1
|
Tu X, Lin W, Zhai X, Liang S, Huang G, Wang J, Jia W, Li S, Li B, Cheng B. Oleanolic acid inhibits M2 macrophage polarization and potentiates anti-PD-1 therapy in hepatocellular carcinoma by targeting miR-130b-3p-PTEN-PI3K-Akt signaling and glycolysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156750. [PMID: 40250003 DOI: 10.1016/j.phymed.2025.156750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Hypoxia promotes M2 polarization of macrophages and the formation of the immunosuppressive tumor microenvironment (TME) in hepatocellular carcinoma (HCC). Oleanolic acid (OA) has shown great potential in the treatment of HCC. However, the mechanisms of macrophage M2 polarization in hypoxic tumor TME and the regulating effect of OA is still unclear. OBJECTIVE To investigate the mechanisms of macrophage M2 polarization induced by hypoxic HCC cells-derived exosomes and examine the efficacy of OA in remedying the immunosuppressive TME and the anti-PD1 therapy potential. METHODS Hypoxic and normoxic HCC-derived exosomes (H-Exo and N-Exo) were collected by centrifugation. The microRNAs (miRNA) carried by the exosomes were sequenced and then screened to identify the functional miRNA. THP-1-induced macrophages were treated with exosomes or miRNAs to induce the M2 polarization of macrophages. Real-time RT-PCR and Western blotting were used to identify the direct target of miR-130b-3p and its downstream molecules. Hepa1-6 hepatoma-bearing mice were subjected to determine the efficacy of OA in regulating the TME and the anti-PD1 therapy potential. RESULTS H-Exo promotes macrophage M2 polarization, and thereby accelerates the migration and epithelial-mesenchymal transition (EMT) of HCC cells. Exosomal miRNA sequencing and subsequent functional validation showed that miR-130b-3p was the mediator of H-Exo-induced macrophage M2 polarization. PTEN was identified as the target of miR-130b-3p, and downregulation of PTEN by miR-130b-3p led to the activation of PI3K/Akt signaling and macrophage M2 polarization. In addition, miR-130b-3p also enhanced the glycolysis. OA suppressed H-Exo and miR-130b-3p-induced macrophage M2 polarization, also inhibited miR-130b-3p-induced glycolysis. In vivo, OA treatment enhanced the efficacy of anti-PD1 antibody by decreasing the number of M2 macrophages and increasing the number of CD8+ T cells. CONCLUSION Our findings uncover a new mechanism of hypoxic HCC cells-induced M2 polarization of macrophages through exosomal miR-130b-3p-PTEN-PI3K-Akt signaling. The combination therapy of OA with anti-PD1 antibody may lead to substantial improvements of the immunotherapy efficacy and expand the beneficiaries.
Collapse
Affiliation(s)
- Xiaoyu Tu
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Department of Rehabilitation Medicine and Physiotherapy, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Wanfu Lin
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Xiaofeng Zhai
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Shufang Liang
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Guokai Huang
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jingfang Wang
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Wentao Jia
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Shu Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| | - Bai Li
- Department of Rehabilitation Medicine and Physiotherapy, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Binbin Cheng
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| |
Collapse
|
2
|
Li M, Duan M, Yang Y, Li X, Li D, Gao W, Ji X, Bai J. Combination of brefeldin A and tunicamycin induces apoptosis in HepG2 cells through the endoplasmic reticulum stress-activated PERK-eIF2α-ATF4-CHOP signaling pathway. LIVER RESEARCH (BEIJING, CHINA) 2025; 9:49-56. [PMID: 40206437 PMCID: PMC11977284 DOI: 10.1016/j.livres.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 01/15/2025] [Indexed: 04/11/2025]
Abstract
Background and aims Hepatocellular carcinoma (HCC) is a malignant tumor with a high mortality rate, but there are still no effective treatments. The aim of this study was to investigate the anticancer potential of the combined use of brefeldin A (BFA) and tunicamycin (TM) in HepG2 cells, as well as the underlying mechanisms. Methods HepG2 cells were treated with different concentrations of BFA (0.1-2.5 mg/L) and TM (1-5 mg/L) for 24 h. DMSO (0.1 %, v/v) was used as a vehicle control. Cell viability and cell migration were measured using MTT assay and scratch wound assay, respectively. Apoptosis was detected using flow cytometry and acridine orange (AO) staining. The protein and mRNA levels of various factors involved in apoptosis (poly (ADP-ribose) polymerase-1 (PARP-1), caspase-12, caspase-3, and stearoyl-CoA desaturase 1) and endoplasmic reticulum (ER) stress (binding immunoglobulin protein (BiP), protein kinase R-like endoplasmic reticulum kinase (PERK), p-PERK, phosphorylation of eukaryotic translation initiation factor 2alpha (p-eIF2α), activating transcription factor (ATF) 4, and C/EBP homologous protein (CHOP)) were measured using Western blotting and qRT-PCR, respectively. Results Both BFA and TM alone significantly reduced the viability of HepG2 cells in a dose-dependent way. The co-incubation with TM (1 mg/L) further significantly reduced the viability of HepG2 cells treated with BFA (0.25 mg/L) alone (P < 0.05). BFA significantly increased the protein and mRNA levels of caspase-3 and PARP-1 (P < 0.05) compared to control and DMSO-treated cells, indicating that BFA induced apoptosis in HepG2 cells by increasing the expression of caspase-3 and PARP-1. The induction of apoptosis by BFA could be further significantly enhanced by co-incubation with TM. In addition, BFA significantly increased the mRNA levels of BiP, PERK and ATF4 (P < 0.05) compared to control and DMSO-treated cells. After co-incubation of BFA and TM, the protein levels of BiP, p-PERK, p-eIF2α and CHOP were significantly increased, indicating that TM could enhance BFA-induced ER stress in HepG2 cells through the PERK-eIF2α-ATF4-CHOP pathway. Conclusions BFA could induce apoptosis and ER stress, and TM could enhance the ability of BFA to induce apoptosis and ER stress in HepG2 cells through the PERK-eIF2ɑ-ATF4-CHOP pathway. The findings highlight the therapeutic potential of the combined use of BFA and TM in treating HCC.
Collapse
Affiliation(s)
- Minghong Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Occupational Disease Control, Ansteel Group General Hospital, Anshan, Liaoning, China
| | - Mengyi Duan
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ying Yang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xingdao Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dan Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenting Gao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Taiyuan, Shanxi, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Suzuki H, Fujiwara N, Singal AG, Baumert TF, Chung RT, Kawaguchi T, Hoshida Y. Prevention of liver cancer in the era of next-generation antivirals and obesity epidemic. Hepatology 2025:01515467-990000000-01139. [PMID: 39808821 PMCID: PMC7617594 DOI: 10.1097/hep.0000000000001227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 01/16/2025]
Abstract
Preventive interventions are expected to substantially improve the prognosis of patients with primary liver cancer, predominantly HCC and cholangiocarcinoma. HCC prevention is challenging in the face of the evolving etiological landscape, particularly the sharp increase in obesity-associated metabolic disorders, including metabolic dysfunction-associated steatotic liver disease. Next-generation anti-HCV and HBV drugs have substantially reduced, but not eliminated, the risk of HCC and have given way to new challenges in identifying at-risk patients. The recent development of new therapeutic agents and modalities has opened unprecedented opportunities to refine primary, secondary, and tertiary HCC prevention strategies. For primary prevention (before exposure to risk factors), public health policies, such as universal HBV vaccination, have had a substantial prognostic impact. Secondary prevention (after or during active exposure to risk factors) includes regular HCC screening and chemoprevention. Emerging biomarkers and imaging modalities for HCC risk stratification and detection may enable individual risk-based personalized and cost-effective HCC screening. Clinical studies have suggested the potential utility of lipid-lowering, antidiabetic/obesity, and anti-inflammatory agents for secondary prevention, and some of them are being evaluated in prospective clinical trials. Computational and experimental studies have identified potential chemopreventive strategies directed at diverse molecular, cellular, and systemic targets for etiology-specific and/or agnostic interventions. Tertiary prevention (in conjunction with curative-intent therapies for HCC) is an area of active research with the development of new immune-based neoadjuvant/adjuvant therapies. Cholangiocarcinoma prevention may advance with recent efforts to elucidate risk factors. These advances will collectively lead to substantial improvements in liver cancer mortality rates.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Naoto Fujiwara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Amit G. Singal
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas F. Baumert
- Inserm, U1110, Institute for Translational Medicine and Liver Diseases, University of Strasbourg, F-67000, France
- IHU Strasbourg, F-67000 Strasbourg, France
- Gastroenterology and Hepatology Service, Strasbourg University Hospitals, F-67000Strasbourg, France
| | - Raymond T. Chung
- Liver Center, GI Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Buzaglo GBB, Telles GD, Araújo RB, Junior GDS, Ruberti OM, Ferreira MLV, Derchain SFM, Vechin FC, Conceição MS. The Therapeutic Potential of Physical Exercise in Cancer: The Role of Chemokines. Int J Mol Sci 2024; 25:13740. [PMID: 39769501 PMCID: PMC11678861 DOI: 10.3390/ijms252413740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 01/11/2025] Open
Abstract
The global increase in cancer cases and mortality has been associated with inflammatory processes, in which chemokines play crucial roles. These molecules, a subfamily of cytokines, are essential for the migration, adhesion, interaction, and positioning of immune cells throughout the body. Chemokines primarily originate in response to pathogenic stimuli and inflammatory cytokines. They are expressed by lymphocytes in the bloodstream and are divided into four classes (CC, CXC, XC, and CX3C), playing multifaceted roles in the tumor environment (TME). In the TME, chemokines regulate immune behavior by recruiting cells such as tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), which promote tumor survival. Additionally, they directly influence tumor behavior, promoting pathological angiogenesis, invasion, and metastasis. On the other hand, chemokines can also induce antitumor responses by mobilizing CD8+ T cells and natural killer (NK) cells to the tumor, reducing pro-inflammatory chemokines and enhancing essential antitumor responses. Given the complex interaction between chemokines, the immune system, angiogenic factors, and metastasis, it becomes evident how important it is to target these pathways in therapeutic interventions to counteract cancer progression. In this context, physical exercise emerges as a promising strategy due to its role modulating the expression of anti-inflammatory chemokines and enhancing the antitumor response. Aerobic and resistance exercises have been associated with a beneficial inflammatory profile in cancer, increased infiltration of CD8+ T cells in the TME, and improvement of intratumoral vasculature. This creates an environment less favorable to tumor growth and supports the circulation of antitumor immune cells and chemokines. Therefore, understanding the impact of exercise on the expression of chemokines can provide valuable insights for therapeutic interventions in cancer treatment and prevention.
Collapse
Affiliation(s)
- Glenda B. B. Buzaglo
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| | - Guilherme D. Telles
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (G.D.T.); (F.C.V.)
| | - Rafaela B. Araújo
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| | - Gilmar D. S. Junior
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| | - Olivia M. Ruberti
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| | - Marina L. V. Ferreira
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| | - Sophie F. M. Derchain
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo 13083-881, Brazil;
| | - Felipe C. Vechin
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (G.D.T.); (F.C.V.)
| | - Miguel S. Conceição
- Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil; (G.B.B.B.); (R.B.A.); (G.D.S.J.); (O.M.R.); (M.L.V.F.)
| |
Collapse
|
5
|
Mancini A, Orlandella FM, Vitucci D, Luciano N, Alfieri A, Orrù S, Salvatore G, Buono P. Exercise's impact on lung cancer molecular mechanisms: a current overview. Front Oncol 2024; 14:1479454. [PMID: 39555455 PMCID: PMC11563951 DOI: 10.3389/fonc.2024.1479454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Lung cancer is the major cause of cancer-related deaths worldwide with an estimated 1.8 million deaths and 2.4 million new cases in 2022. Poor cardiorespiratory fitness, dyspnea and fatigue are the common features in lung cancer patients, partially limiting the exercise prescription. Exercise improves cardiorespiratory and muscular fitness and reduces the risk of some types of cancer, including lung cancer. Recently, the American Society of Clinical Oncology has encouraged preoperative exercise for lung cancer patients. Nonetheless, only limited data, mostly obtained from mouse models of lung cancer, are available on the molecular effects of exercise in lung cancer. Thus, the present minireview aims to shed light on the molecular mechanisms induced by different type of exercise in lung cancer. In particular, the role of the exercise in tumor microenvironment remodeling, angiogenesis, gene expression, apoptosis and intermediate metabolism will be examined.
Collapse
Affiliation(s)
- Annamaria Mancini
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Francesca Maria Orlandella
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Daniela Vitucci
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Neila Luciano
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Andreina Alfieri
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Stefania Orrù
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Giuliana Salvatore
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Pasqualina Buono
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| |
Collapse
|
6
|
Jia WT, Xiang S, Zhang JB, Yuan JY, Wang YQ, Liang SF, Lin WF, Zhai XF, Shang Y, Ling CQ, Cheng BB. Jiedu recipe, a compound Chinese herbal medicine, suppresses hepatocellular carcinoma metastasis by inhibiting the release of tumor-derived exosomes in a hypoxic microenvironment. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:696-708. [PMID: 39521704 DOI: 10.1016/j.joim.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Tumor-derived exosomes (TDEs) play crucial roles in intercellular communication. Hypoxia in the tumor microenvironment enhances secretion of TDEs and accelerates tumor metastasis. Jiedu recipe (JR), a traditional Chinese medicinal formula, has demonstrated efficacy in preventing the metastasis of hepatocellular carcinoma (HCC). However, the underlying mechanism remains largely unknown. METHODS Animal experiments were performed to investigate the metastasis-preventing effects of JR. Bioinformatics analysis and in vitro assays were conducted to explore the potential targets and active components of JR. TDEs were assessed using nanoparticle tracking analysis (NTA) and Western blotting (WB). Exosomes derived from normoxic or hypoxic HCC cells (H-TDEs) were collected to establish premetastatic mouse models. JR was intragastrically administered to evaluate its metastasis-preventive effects. WB and lysosomal staining were performed to investigate the effects of JR on lysosomal function and autophagy. Bioinformatics analysis, WB, NTA, and immunofluorescence staining were used to identify the active components and potential targets of JR. RESULTS JR effectively inhibited subcutaneous-tumor-promoted lung premetastatic niche development and tumor metastasis. It inhibited the release of exosomes from tumor cells under hypoxic condition. JR treatment promoted both lysosomal acidification and suppressed secretory autophagy, which were dysregulated in hypoxic tumor cells. Quercetin was identified as the active component in JR, and the epidermal growth factor receptor (EGFR) was identified as a potential target. Quercetin inhibited EGFR phosphorylation and promoted the nuclear translocation of transcription factor EB (TFEB). Hypoxia-impaired lysosomal function was restored, and secretory autophagy was alleviated by quercetin treatment. CONCLUSION JR suppressed HCC metastasis by inhibiting hypoxia-stimulated exosome release, restoring lysosomal function, and suppressing secretory autophagy. Quercetin acted as a key component of JR and regulated TDE release through EGFR-TFEB signaling. Our study provides a potential strategy for retarding tumor metastasis by targeting H-TDE secretion. Please cite this article as: Jia WT, Xiang S, Zhang JB, Yuan JY, Wang YQ, Liang SF, Lin WF, Zhai XF, Shang Y, Ling CQ, Cheng BB. Jiedu recipe, a compound Chinese herbal medicine, suppresses hepatocellular carcinoma metastasis by inhibiting the release of tumor-derived exosomes in a hypoxic microenvironment through the EGFR-TFEB signaling pathway. J Integr Med. 2024; 22(6): 697-709.
Collapse
Affiliation(s)
- Wen-Tao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China; Department of General Practice, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Shuang Xiang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jin-Bo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Jia-Ying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital School of Medicine, Tongji University, Shanghai 200065, China
| | - Yu-Qian Wang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Shu-Fang Liang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Wan-Fu Lin
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Xiao-Feng Zhai
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Yan Shang
- Department of General Practice, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Chang-Quan Ling
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Bin-Bin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
7
|
Marcantei C, Couret A, King J, Mazeaud S, Armand A, Ennequin G. Effects of Exercise Training on Muscle Mass and Physical Function in Patients with Hepatocellular Carcinoma After Diagnosis: A Systematic Review. Dig Dis Sci 2024; 69:2667-2680. [PMID: 38662157 DOI: 10.1007/s10620-024-08441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND AND AIMS Decreased muscle mass and physical function are common complications in hepatocellular carcinoma (HCC) patients who are associated with increased morbidity and mortality. Thus, there have been targeted efforts to prevent and/or improve both by enrolling these patients in exercise training programs. We performed a systematic review to evaluate the effects of exercise training on muscle mass and physical function in people with HCC after diagnosis. METHODS A systematic literature search was conducted using the Medline, Base, PubMed, Cochrane and Scopus, and trial registries, through April 2023 for studies that assessed the effects of an exercise training program in adults with HCC. The primary outcomes were muscle mass and physical function. To assess the risk of bias, we used the Quality Assessment Tool for Quantitative Studies from the Effective Public Health Practice Project. RESULTS Eight studies met inclusion criteria, comprising a total of 809 participants. Interventions included aerobic exercise training, resistance exercise training, balance and flexibility training, or home-based exercise training. Four studies showed statistically significant improvements in at least one muscular outcome. Three studies showed a maintenance of muscular outcomes, and one study showed a decrease in muscle mass. Four articles showed statistically improvements in at least one physical fitness variable, and two showed a maintenance of physical function variable. CONCLUSION Together, the results suggest that patients may benefit from physical exercise training after treatment to improve muscle mass and physical function.
Collapse
Affiliation(s)
- Camille Marcantei
- Laboratory of the Metabolic Adaptations to Exercise Training Under Physiological and Pathological Conditions (AME2P), Clermont Auvergne University, CRNH Auvergne, Campus Universitaire Des Cézeaux, 3 Rue de La Chébarde, 63178, Clermont-Ferrand, AUBIERE Cedex, France.
| | - Alexis Couret
- Laboratory of the Metabolic Adaptations to Exercise Training Under Physiological and Pathological Conditions (AME2P), Clermont Auvergne University, CRNH Auvergne, Campus Universitaire Des Cézeaux, 3 Rue de La Chébarde, 63178, Clermont-Ferrand, AUBIERE Cedex, France
- Department of Digestive and Hepatobiliary Medecine, CHU, Clermont-Ferrand, France
- UMR 6602 CNRS-Sigma, Université Clermont Auvergne, Clermont-Ferrand, France
| | - James King
- National Centre for Sport and Exercise Training Medicine, School of Sport, Exercise Training and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Simon Mazeaud
- Laboratory of the Metabolic Adaptations to Exercise Training Under Physiological and Pathological Conditions (AME2P), Clermont Auvergne University, CRNH Auvergne, Campus Universitaire Des Cézeaux, 3 Rue de La Chébarde, 63178, Clermont-Ferrand, AUBIERE Cedex, France
| | - Abergel Armand
- Department of Digestive and Hepatobiliary Medecine, CHU, Clermont-Ferrand, France
- UMR 6602 CNRS-Sigma, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Gaël Ennequin
- Laboratory of the Metabolic Adaptations to Exercise Training Under Physiological and Pathological Conditions (AME2P), Clermont Auvergne University, CRNH Auvergne, Campus Universitaire Des Cézeaux, 3 Rue de La Chébarde, 63178, Clermont-Ferrand, AUBIERE Cedex, France
- International Research Chair "Health in Motion", University Clermont Auvergne Foundation, Clermont-Ferrand, France
- Nutrition and Cancer Research Network (NACRe Network), Jouy-en-Josas, France
| |
Collapse
|
8
|
Jia W, Liang S, Jin M, Li S, Yuan J, Zhang J, Lin W, Wang Y, Nie S, Ling C, Cheng B. Oleanolic acid inhibits hypoxic tumor-derived exosomes-induced premetastatic niche formation in hepatocellular carcinoma by targeting ERK1/2-NFκB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155208. [PMID: 38387275 DOI: 10.1016/j.phymed.2023.155208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND Pulmonary premetastatic niche (PMN) formation plays a key role in the lung metastasis of hepatocellular carcinoma (HCC). Hypoxia promotes the secretion of tumor-derived exosomes (TDEs) and facilitates the formation of PMN. However, the mechanisms remain unexplored. METHODS TDEs from normoxic (N-TDEs) or hypoxic (H-TDEs) HCC cells were used to induce fibroblast activation in vitro and PMN formation in vivo. Oleanolic acid (OA) was intragastrically administered to TDEs-preconditioned mice. Bioinformatics analysis and drug affinity responsive target stability (DARTS) assays were performed to identify targets of OA in fibroblasts. RESULTS H-TDEs induced activation of pulmonary fibroblasts, promoted formation of pulmonary PMN and subsequently facilitated lung metastasis of HCC. OA inhibited TDEs-induced PMN formation and lung metastasis and suppressed TDEs-mediated fibroblast activation. MAPK1 and MAPK3 (ERK1/2) were the potential targets of OA. Furthermore, H-TDEs enhanced ERK1/2 phosphorylation in fibroblasts in vitro and in vivo, which was suppressed by OA treatment. Blocking ERK1/2 signaling with its inhibitor abated H-TDEs-induced activation of fibroblasts and PMN formation. H-TDEs-induced phosphorylation of ERK1/2 in fibroblasts touched off the activation NF-κB p65, which was mitigated by OA. In addition, the ERK activator C16-PAF recovered the activation of ERK1/2 and NF-κB p65 in H-TDEs-stimulated MRC5 cells upon OA treatment. CONCLUSION The present study offers insights into the prevention of TDEs-induced PMN, which has been insufficiently investigated. OA suppresses the activation of inflammatory fibroblasts and the development of pulmonary PMN by targeting ERK1/2 and thereby has therapeutic potential in the prevention of lung metastasis of HCC.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China
| | - Shufang Liang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Jiaying Yuan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Wanfu Lin
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China
| | - Yuqian Wang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China
| | - Shuchang Nie
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China
| | - Changquan Ling
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China.
| |
Collapse
|
9
|
Tobias GC, Gomes JLP, Fernandes LG, Voltarelli VA, de Almeida NR, Jannig PR, de Souza RWA, Negrão CE, Oliveira EM, Chammas R, Alves CRR, Brum PC. Aerobic exercise training mitigates tumor growth and cancer-induced splenomegaly through modulation of non-platelet platelet factor 4 expression. Sci Rep 2023; 13:21970. [PMID: 38081853 PMCID: PMC10713653 DOI: 10.1038/s41598-023-47217-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Exercise training reduces the incidence of several cancers, but the mechanisms underlying these effects are not fully understood. Exercise training can affect the spleen function, which controls the hematopoiesis and immune response. Analyzing different cancer models, we identified that 4T1, LLC, and CT26 tumor-bearing mice displayed enlarged spleen (splenomegaly), and exercise training reduced spleen mass toward control levels in two of these models (LLC and CT26). Exercise training also slowed tumor growth in melanoma B16F10, colon tumor 26 (CT26), and Lewis lung carcinoma (LLC) tumor-bearing mice, with minor effects in mammary carcinoma 4T1, MDA-MB-231, and MMTV-PyMT mice. In silico analyses using transcriptome profiles derived from these models revealed that platelet factor 4 (Pf4) is one of the main upregulated genes associated with splenomegaly during cancer progression. To understand whether exercise training would modulate the expression of these genes in the tumor and spleen, we investigated particularly the CT26 model, which displayed splenomegaly and had a clear response to the exercise training effects. RT-qPCR analysis confirmed that trained CT26 tumor-bearing mice had decreased Pf4 mRNA levels in both the tumor and spleen when compared to untrained CT26 tumor-bearing mice. Furthermore, exercise training specifically decreased Pf4 mRNA levels in the CT26 tumor cells. Aspirin treatment did not change tumor growth, splenomegaly, and tumor Pf4 mRNA levels, confirming that exercise decreased non-platelet Pf4 mRNA levels. Finally, tumor Pf4 mRNA levels are deregulated in The Cancer Genome Atlas Program (TCGA) samples and predict survival in multiple cancer types. This highlights the potential therapeutic value of exercise as a complementary approach to cancer treatment and underscores the importance of understanding the exercise-induced transcriptional changes in the spleen for the development of novel cancer therapies.
Collapse
Affiliation(s)
- Gabriel C Tobias
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil.
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - João L P Gomes
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
| | - Larissa G Fernandes
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
| | - Vanessa A Voltarelli
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Ney R de Almeida
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
| | - Paulo R Jannig
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Rodrigo W Alves de Souza
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Carlos E Negrão
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
- Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Edilamar M Oliveira
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
| | - Roger Chammas
- Department of Radiology and Oncology, Faculdade de Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Christiano R R Alves
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
| | - Patricia C Brum
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil.
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Liu H, Liu S, Xiong L, Luo B. Efficacy of Baduanjin for treatment of fatigue: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2023; 102:e34707. [PMID: 37565842 PMCID: PMC10419663 DOI: 10.1097/md.0000000000034707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Numerous studies have suggested that Baduanjin, a traditional Chinese exercise, can alleviate fatigue symptoms in patients with various illnesses. The aim of this review was to evaluate the efficacy of Baduanjin in reducing fatigue symptoms. METHODS A comprehensive literature search was conducted using several databases, including PubMed, Web of Science, Embase, Medline, China Biology Medicine disc, China National Knowledge Infrastructure, and Wanfang, from inception to June 2023. Relevant studies reporting on the effects of Baduanjin on fatigue symptoms were included. A random-effects meta-analysis model with standardized mean differences was used to estimate the treatment effects. Moderator analyses were conducted using continuous variables and meta-regression. This review was registered in the International Prospective Register of Systematic Reviews (identifier CRD42023411532). Grading of recommendations, assessment, development and evaluations framework was used to assess the certainty of evidence. RESULTS Ten randomized controlled trials with patients diagnosed with 9 different diseases were included in the meta-analysis. The Baduanjin intervention groups showed significant improvements in total fatigue intensity (standard mean difference = -0.49, 95% confidence interval = -0.69 to -0.30, P = .000; I2 = 56%, P = .009). The statistically significant differences in the subgroup analyses, including intervention durations, age of participants, fatigue types, and practice location, remained unchanged. Meta-regression showed that practice place might have significant effect on the results. The certainty of the evidence was moderate for participants 55-year younger or in hospital training. However, fatigue, different groups, participants 55-year or older, training at home, and different fatigue types had lower evidence certainty. CONCLUSION Baduanjin can effectively alleviate fatigue symptoms with relatively flexible requirements. However, studies investigating the same disease types and including non-Chinese populations are scarce. Therefore, further studies with long-term interventions, larger sample sizes, and well-designed methodologies are warranted.
Collapse
Affiliation(s)
- Haoyu Liu
- Capital University of Physical Education and Sports, Haidian, Beijing, China
| | - Siling Liu
- School of Sport and Art, Shenzhen Technology University, Shenzhen, Guangdong province, China
| | - Lu Xiong
- Jiangxi Institute of Applied Science and Technology, Nanchang, Jiangxi province, China
| | - Bingquan Luo
- Capital University of Physical Education and Sports, Haidian, Beijing, China
| |
Collapse
|
11
|
Sabeti S, Ternifi R, Larson NB, Olson MC, Atwell TD, Fatemi M, Alizad A. Morphometric analysis of tumor microvessels for detection of hepatocellular carcinoma using contrast-free ultrasound imaging: A feasibility study. Front Oncol 2023; 13:1121664. [PMID: 37124492 PMCID: PMC10134399 DOI: 10.3389/fonc.2023.1121664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction A contrast-free ultrasound microvasculature imaging technique was evaluated in this study to determine whether extracting morphological features of the vascular networks in hepatic lesions can be beneficial in differentiating benign and malignant tumors (hepatocellular carcinoma (HCC) in particular). Methods A total of 29 lesions from 22 patients were included in this work. A post-processing algorithm consisting of clutter filtering, denoising, and vessel enhancement steps was implemented on ultrasound data to visualize microvessel structures. These structures were then further characterized and quantified through additional image processing. A total of nine morphological metrics were examined to compare different groups of lesions. A two-sided Wilcoxon rank sum test was used for statistical analysis. Results In the malignant versus benign comparison, six of the metrics manifested statistical significance. Comparing only HCC cases with the benign, only three of the metrics were significantly different. No statistically significant distinction was observed between different malignancies (HCC versus cholangiocarcinoma and metastatic adenocarcinoma) for any of the metrics. Discussion Obtained results suggest that designing predictive models based on such morphological characteristics on a larger sample size may prove helpful in differentiating benign from malignant liver masses.
Collapse
Affiliation(s)
- Soroosh Sabeti
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Redouane Ternifi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Nicholas B. Larson
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Michael C. Olson
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Thomas D. Atwell
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Azra Alizad
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- *Correspondence: Azra Alizad,
| |
Collapse
|