (no pulp-capping material). In the hybrid EMD approach, a small drop of EMD was placed over the exposure site after arrest of hemorrhage. The designated pulp-capping material was placed over the EMD, followed by placement of resin-modified glass ionomer cement over the set/unset pulp-capping material. The animals were killed after 4 months. Histomorphometric analysis and micro-computed tomography were performed on the retrieved specimens. RESULTS All groups capped with EMD and 1 of the 3 capping materials exhibited similar reparative tissue thickness (P > .05). Dentin tunnel defects were absent in the mineral trioxide aggregate and Portland cement groups after the use of EMD. However, only a tubular was identified from all specimens. CONCLUSIONS Mineral trioxide aggregate produces a better quality reparative hard tissue response with the adjunctive use of Emdogain, when compared with the use of calcium hydroxide.
Collapse
|