1
|
Dental Pulp Stem Cell Heterogeneity: Finding Superior Quality "Needles" in a Dental Pulpal "Haystack" for Regenerative Medicine-Based Applications. Stem Cells Int 2022; 2022:9127074. [PMID: 35027930 PMCID: PMC8752304 DOI: 10.1155/2022/9127074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Human dental pulp stem/stromal cells (hDPSCs) derived from the permanent secondary dentition are recognised to possess certain advantageous traits, which support their potential use as a viable source of mesenchymal stem/stromal cells (MSCs) for regenerative medicine-based applications. However, the well-established heterogeneous nature of hDPSC subpopulations, coupled with their limited numbers within dental pulp tissues, has impeded our understanding of hDPSC biology and the translation of sufficient quantities of these cells from laboratory research, through successful therapy development and clinical applications. This article reviews our current understanding of hDPSC biology and the evidence underpinning the molecular basis of their heterogeneity, which may be exploited to distinguish individual subpopulations with specific or superior characteristics for regenerative medicine applications. Pertinent unanswered questions which still remain, regarding the developmental origins, hierarchical organisation, and stem cell niche locations of hDPSC subpopulations and their roles in hDPSC heterogeneity and functions, will further be explored. Ultimately, a greater understanding of how key features, such as specific cell surface, senescence and other relevant genes, and protein and metabolic markers, delineate between hDPSC subpopulations with contrasting stemness, proliferative, multipotency, immunomodulatory, anti-inflammatory, and other relevant properties is required. Such knowledge advancements will undoubtedly lead to the development of novel screening, isolation, and purification strategies, permitting the routine and effective identification, enrichment, and expansion of more desirable hDPSC subpopulations for regenerative medicine-based applications. Furthermore, such innovative measures could lead to improved cell expansion, manufacture, and banking procedures, thereby supporting the translational development of hDPSC-based therapies in the future.
Collapse
|
2
|
Kim Y, Park JY, Park HJ, Kim MK, Kim YI, Kim HJ, Bae SK, Bae MK. Pentraxin-3 Modulates Osteogenic/Odontogenic Differentiation and Migration of Human Dental Pulp Stem Cells. Int J Mol Sci 2019; 20:ijms20225778. [PMID: 31744201 PMCID: PMC6887979 DOI: 10.3390/ijms20225778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Pentraxin-3 (PTX3) is recognized as a modulator of inflammation and a mediator of tissue repair. In this study, we characterized the role of PTX3 on some biological functions of human dental pulp stem cells (HDPSCs). The expression level of PTX3 significantly increased during osteogenic/odontogenic differentiation of HDPSCs, whereas the knockdown of PTX3 decreased this differentiation. Silencing of PTX3 in HDPSCs inhibited their migration and C-X-C chemokine receptor type 4 (CXCR4) expression. Our present study indicates that PTX3 is involved in osteogenic/odontogenic differentiation and migration of HDPSCs, and may contribute to the therapeutic potential of HDPSCs for regeneration and repair.
Collapse
Affiliation(s)
- Yeon Kim
- Department of Oral Physiology, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50610, Korea; (Y.K.); (J.-Y.P.); (H.-J.P.); (M.-K.K.); (H.J.K.)
| | - Joo-Yeon Park
- Department of Oral Physiology, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50610, Korea; (Y.K.); (J.-Y.P.); (H.-J.P.); (M.-K.K.); (H.J.K.)
| | - Hyun-Joo Park
- Department of Oral Physiology, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50610, Korea; (Y.K.); (J.-Y.P.); (H.-J.P.); (M.-K.K.); (H.J.K.)
| | - Mi-Kyoung Kim
- Department of Oral Physiology, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50610, Korea; (Y.K.); (J.-Y.P.); (H.-J.P.); (M.-K.K.); (H.J.K.)
| | - Yong-Il Kim
- Department of Orthodontics, School of Dentistry, Pusan National University, Yangsan 50610, Korea;
| | - Hyung Joon Kim
- Department of Oral Physiology, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50610, Korea; (Y.K.); (J.-Y.P.); (H.-J.P.); (M.-K.K.); (H.J.K.)
| | - Soo-Kyung Bae
- Department of Dental Pharmacology, School of Dentistry, Pusan National University, Yangsan 50610, Korea
| | - Moon-Kyoung Bae
- Department of Oral Physiology, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50610, Korea; (Y.K.); (J.-Y.P.); (H.-J.P.); (M.-K.K.); (H.J.K.)
- Correspondence: ; Tel.: +82-51-510-8239
| |
Collapse
|
3
|
Thekkeparambil Chandrabose S, Sriram S, Subramanian S, Cheng S, Ong WK, Rozen S, Kasim NHA, Sugii S. Amenable epigenetic traits of dental pulp stem cells underlie high capability of xeno-free episomal reprogramming. Stem Cell Res Ther 2018; 9:68. [PMID: 29559008 PMCID: PMC5859503 DOI: 10.1186/s13287-018-0796-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/19/2018] [Accepted: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND While a shift towards non-viral and animal component-free methods of generating induced pluripotent stem (iPS) cells is preferred for safer clinical applications, there is still a shortage of reliable cell sources and protocols for efficient reprogramming. METHODS Here, we show a robust episomal and xeno-free reprogramming strategy for human iPS generation from dental pulp stem cells (DPSCs) which renders good efficiency (0.19%) over a short time frame (13-18 days). RESULTS The robustness of DPSCs as starting cells for iPS induction is found due to their exceptional inherent stemness properties, developmental origin from neural crest cells, specification for tissue commitment, and differentiation capability. To investigate the epigenetic basis for the high reprogramming efficiency of DPSCs, we performed genome-wide DNA methylation analysis and found that the epigenetic signature of DPSCs associated with pluripotent, developmental, and ecto-mesenchymal genes is relatively close to that of iPS and embryonic stem (ES) cells. Among these genes, it is found that overexpression of PAX9 and knockdown of HERV-FRD improved the efficiencies of iPS generation. CONCLUSION In conclusion, our study provides underlying epigenetic mechanisms that establish a robust platform for efficient generation of iPS cells from DPSCs, facilitating industrial and clinical use of iPS technology for therapeutic needs.
Collapse
Affiliation(s)
| | - Sandhya Sriram
- Fat Metabolism and Stem Cell Group (FMSCG), Laboratory of Metabolic Medicine (LMM), Singapore Bioimaging Consortium (SBIC), Helios, Biopolis, A*STAR, Singapore, 138667, Singapore
| | - Subha Subramanian
- Fat Metabolism and Stem Cell Group (FMSCG), Laboratory of Metabolic Medicine (LMM), Singapore Bioimaging Consortium (SBIC), Helios, Biopolis, A*STAR, Singapore, 138667, Singapore
| | - Shanshan Cheng
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Wee Kiat Ong
- Fat Metabolism and Stem Cell Group (FMSCG), Laboratory of Metabolic Medicine (LMM), Singapore Bioimaging Consortium (SBIC), Helios, Biopolis, A*STAR, Singapore, 138667, Singapore
- School of Pharmacy, University of Reading Malaysia, 79200, Johor, Malaysia
| | - Steve Rozen
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Shigeki Sugii
- Fat Metabolism and Stem Cell Group (FMSCG), Laboratory of Metabolic Medicine (LMM), Singapore Bioimaging Consortium (SBIC), Helios, Biopolis, A*STAR, Singapore, 138667, Singapore.
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, 169857, Singapore.
| |
Collapse
|
4
|
Mouse embryonic fibroblast (MEF)/BMP4-conditioned medium enhanced multipotency of human dental pulp cells. J Mol Histol 2017; 49:17-26. [DOI: 10.1007/s10735-017-9743-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022]
|
5
|
Bae YK, Kim GH, Lee JC, Seo BM, Joo KM, Lee G, Nam H. The Significance of SDF-1α-CXCR4 Axis in in vivo Angiogenic Ability of Human Periodontal Ligament Stem Cells. Mol Cells 2017; 40:386-392. [PMID: 28614918 PMCID: PMC5523014 DOI: 10.14348/molcells.2017.0004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/29/2017] [Indexed: 12/28/2022] Open
Abstract
Periodontal ligament stem cells (PDLSCs) are multipotent stem cells derived from periodontium and have mesenchymal stem cell (MSC)-like characteristics. Recently, the perivascular region was recognized as the developmental origin of MSCs, which suggests the in vivo angiogenic potential of PDLSCs. In this study, we investigated whether PDLSCs could be a potential source of perivascular cells, which could contribute to in vivo angiogenesis. PDLSCs exhibited typical MSC-like characteristics such as the expression pattern of surface markers (CD29, CD44, CD73, and CD105) and differentiation potentials (osteogenic and adipogenic differentiation). Moreover, PDLSCs expressed perivascular cell markers such as NG2, αsmooth muscle actin, platelet-derived growth factor receptor β, and CD146. We conducted an in vivo Matrigel plug assay to confirm the in vivo angiogenic potential of PDLSCs. We could not observe significant vessel-like structures with PDLSCs alone or human umbilical vein endothelial cells (HU-VECs) alone at day 7 after injection. However, when PDLSCs and HUVECs were co-injected, there were vessel-like structures containing red blood cells in the lumens, which suggested that anastomosis occurred between newly formed vessels and host circulatory system. To block the SDF-1α and CXCR4 axis between PDLSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into the Matrigel plug. After day 3 and day 7 after injection, there were no significant vessel-like structures. In conclusion, we demonstrated the peri-vascular characteristics of PDLSCs and their contribution to in vivo angiogenesis, which might imply potential application of PDLSCs into the neovascularization of tissue engineering and vascular diseases.
Collapse
Affiliation(s)
- Yoon-Kyung Bae
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351,
Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351,
Korea
| | - Gee-Hye Kim
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080,
Korea
| | - Jae Cheoun Lee
- Children’s Dental Center and CDC Baby Tooth Stem Cell Bank, Seoul 06072,
Korea
| | - Byoung-Moo Seo
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 03080,
Korea
| | - Kyeung-Min Joo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351,
Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351,
Korea
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
| | - Gene Lee
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080,
Korea
| | - Hyun Nam
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351,
Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul 06351,
Korea
| |
Collapse
|
6
|
Angiogenic Capacity of Dental Pulp Stem Cell Regulated by SDF-1 α-CXCR4 Axis. Stem Cells Int 2017; 2017:8085462. [PMID: 28588623 PMCID: PMC5447288 DOI: 10.1155/2017/8085462] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/26/2017] [Accepted: 03/01/2017] [Indexed: 01/07/2023] Open
Abstract
Previously, the perivascular characteristics of dental pulp stem cells (DPSCs) were reported, which suggested the potential application of DPSCs as perivascular cell source. In this study, we investigated whether DPSCs had angiogenic capacity by coinjection with human umbilical vein endothelial cells (HUVECs) in vivo; in addition, we determined the role of stromal cell-derived factor 1-α (SDF-1α) and C-X-C chemokine receptor type 4 (CXCR4) axis in the mutual interaction between DPSCs and HUVECs. Primarily isolated DPSCs showed mesenchymal stem cell- (MSC-) like characteristics. Moreover, DPSCs expressed perivascular markers such as NG2, α-smooth muscle actin (α-SMA), platelet-derived growth factor receptor β (PDGFRβ), and CD146. In vivo angiogenic capacity of DPSCs was demonstrated by in vivo Matrigel plug assay. We could observe microvessel-like structures in the coinjection of DPSCs and HUVECs at 7 days postinjection. To block SDF-1α and CXCR4 axis between DPSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into Matrigel plug. No significant microvessel-like structures were observed at 7 days postinjection. In conclusion, DPSCs have perivascular characteristics that contribute to in vivo angiogenesis. The findings of this study have potential applications in neovascularization of engineered tissues and vascular diseases.
Collapse
|
7
|
Özdal-Kurt F, Şen B, Tuğlu I, Vatansever S, Türk B, Deliloğlu-Gürhan I. Attachment and growth of dental pulp stem cells on dentin in presence of extra calcium. Arch Oral Biol 2016; 68:131-41. [DOI: 10.1016/j.archoralbio.2016.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 11/29/2015] [Accepted: 04/26/2016] [Indexed: 12/22/2022]
|
8
|
Chmilewsky F, Jeanneau C, Dejou J, About I. Sources of dentin-pulp regeneration signals and their modulation by the local microenvironment. J Endod 2016; 40:S19-25. [PMID: 24698688 DOI: 10.1016/j.joen.2014.01.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many aspects of dentin pulp tissue regeneration have been investigated, and it has been shown that dentin pulp has a high regeneration capacity. This seems to be because of the presence of progenitor cells and inductive regeneration signals from different origins. These signals can be liberated after the acidic dissolution of carious dentin as well as from pulp fibroblasts and endothelial cells in cases of traumatic injury. Thus, both carious lesions and pulp cells provide the required mediators for complete dentin-pulp regeneration including reparative dentin secretion, angiogenesis, and innervation. Additionally, all dentin pulp insults including carious "infection," traumatic injuries, application of restorative materials on the injured dentin pulp, and subsequent apoptosis are known activators of the complement system. This activation leads to the production of several biologically active fragments responsible for the vascular modifications and the attraction of immune cells to the inflammatory/injury site. Among these, C5a is involved in the recruitment of pulp progenitor cells, which express the C5a receptor. Thus, in addition to dentin and pulp cells, plasma should be considered as an additional source of regeneration signals.
Collapse
Affiliation(s)
- Fanny Chmilewsky
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Movement Unité Mixte de Recherche 7287, Marseille, France
| | - Charlotte Jeanneau
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Movement Unité Mixte de Recherche 7287, Marseille, France
| | - Jacques Dejou
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Movement Unité Mixte de Recherche 7287, Marseille, France; Service d'Odontologie, Assistance Publique-Hopitaux de Marseille, Hôpital Timone, Marseille, France
| | - Imad About
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Movement Unité Mixte de Recherche 7287, Marseille, France.
| |
Collapse
|
9
|
Dental Pulp Stem Cell Recruitment Signals within Injured Dental Pulp Tissue. Dent J (Basel) 2016; 4:dj4020008. [PMID: 29563450 PMCID: PMC5851269 DOI: 10.3390/dj4020008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022] Open
Abstract
The recruitment of dental pulp stem cells (DPSC) is a prerequisite for the regeneration of dentin damaged by severe caries and/or mechanical injury. Understanding the complex process of DPSC recruitment will benefit future in situ tissue engineering applications based on the stimulation of endogenous DPSC for dentin pulp regeneration. The current known mobilization signals and subsequent migration of DPSC towards the lesion site, which is influenced by the pulp inflammatory state and the application of pulp capping materials, are reviewed. The research outcome of migration studies may be affected by the applied methodology, which should thus be chosen with care. Both the advantages and disadvantages of commonly used assays for investigating DPSC migration are discussed. This review highlights the fact that DPSC recruitment is dependent not only on the soluble chemotactic signals, but also on their interaction with neighboring cells and the extracellular matrix, which can be modified under pathological conditions. These are discussed to explain how these modifications lead to the stimulation of DPSC recruitment.
Collapse
|
10
|
Sun HL, Wu YR, Huang C, Wang JW, Fu DJ, Liu YC. The Effect of SIRT6 on the Odontoblastic Potential of Human Dental Pulp Cells. J Endod 2014; 40:393-8. [DOI: 10.1016/j.joen.2013.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/09/2013] [Accepted: 11/05/2013] [Indexed: 01/27/2023]
|
11
|
Jiang L, Peng WW, Li LF, Du R, Wu TT, Zhou ZJ, Zhao JJ, Yang Y, Qu DL, Zhu YQ. Effects of deferoxamine on the repair ability of dental pulp cells in vitro. J Endod 2014; 40:1100-4. [PMID: 25069915 DOI: 10.1016/j.joen.2013.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/25/2013] [Accepted: 12/06/2013] [Indexed: 01/07/2023]
Abstract
INTRODUCTION In previous studies, we found that hypoxia promoted the mineralization of dental pulp cells (DPCs). However, the clinical application of hypoxia as a therapy is questionable or unfeasible. Deferoxamine (DFO), a medication for iron overload, has also been shown to induce hypoxia. The purpose of this study was to investigate the effects of DFO on the repair ability of DPCs. METHODS DPCs were obtained by using a tissue explant technique in vitro and were treated with different concentrations of DFO or hypoxia culture for 2 days. The viability, proliferation, migration, and odontogenic differentiation of DPCs were assayed and analyzed. The expression of hypoxia-inducible factor 1-alpha (HIF-1α) was assessed through Western blotting. RESULTS Ten micromolars of DFO enhanced the expression of HIF-1α similarly to hypoxia and did not affect the viability of DPCs for 2 days. Furthermore, the proliferation, migration, and odontogenic differentiation of DPCs were promoted by DFO. CONCLUSIONS These results suggest that DFO might improve the repair ability of DPCs by HIF-1α.
Collapse
Affiliation(s)
- Long Jiang
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei-Wei Peng
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Li-Fen Li
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Rong Du
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Tian-Tian Wu
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhuo-Jun Zhou
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jun-Jun Zhao
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ya Yang
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Dong-Lin Qu
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ya-Qin Zhu
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
12
|
Mathieu S, Jeanneau C, Sheibat-Othman N, Kalaji N, Fessi H, About I. Usefulness of controlled release of growth factors in investigating the early events of dentin-pulp regeneration. J Endod 2014; 39:228-35. [PMID: 23321236 DOI: 10.1016/j.joen.2012.11.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/26/2012] [Accepted: 11/06/2012] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Little information is yet available on the signals involved in progenitor cell migration that precede reparative dentin synthesis. Our aim was to investigate the effect of the controlled release of fibroblast growth factor (FGF)-2 and transforming growth factor β1 (TGF-β1) on permanent teeth pulp cell proliferation and progenitor cell migration. METHODS FGF-2 and TGF-β1 were encapsulated into a biodegradable polymer matrix of lactide and glycolide. Human pulp cells were prepared from third molars, and progenitor cells were sorted by STRO-1. The synthesized microsphere toxicity was checked with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test. The growth factor release kinetics were checked by an enzyme-linked immunosorbent assay while maintaining their biological activity and were evaluated by investigating their effects on pulp cell proliferation. Their chemotactic potential was investigated on STRO-1-sorted cells in a migration chamber on Matrigel (Cambrex Bio Science, Walkersville, MD). RESULTS The cell viability was unaffected by the presence of microspheres. The released amount of FGF-2 and TGF-β1 from the microspheres was maintained after 21 days. Increasing the FGF-2-loaded microsphere concentration or the release period significantly increased dental pulp cell proliferation. TGF-β1 acted as a potent chemotactic factor of STRO-1-sorted cells. CONCLUSIONS Encapsulating TGF-β1 and FGF-2 in a biodegradable polymer of lactide and glycolide microsphere allowed a sustained release of growth factors and provided a protection to their biological activities. Our results clearly show the usefulness of growth factor controlled release in investigating the early events of pulp/dentin regeneration. It provides additional data on the signals required for vital pulp therapy and future tissue engineering.
Collapse
Affiliation(s)
- Sylvie Mathieu
- Centre de Recherche en Oncologie et Oncopharmacologie, Aix-Marseille University, Marseille, France
| | | | | | | | | | | |
Collapse
|
13
|
Garlet GP. To heal or not to heal? Chemokines as determinants of constructive or destructive inflammatory microenvironments. J Appl Oral Sci 2013; 21:S1678-77572013000200000. [PMID: 23739866 PMCID: PMC3881877 DOI: 10.1590/1678-77572013ed002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Sipert CR, Morandini AC, Dionísio TJ, Machado MAAM, Oliveira SHP, Campanelli AP, Kuo WP, Santos CF. In vitro regulation of CCL3 and CXCL12 by bacterial by-products is dependent on site of origin of human oral fibroblasts. J Endod 2013; 40:95-100. [PMID: 24331998 DOI: 10.1016/j.joen.2013.09.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/08/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Production of chemokines by tissue resident cells is one of the main mechanisms involved in the inflammatory infiltrate formation during inflammation. The specific ability of fibroblasts from different oral tissues such as gingiva, periodontal ligament, and dental pulp from permanent and deciduous teeth in producing the chemokines CCL3 and CXCL12 under stimulation by bacterial products commonly found in endodontic infections was investigated. METHODS Cultures of fibroblasts from gingiva and periodontal ligament as well as from dental pulp from permanent and deciduous teeth were established by using an explant technique and stimulated with increasing concentrations of Escherichia coli lipopolysaccharide (EcLPS) and Enterococcus faecalis lipoteichoic acid (EfLTA) for 1, 6, and 24 hours. Supernatants were tested for CCL3 and CXCL12 by enzyme-linked immunosorbent assay. RESULTS In general, CCL3 production was induced by EcLPS in the 4 fibroblast subtypes and by EfLTA in fibroblasts from gingiva and periodontal ligament. Constitutive CXCL12 synthesis decreased in all fibroblast subtypes especially under stimulation with EcLPS. Fibroblast from permanent deciduous teeth was the cell type presenting the most expressive reduction in CXCL12 release by both stimuli. On the basis of computational matching of CXCL12 mRNA with the microRNAs miR-141 and miR-200a, their expression was also investigated. Although detected in the fibroblasts, these molecules remained unaltered by bacterial by-product stimulation. CONCLUSIONS EcLPS and EfLTA induced the production of CCL3 and unbalanced the synthesis of CXCL12 in a manner dependent on the specific tissue origin of fibroblasts.
Collapse
Affiliation(s)
- Carla Renata Sipert
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Ana Carolina Morandini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Thiago José Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | | | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, Araçatuba School of Dentistry, Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Winston Patrick Kuo
- Harvard Clinical and Translational Science Center, Laboratory for Innovative Translational Technologies, Harvard Medical School and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Carlos Ferreira Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| |
Collapse
|