1
|
Groaz E, De Jonghe S. Overview of Biologically Active Nucleoside Phosphonates. Front Chem 2021; 8:616863. [PMID: 33490040 PMCID: PMC7821050 DOI: 10.3389/fchem.2020.616863] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022] Open
Abstract
The use of the phosphonate motif featuring a carbon-phosphorous bond as bioisosteric replacement of the labile P–O bond is widely recognized as an attractive structural concept in different areas of medicinal chemistry, since it addresses the very fundamental principles of enzymatic stability and minimized metabolic activation. This review discusses the most influential successes in drug design with special emphasis on nucleoside phosphonates and their prodrugs as antiviral and cancer treatment agents. A description of structurally related analogs able to interfere with the transmission of other infectious diseases caused by pathogens like bacteria and parasites will then follow. Finally, molecules acting as agonists/antagonists of P2X and P2Y receptors along with nucleotidase inhibitors will also be covered. This review aims to guide readers through the fundamentals of nucleoside phosphonate therapeutics in order to inspire the future design of molecules to target infections that are refractory to currently available therapeutic options.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Vale N, Ferreira A, Matos J, Fresco P, Gouveia MJ. Amino Acids in the Development of Prodrugs. Molecules 2018; 23:E2318. [PMID: 30208629 PMCID: PMC6225300 DOI: 10.3390/molecules23092318] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 01/03/2023] Open
Abstract
Although drugs currently used for the various types of diseases (e.g., antiparasitic, antiviral, antibacterial, etc.) are effective, they present several undesirable pharmacological and pharmaceutical properties. Most of the drugs have low bioavailability, lack of sensitivity, and do not target only the damaged cells, thus also affecting normal cells. Moreover, there is the risk of developing resistance against drugs upon chronic treatment. Consequently, their potential clinical applications might be limited and therefore, it is mandatory to find strategies that improve those properties of therapeutic agents. The development of prodrugs using amino acids as moieties has resulted in improvements in several properties, namely increased bioavailability, decreased toxicity of the parent drug, accurate delivery to target tissues or organs, and prevention of fast metabolism. Herein, we provide an overview of models currently in use of prodrug design with amino acids. Furthermore, we review the challenges related to the permeability of poorly absorbed drugs and transport and deliver on target organs.
Collapse
Affiliation(s)
- Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Abigail Ferreira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- LAQV&REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Joana Matos
- SpiroChem AG, Rosental Area, WRO-1074-3, Mattenstrasse 24, 4058 Basel, Switzerland.
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Maria João Gouveia
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
3
|
Samsudin F, Parker JL, Sansom MSP, Newstead S, Fowler PW. Accurate Prediction of Ligand Affinities for a Proton-Dependent Oligopeptide Transporter. Cell Chem Biol 2016; 23:299-309. [PMID: 27028887 PMCID: PMC4760754 DOI: 10.1016/j.chembiol.2015.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/22/2015] [Accepted: 11/04/2015] [Indexed: 12/04/2022]
Abstract
Membrane transporters are critical modulators of drug pharmacokinetics, efficacy, and safety. One example is the proton-dependent oligopeptide transporter PepT1, also known as SLC15A1, which is responsible for the uptake of the β-lactam antibiotics and various peptide-based prodrugs. In this study, we modeled the binding of various peptides to a bacterial homolog, PepTSt, and evaluated a range of computational methods for predicting the free energy of binding. Our results show that a hybrid approach (endpoint methods to classify peptides into good and poor binders and a theoretically exact method for refinement) is able to accurately predict affinities, which we validated using proteoliposome transport assays. Applying the method to a homology model of PepT1 suggests that the approach requires a high-quality structure to be accurate. Our study provides a blueprint for extending these computational methodologies to other pharmaceutically important transporter families. A hierarchical computational approach determines ligand affinities to transporters Lysine-containing dipeptides proposed to bind vertically like a tripeptide Experimental structures are vital for the accurate prediction of affinities A model of prodrug interactions to human PepT1 is suggested
Collapse
Affiliation(s)
- Firdaus Samsudin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Joanne L Parker
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Philip W Fowler
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
4
|
Volle JN, Guillon R, Bancel F, Bekro YA, Pirat JL, Virieux D. Phosphono- and Phosphinolactones in the Life Sciences. ADVANCES IN HETEROCYCLIC CHEMISTRY 2016. [DOI: 10.1016/bs.aihch.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Izawa K, Aceña JL, Wang J, Soloshonok VA, Liu H. Small-Molecule Therapeutics for Ebola Virus (EBOV) Disease Treatment. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501158] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Abstract
A substantial portion of metabolism involves transformation of phosphate esters, including pathways leading to nucleotides and oligonucleotides, carbohydrates, isoprenoids and steroids, and phosphorylated proteins. Because the natural substrates bear one or more negative charges, drugs that target these enzymes generally must be charged as well, but small charged molecules can have difficulty traversing the cell membrane by means other than endocytosis. The resulting dichotomy has stimulated a great deal of effort to develop effective prodrugs, compounds that carry little or no charge to enable them to transit biological membranes, but able to release the parent drug once inside the target cell. This chapter presents recent studies on advances in prodrug forms, along with representative examples of their application to marketed and developmental drugs.
Collapse
Affiliation(s)
- Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | | |
Collapse
|
7
|
Pradere U, Garnier-Amblard E, Coats SJ, Amblard F, Schinazi RF. Synthesis of nucleoside phosphate and phosphonate prodrugs. Chem Rev 2014; 114:9154-218. [PMID: 25144792 PMCID: PMC4173794 DOI: 10.1021/cr5002035] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Ugo Pradere
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| | | | | | - Franck Amblard
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| | - Raymond F. Schinazi
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| |
Collapse
|
8
|
Krylov IS, Kashemirov BA, Hilfinger JM, McKenna CE. Evolution of an amino acid based prodrug approach: stay tuned. Mol Pharm 2013; 10:445-58. [PMID: 23339402 PMCID: PMC3788118 DOI: 10.1021/mp300663j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Certain acyclic nucleoside phosphonates (ANPs) such as (S)-HPMPC (cidofovir, Vistide) and (S)-HPMPA have been shown to be active against a broad spectrum of DNA and retroviruses. However, their poor absorption as well as their toxicity limit the utilization of these therapeutics in the clinic. Nucleoside phosphonates are poorly absorbed primarily due to the presence of the phosphonic acid group, which ionizes at physiological pH. When dosed intravenously they display dose-limiting nephrotoxicity due to their accumulation in the kidney. To overcome these limitations, nucleoside phosphonate prodrug strategies have taken center stage in the development pathway and a number of different approaches are at various stages of development. Our efforts have focused on the development of ANP prodrugs in which a benign amino acid promoiety masks a phosphonate P-OH via a hydroxyl side chain. The design of these prodrugs incorporates multiple chemical groups (the P-X-C linkage, the amino acid stereochemistry, the C-terminal and N-terminal functional groups) that can be tuned to modify absorption, pharmacokinetic and efficacy properties with the goal of improving overall prodrug performance.
Collapse
Affiliation(s)
- Ivan S. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744 USA
| | - Boris A. Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744 USA
| | | | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744 USA
| |
Collapse
|
9
|
Pertusat F, Serpi M, McGuigan C. Medicinal Chemistry of Nucleoside Phosphonate Prodrugs for Antiviral Therapy. ACTA ACUST UNITED AC 2012; 22:181-203. [DOI: 10.3851/imp2012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2011] [Indexed: 10/15/2022]
Abstract
Considerable attention has been focused on the development of phosphonate-containing drugs for application in many therapeutic areas. However, phosphonate diacids are deprotonated at physiological pH and thus phosphonate-containing drugs are not ideal for oral administration, an extremely desirable requisite for the treatment of chronic diseases. To overcome this limitation several prodrug structures of biologically active phosphonate analogues have been developed. The rationale behind the design of such agents is to achieve temporary blockade of the free phosphonic functional group until their systemic absorption and delivery, allowing the release of the active drug only once at the target. In this paper, an overview of acyclic and cyclic nucleoside phosphonate prodrugs, designed as antiviral agents, is presented.
Collapse
Affiliation(s)
| | - Michaela Serpi
- Welsh School of Pharmacy, Cardiff University, Cardiff, UK
| | | |
Collapse
|
10
|
Zhang L, Zhang L, Luo T, Zhou J, Sun L, Xu Y. Synthesis and evaluation of a dipeptide-drug conjugate library as substrates for PEPT1. ACS COMBINATORIAL SCIENCE 2012; 14:108-14. [PMID: 22263689 DOI: 10.1021/co200141b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oligopeptide transporter PEPT1 is considered as a valuable target for prodrug design, but its 3D structure and substrate specificity of PEPT1 are not fully understood. In this study, we designed a focused dipeptide conjugated azidothymidine (AZT) library and described a convenient and efficient solid phase synthesis scheme based on click chemistry. Over 60 candidate structures containing various dipeptide sequences were obtained with high purity, and screened in a PEPT1 overexpressing cell model for their abilities to compete with the known ligand cephalexin. Some of the compounds selected to have medium or high affinity were tested for their in vivo transport in a single-pass intestinal perfusion experiment. Results showed that the designed library contained some new structure features that have high affinities toward PEPT1 and could be further explored for their application in prodrug design and development.
Collapse
Affiliation(s)
- Lihui Zhang
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Li Zhang
- Instrumental Analysis Center, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Tian Luo
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Jie Zhou
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Lingyi Sun
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, PR China
| |
Collapse
|
11
|
McGuigan C, Madela K, Aljarah M, Bourdin C, Arrica M, Barrett E, Jones S, Kolykhalov A, Bleiman B, Bryant KD, Ganguly B, Gorovits E, Henson G, Hunley D, Hutchins J, Muhammad J, Obikhod A, Patti J, Walters CR, Wang J, Vernachio J, Ramamurty CVS, Battina SK, Chamberlain S. Phosphorodiamidates as a Promising New Phosphate Prodrug Motif for Antiviral Drug Discovery: Application to Anti-HCV Agents. J Med Chem 2011; 54:8632-45. [DOI: 10.1021/jm2011673] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher McGuigan
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff
CF10 3NB, U.K
| | - Karolina Madela
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff
CF10 3NB, U.K
| | - Mohamed Aljarah
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff
CF10 3NB, U.K
| | - Claire Bourdin
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff
CF10 3NB, U.K
| | - Maria Arrica
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff
CF10 3NB, U.K
| | - Emma Barrett
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff
CF10 3NB, U.K
| | - Sarah Jones
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff
CF10 3NB, U.K
| | | | - Blair Bleiman
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - K. Dawn Bryant
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Babita Ganguly
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Elena Gorovits
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Geoffrey Henson
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Damound Hunley
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Jeff Hutchins
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Jerry Muhammad
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Aleksandr Obikhod
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Joseph Patti
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - C. Robin Walters
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - Jin Wang
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | - John Vernachio
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| | | | | | - Stanley Chamberlain
- Inhibitex Inc., 9005 Westside Parkway, Alpharetta,
Georgia 30004, United States
| |
Collapse
|
12
|
Zakharova VM, Serpi M, Krylov IS, Peterson LW, Breitenbach JM, Borysko KZ, Drach JC, Collins M, Hilfinger JM, Kashemirov BA, McKenna CE. Tyrosine-based 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine and -adenine ((S)-HPMPC and (S)-HPMPA) prodrugs: synthesis, stability, antiviral activity, and in vivo transport studies. J Med Chem 2011; 54:5680-93. [PMID: 21812420 DOI: 10.1021/jm2001426] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Eight novel single amino acid (6-11) and dipeptide (12, 13) tyrosine P-O esters of cyclic cidofovir ((S)-cHPMPC, 4) and its cyclic adenine analogue ((S)-cHPMPA, 3) were synthesized and evaluated as prodrugs. In vitro IC(50) values for the prodrugs (<0.1-50 μM) vs vaccinia, cowpox, human cytomegalovirus, and herpes simplex type 1 virus were compared to those for the parent drugs ((S)-HPMPC, 2; (S)-HPMPA, 1; IC(50) 0.3-35 μM); there was no cytoxicity with KB or HFF cells at ≤100 μM. The prodrugs exhibited a wide range of half-lives in rat intestinal homogenate at pH 6.5 (<30-1732 min) with differences of 3-10× between phostonate diastereomers. The tyrosine alkylamide derivatives of 3 and 4 were the most stable. (l)-Tyr-NH-i-Bu cHPMPA (11) was converted in rat or mouse plasma solely to two active metabolites and had significantly enhanced oral bioavailability vs parent drug 1 in a mouse model (39% vs <5%).
Collapse
Affiliation(s)
- Valeria M Zakharova
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Synthesis, transport and antiviral activity of Ala-Ser and Val-Ser prodrugs of cidofovir. Bioorg Med Chem Lett 2011; 21:4045-9. [PMID: 21641218 DOI: 10.1016/j.bmcl.2011.04.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/26/2011] [Indexed: 11/23/2022]
Abstract
We report the synthesis and biological evaluation of Ala-(Val-)l-Ser-CO(2)R prodrugs of 1, where a dipeptide promoiety is conjugated to the P(OH)(2) group of cidofovir (1) via esterification by the Ser side chain hydroxyl group and an ethyl group (4 and 5) or alone (6 and 7). In a murine model, oral administration of 4 or 5 did not significantly increase total cidofovir species in the plasma compared to 1 or 2, but 7 resulted in a 15-fold increase in a rat model and had an in vitro EC(50) value against human cytomegalovirus comparable to 1. Neither 6 nor 7 exhibited toxicity up to 100 μM in KB or HFF cells.
Collapse
|
14
|
Peterson LW, Sala-Rabanal M, Krylov IS, Serpi M, Kashemirov BA, McKenna CE. Serine side chain-linked peptidomimetic conjugates of cyclic HPMPC and HPMPA: synthesis and interaction with hPEPT1. Mol Pharm 2010; 7:2349-61. [PMID: 20929265 DOI: 10.1021/mp100186b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cidofovir (HPMPC), a broad spectrum antiviral agent, cannot be administered orally due to ionization of its phosphonic acid group at physiological pH. One prodrug approach involves conversion to the cyclic form (cHPMPC, 1) and esterification by the side chain hydroxyl group of a peptidomimetic serine. Transport studies in a rat model have shown enhanced levels of total cidofovir species in the plasma after oral dosing with L-Val-L-Ser-OMe cHPMPC, 2a. To explore the possibility that 2a and its three L/D stereoisomers 2b-d undergo active transport mediated by the peptide-specific intestinal transporter PEPT1, we performed radiotracer uptake and electrophysiology experiments applying the two-electrode voltage clamp technique in Xenopus laevis oocytes overexpressing human PEPT1 (hPEPT1, SLC15A1). 2a-d did not induce inward currents, indicating that they are not transported, but the stereoisomers with an L-configuration at the N-terminal valine (2a and 2b) potently inhibited transport of the hPEPT1 substrate glycylsarcosine (Gly-Sar). A "reversed" dipeptide conjugate, L-Ser-L-Ala-OiPr cHPMPC (4), also did not exhibit detectable transport, but completely abolished the Gly-Sar signal, suggesting that affinity of the transporter for these prodrugs is not impaired by a proximate linkage to the drug in the N-terminal amino acid of the dipeptide. Single amino acid conjugates of cHPMPC (3a and 3b) or cHPMPA (5, 6a and 6b) were not transported and only weakly inhibited Gly-Sar transport. The known hPEPT1 prodrug substrate valacyclovir (7) and its L-Val-L-Val dipeptide analogue (8) were used to verify coupled transport by the oocyte model. The results indicate that the previously observed enhanced oral bioavailability of 2a relative to the parent drug is unlikely to be due to active transport by hPEPT1. Syntheses of the novel compounds 2b-d and 3-6 are described, including a convenient solid-phase method to prepare 5, 6a and 6b.
Collapse
Affiliation(s)
- Larryn W Peterson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, USA
| | | | | | | | | | | |
Collapse
|
15
|
Tehler U, Nelson CH, Peterson LW, Provoda CJ, Hilfinger JM, Lee KD, McKenna CE, Amidon GL. Puromycin-sensitive aminopeptidase: an antiviral prodrug activating enzyme. Antiviral Res 2009; 85:482-9. [PMID: 19969024 DOI: 10.1016/j.antiviral.2009.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/25/2009] [Accepted: 12/01/2009] [Indexed: 11/18/2022]
Abstract
Cidofovir (HPMPC) is a broad-spectrum antiviral agent, currently used to treat AIDS-related human cytomegalovirus retinitis. Cidofovir has recognized therapeutic potential for orthopox virus infections, although its use is hampered by its inherent low oral bioavailability. Val-Ser-cyclic HPMPC (Val-Ser-cHPMPC) is a promising peptide prodrug which has previously been shown by us to improve the permeability and bioavailability of the parent compound in rodent models (Eriksson et al., 2008. Molecular Pharmaceutics 5, 598-609). Puromycin-sensitive aminopeptidase was partially purified from Caco-2 cell homogenates and identified as a prodrug activating enzyme for Val-Ser-cHPMPC. The prodrug activation process initially involves an enzymatic step where the l-Valine residue is removed by puromycin-sensitive aminopeptidase, a step that is bestatin-sensitive. Subsequent chemical hydrolysis results in the generation of cHPMPC. A recombinant puromycin-sensitive aminopeptidase was generated and its substrate specificity investigated. The k(cat) for Val-pNA was significantly lower than that for Ala-pNA, suggesting that some amino acids are preferred over others. Furthermore, the three-fold higher k(cat) for Val-Ser-cHPMPC as compared to Val-pNA suggests that the leaving group may play an important role in determining hydrolytic activity. In addition to its ability to hydrolyze a variety of substrates, these observations strongly suggest that puromycin-sensitive aminopeptidase is an important enzyme for activating Val-Ser-cHPMPC in vivo. Taken together, our data suggest that puromycin-sensitive aminopeptidase makes an attractive target for future prodrug design.
Collapse
Affiliation(s)
- Ulrika Tehler
- Department of Pharmaceutical Sciences and Center for Molecular Drug Targeting, College of Pharmacy, The University of Michigan, 428 Church St., Ann Arbor, MI 48109-1065, United States
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Peterson LW, McKenna CE. Prodrug approaches to improving the oral absorption of antiviral nucleotide analogues. Expert Opin Drug Deliv 2009; 6:405-20. [PMID: 19382883 DOI: 10.1517/17425240902824808] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nucleotide analogues have been well accepted as therapeutic agents active against a number of viruses. However, their use as antiviral agents is limited by the need for phosphorylation by endogenous enzymes, and if the analogue is orally administered, by low bioavailability due to the presence of an ionizable diacid group. To circumvent these limitations, a number of prodrug approaches have been proposed. The ideal prodrug achieves delivery of a parent drug by attachment of a non-toxic moiety that is stable during transport and delivery, but is readily cleaved to release the parent drug once at the target. Here, a brief overview of several promising prodrug strategies currently under development is given.
Collapse
Affiliation(s)
- Larryn W Peterson
- University of Southern California, Department of Chemistry, Los Angeles, CA 90089-0744, USA.
| | | |
Collapse
|
17
|
Shen W, Kim JS, Mitchell S, Kish P, Kijek P, Hilfinger J. 5'-O-D-valyl ara A, a potential prodrug for improving oral bioavailability of the antiviral agent vidarabine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2009; 28:43-55. [PMID: 19116869 DOI: 10.1080/15257770802581757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In order to improve the oral bioavailability of Adenine 9-beta-D-arabinofuranoside (Vidarabine, also called ara A), an antiviral drug which is active against herpes simplex and varicella zoster viruses and the first agent to be licensed for the treatment of systematic herpes virus infection in man, the corresponding 5'-O-D-valyl ester derivative has been synthesized. Based on their physicochemical properties, 5'-O-valyl ara A has emerged as a potential prodrug candidate to improve the oral bioavailability of vidarabine. We describe in this paper a facile synthesis route for the prodrug and its physicochemical properties.
Collapse
Affiliation(s)
- Wei Shen
- TSRL Inc., Ann Arbor, Michigan 48108, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Eriksson U, Peterson LW, Kashemirov BA, Hilfinger JM, Drach JC, Borysko KZ, Breitenbach JM, Kim JS, Mitchell S, Kijek P, McKenna CE. Serine peptide phosphoester prodrugs of cyclic cidofovir: synthesis, transport, and antiviral activity. Mol Pharm 2008; 5:598-609. [PMID: 18481868 DOI: 10.1021/mp8000099] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cidofovir (HPMPC, 1), a broad-spectrum antiviral agent, is currently used to treat AIDS-related human cytomegalovirus (HCMV) retinitis and has recognized therapeutic potential for orthopox virus infections, but is limited by its low oral bioavailability. Cyclic cidofovir (2) displays decreased nephrotoxicity compared to 1, while also exhibiting potent antiviral activity. Here we describe in detail the synthesis and evaluation as prodrugs of four cHPMPC dipeptide conjugates in which the free POH of 2 is esterified by the Ser side chain alcohol group of an X-L-Ser(OMe) dipeptide: 3 (X=L-Ala), 4 (X=L-Val), 5 (X=L-Leu), and 6 (X=L-Phe). Perfusion studies in the rat establish that the mesenteric permeability to 4 is more than 20-fold greater than to 1, and the bioavailability of 4 is increased 6-fold relative to 1 in an in vivo murine model. In gastrointestinal and liver homogenates, the cHPMPC prodrugs are rapidly hydrolyzed to 2. Prodrugs 3, 4, and 5 are nontoxic at 100 microM in HFF and KB cells and in cell-based plaque reduction assays had IC 50 values of 0.1-0.5 microM for HCMV and 10 microM for two orthopox viruses (vaccinia and cowpox). The enhanced transport properties of 3-6, conferred by incorporation of a biologically benign dipeptide moiety, and the facile cleavage of the Ser-O-P linkage suggest that these prodrugs represent a promising new approach to enhancing the bioavailability of 2.
Collapse
Affiliation(s)
- Ulrika Eriksson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Eriksson U, Hilfinger JM, Kim JS, Mitchell S, Kijek P, Borysko KZ, Breitenbach JM, Drach JC, Kashemirov BA, McKenna CE. Synthesis and biological activation of an ethylene glycol-linked amino acid conjugate of cyclic cidofovir. Bioorg Med Chem Lett 2006; 17:583-6. [PMID: 17161946 PMCID: PMC1899532 DOI: 10.1016/j.bmcl.2006.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 11/03/2006] [Accepted: 11/06/2006] [Indexed: 11/26/2022]
Abstract
Cidofovir (HPMPC) is a broad-spectrum anti-viral agent whose potential, particularly in biodefense scenarios, is limited by its low oral bioavailability. Two prodrugs (3 and 4) created by conjugating ethylene glycol-linked amino acids (L-Val, L-Phe) with the cyclic form of cidofovir (cHPMPC) via a P-O ester bond were synthesized and their pH-dependent stability (3 and 4), potential for in vivo reconversion to drug (3), and oral bioavailability (3) were evaluated. The prodrugs were stable in buffer between pH 3 and 5, but underwent rapid hydrolysis in liver (t(1/2) = 3.7 min), intestinal (t(1/2) = 12.5 min), and Caco-2 cell homogenates (t(1/2) = 20.2 min). In vivo (rat), prodrug 3 was >90% reconverted to cHPMPC. The prodrug was 4x more active than ganciclovir (IC50 value, 0.68 microM vs 3.0 microM) in a HCMV plaque reduction assay. However, its oral bioavailability in a rat model was similar to the parent drug. The contrast between the promising activation properties and unenhanced transport of the prodrug is briefly discussed.
Collapse
Affiliation(s)
- Ulrika Eriksson
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|