1
|
Beurg M, Konrad DE, Fettiplace R. Hair cell apoptosis and deafness in Tmc1 mutations. Proc Natl Acad Sci U S A 2025; 122:e2425215122. [PMID: 40100636 PMCID: PMC11962449 DOI: 10.1073/pnas.2425215122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
Transmembrane channel-like protein 1 (TMC1), a pore-forming component of the mechano-electrical transducer (MET) channel in cochlear outer hair cells, is subject to numerous mutations causing deafness and hair cell death. We studied mice harboring semidominant mutations Tmc1 p.T416K, p.M412K, and p.D569N, which all display functional MET channels at postnatal day (P)6 but become deaf by P21. Early signs of concomitant hair cell apoptosis were assayed in neonatal Tmc1 mutants by labeling with Calcein-acetomethyl ester (AM), MitoTracker, and Annexin V, the latter labeling scramblase externalization of phosphatidyl serine. Reduced labeling with Calcein-AM was correlated with reduced MitoTracker, the targeting of mitochondria being confirmed with the uncoupling agent carbonylcyanidep-trifluoromethoxyphenylhydrazone, and use of MitoLight to monitor mitochondrial membrane potential. These markers demonstrated mitochondrial dysfunction in Tmc1 mutants, even at P6 when MET currents were still present. Acoustic brainstem responses established that Tmc1 p.D569N and Tmc1 p.M412K mice were deaf by P15 and Tmc1 p.T416K by P21. Two methods of blocking the stereociliary PMCA2 Ca2+ pump both elicited scramblase activity, suggesting that apoptosis is promoted by elevation of hair bundle [Ca2+]. Reduced PMCA2 density was found in the stereocilia of Tmc1 mutants and was correlated with a decrease in MET channel Ca2+ permeability. Cre-Lox excision of the mutant M412K exon at P1 fully preserved hearing across all frequencies by P19 and promoted recovery to wild type of PMCA2 density. These results demonstrate that hair cells in Tmc1 mutants have embarked on apoptosis at P6 and argue for connections between stereociliary PMCA2 density, hair cell apoptosis, and deafness.
Collapse
Affiliation(s)
- Maryline Beurg
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI53706
| | - Dakota Elle Konrad
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI53706
| | - Robert Fettiplace
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI53706
| |
Collapse
|
2
|
Zhao Z, Han Z, Shao Y, Naveena K, Yuan J, Zhou N, Wang C, Li X, Shi X, Jin D, Xu B, Dong F, Liu Z, Li W, Liu H, Qiao Y. A OHCs-Targeted Strategy for PEDF Delivery in Noise-Induced Hearing Loss. Adv Healthc Mater 2025; 14:e2403537. [PMID: 39865717 DOI: 10.1002/adhm.202403537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/09/2025] [Indexed: 01/28/2025]
Abstract
Noise-induced hearing loss (NIHL) results from prolonged exposure to intense noise, causing damage to sensory outer hair cells (OHCs) and spiral ganglion neurons (SGNs). The blood labyrinth barrier (BLB) hinders systemic drug delivery to the inner ear. This study applied a retro-auricular round window membrane (RWM) method to bypass the BLB, enabling the transport of macromolecular proteins into the inner ear. Pigment epithelium-derived factor (PEDF), which has anti-inflammatory and neuroprotective properties, is conjugated to a prestin-targeting peptide 2 (PrTP2) using N-succinimidyl-3-maleimidopropionate (SMP) to form PrTP2-SMP/PEDF. This compound specifically targeted Prestin and accumulated around OHCs for sustained release, effectively reducing OHC and SGN loss. Functional and structural tests, including auditory brainstem response (ABR), confocal microscopy, and scanning electron microscopy (SEM), revealed significant hearing restoration and cellular protection. Additionally, the results of enzyme-linked immunosorbent assay (ELISA), Annexin V and propidium iodide (PI) staining and immunoblotting show that noise exposure may induce pyroptosis in the cochlea by activating the NOD-like receptor protein 3 (NLRP3)-apoptosis-associated speck-like protein containing a CARD (ASC) - cysteinyl aspartate specific proteinase (Caspase-1) pathway and PrTP2-SMP/PEDF alleviates the inflammatory response by inhibiting pyroptosis. Toxicity analysis indicates no adverse effects, suggesting that PrTP2-SMP/PEDF has a promising therapeutic prospective for NIHL.
Collapse
MESH Headings
- Serpins/pharmacology
- Serpins/metabolism
- Animals
- Hearing Loss, Noise-Induced/drug therapy
- Hearing Loss, Noise-Induced/metabolism
- Nerve Growth Factors/metabolism
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Eye Proteins/metabolism
- Mice
- Spiral Ganglion/drug effects
- Spiral Ganglion/metabolism
- Spiral Ganglion/pathology
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Male
- Molecular Motor Proteins
Collapse
Affiliation(s)
- Zeqi Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Zhengzhong Han
- Department of Neurosurgery, Xuzhou Children's Hospital, Xuzhou, 221002, P. R. China
| | - Yudi Shao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Central Laboratory, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Konduru Naveena
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Jintao Yuan
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Central Laboratory, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Nan Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Central Laboratory, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Caiji Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Xuanyi Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Xi Shi
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Hainan, 570228, P. R. China
- Song Li's Academician Workstation of Hainan University, School of Pharmaceutical Sciences, Hainan, 572000, P. R. China
| | - Dan Jin
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Bing Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Fuxing Dong
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Zhiwei Liu
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Wei Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yuehua Qiao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, P. R. China
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221002, P. R. China
| |
Collapse
|
3
|
Yu X, Gao H, Zhang J, Fang Q, Kang W, Shang H, Lou X, Guan M. ARC protects cochlear hair cells from neomycin-induced ototoxicity via the Ras/JNK signaling pathway. Toxicol Lett 2025; 403:111-119. [PMID: 39667535 DOI: 10.1016/j.toxlet.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The present study was designed to investigate the role and mechanism of the Apoptosis repressor with caspase recruitment domain (ARC) in protecting the neomycin-induced hair cell damage. HEI-OC1 cells and basilar membrane culture were applied to determine the effect of ARC. Plasmid transfection was used to regulate the ARC or Ras expression. We have found the ARC overexpression in HEI-OC1 cells can increase the cell viability and decrease cell apoptosis after neomycin injury. The cleaved caspase 3 was reduced in ARC overexpression group after neomycin treatment. The p-CREB expression was increased in ARC overexpression group, while the p-c-Jun expression was decreased after neomycin incubation. In HEI-OC1 cells and basilar membranes, JNK and Ras inhibitions both can reduce ARC expression, and Ras overexpression can increase the ARC expression. This study indicates that ARC can protect the hair cells from neomycin-induced apoptosis through Ras/JNK signaling pathway. Our findings provide new insights in preventing cochlear HC death after drug-induced ototoxicity.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Department of Otolaryngology, Hangzhou First People's Hospital, School of Medicine, Affiliated to Westlake University, Hangzhou, Zhejiang, China; The Fourth school of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Hanbing Gao
- The Fourth school of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Zhang
- Department of Pediatrics, Hangzhou Children's Hospital, Hangzhou, Zhejiang, China
| | - Qiaojun Fang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wenjie Kang
- The Fourth school of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Haiqiong Shang
- Department of Otolaryngology, Hangzhou First People's Hospital, School of Medicine, Affiliated to Westlake University, Hangzhou, Zhejiang, China; The Fourth school of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyu Lou
- Department of Otolaryngology, Hangzhou First People's Hospital, School of Medicine, Affiliated to Westlake University, Hangzhou, Zhejiang, China; The Fourth school of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming Guan
- Department of Otolaryngology, Hangzhou First People's Hospital, School of Medicine, Affiliated to Westlake University, Hangzhou, Zhejiang, China; The Fourth school of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
Hajmohammadi Z, Bagher Z, Taghizadeh-Hesary F, Khodadadi M, Masror N, Asghari A, Valipour B, Seifalian A. Nanodelivery of antioxidant Agents: A promising strategy for preventing sensorineural hearing loss. Eur J Pharm Biopharm 2024; 202:114393. [PMID: 38992481 DOI: 10.1016/j.ejpb.2024.114393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Sensorineural hearing loss (SNHL), often stemming from reactive oxygen species (ROS) generation due to various factors such as ototoxic drugs, acoustic trauma, and aging, remains a significant health concern. Oxidative stress-induced damage to the sensory cells of the inner ear, particularly the non-regenerating hair cells, is a critical pathologic mechanism leading to SNHL. Despite the proven efficacy of antioxidants in mitigating oxidative stress, their clinical application for otoprotection is hindered by the limitations of conventional drug delivery methods. This review highlights the challenges associated with systemic and intratympanic administration of antioxidants, including the blood-labyrinthine barrier, restricted permeability of the round window membrane, and inadequate blood flow to the inner ear. To overcome these hurdles, the application of nanoparticles as a delivery platform for antioxidants emerges as a promising solution. Nanocarriers facilitate indirect drug delivery to the cochlea through the round and oval window membrane, optimising drug absorption while reducing dosage, Eustachian tube clearance, and associated side effects. Furthermore, the development of nanoparticles carrying antioxidants tailored to the intracochlear environment holds immense potential. This literature research aimed to critically examine the root causes of SNHL and ROS overproduction in the inner ear, offering insights into the application of nanoparticle-based drug delivery systems for safeguarding sensorineural hair cells. By focusing on the intricate interplay between oxidative stress and hearing loss, this research aims to contribute to the advancement of innovative therapeutic strategies for the prevention of SNHL.
Collapse
Affiliation(s)
- Zeinab Hajmohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.; Department of Tissue Engineering & Regenerative Medicin, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahboobe Khodadadi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Centre (MERC), Tehran, Iran
| | - Niki Masror
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Alimohamad Asghari
- Skull Base Research Centre, The Five Senses Health Institute, School of Medicine, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran.; Department of Anatomical Sciences, Faculty of Medicine,Tabriz University of Medical Sciences, Tabriz, Iran..
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre, LBIC, University of London, United Kingdom.
| |
Collapse
|
5
|
Li N, Zhang Q, Dai S, Rao W, Shi H, Ding L, Hong M. Angiotensin-(1-7) plays an important role in regulating spermatogenesis in Trachemys scripta elegans under salinity stress. J Exp Biol 2024; 227:jeb246742. [PMID: 38149682 DOI: 10.1242/jeb.246742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
Elevation in water salinity can threaten the spermatogenesis and fertility of freshwater animals. The role of the renin-angiotensin system (RAS) in regulating spermatogenesis has attracted considerable attention. Our previous study found that red-eared sliders (Trachemys scripta elegans), could survive in 10 PSU water for over 1 year. To understand the chronic impact of salinity on testicular spermatogenesis and underlying mechanisms, male T. s. elegans were subjected to treatment with water of 5 PSU and 10 PSU for a year, and spermatogenesis and regulation of the RAS signal pathway was assessed. Results showed induced inflammation in the testes of T. s. elegans in the 10 PSU group, as evidenced by a decrease in the number of testicular germ cells from 1586 to 943. Compared with the control group, the levels of proinflammatory genes, including TNF-α, IL-12A and IL-6 were elevated 3.1, 0.3, and 1.4 times, respectively, in animals exposed to 10 PSU water. Testicular antiapoptotic processes of T. s. elegans might involve the vasoactive peptide angiotensin-(1-7) in the RAS, as its level was significantly increased from 220.2 ng ml-1 in controls to 419.2 ng ml-1 in the 10 PSU group. As expected, specific inhibitor (A-779) for the Ang-(1-7) acceptor effectively prevented the salinity-induced upregulation of genes encoding anti-inflammatory and antiapoptotic factors (TGF-β1, Bcl-6) in the testis of the 10 PSU animals, whereas it promoted the upregulation of proinflammatory and proapoptotic factors (TNF-α, IL-12A, IL-6, Bax and caspase-3). Our data indicated that Ang-(1-7) attenuates the effect of salinity on inflammation and apoptosis of the testis in T. s. elegans. A new perspective to prevent salinity-induced testis dysfunction is provided.
Collapse
Affiliation(s)
- Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Qiongyu Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Shiyu Dai
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Wenzhuo Rao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
6
|
Gill NB, Dowker-Key PD, Hubbard K, Voy BH, Whelan J, Hedrick M, Bettaieb A. Ginsenoside Rc from Panax Ginseng Ameliorates Palmitate-Induced UB/OC-2 Cochlear Cell Injury. Int J Mol Sci 2023; 24:7345. [PMID: 37108509 PMCID: PMC10139021 DOI: 10.3390/ijms24087345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
By 2050, at least 700 million people will require hearing therapy while 2.5 billion are projected to suffer from hearing loss. Sensorineural hearing loss (SNHL) arises from the inability of the inner ear to convert fluid waves into neural electric signals because of injury to cochlear hair cells that has resulted in their death. In addition, systemic chronic inflammation implicated in other pathologies may exacerbate cell death leading to SNHL. Phytochemicals have emerged as a possible solution because of the growing evidence of their anti-inflammatory, antioxidant, and anti-apoptotic properties. Ginseng and its bioactive molecules, ginsenosides, exhibit effects that suppress pro-inflammatory signaling and protect against apoptosis. In the current study, we investigated the effects of ginsenoside Rc (G-Rc) on UB/OC-2 primary murine sensory hair cell survival in response to palmitate-induced injury. G-Rc promoted UB/OC-2 cell survival and cell cycle progression. Additionally, G-Rc enhanced the differentiation of UB/OC-2 cells into functional sensory hair cells and alleviated palmitate-induced inflammation, endoplasmic reticulum stress, and apoptosis. The current study offers novel insights into the effects of G-Rc as a potential adjuvant for SNHL and warrants further studies elucidating the molecular mechanisms.
Collapse
Affiliation(s)
- Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-1920, USA
| | - Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-1920, USA
| | - Katelin Hubbard
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-1920, USA
| | - Brynn H. Voy
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
| | - Jay Whelan
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-1920, USA
| | - Mark Hedrick
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN 37996-0240, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-1920, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| |
Collapse
|
7
|
Lewkowicz M, Jones M, Kovacevic B, Ionescu CM, Wagle SR, Foster T, Mikov M, Mooranian A, Al-Salami H. Potentials and limitations of pharmaceutical and pharmacological applications of bile acids in hearing loss treatment. Ther Deliv 2023; 13:477-488. [PMID: 36803017 DOI: 10.4155/tde-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Hearing loss is a worldwide epidemic, with approximately 1.5 billion people currently struggling with hearing-related conditions. Currently, the most wildly used and effective treatments for hearing loss are primarily focus on the use of hearing aids and cochlear implants. However, these have many limitations, highlighting the importance of developing a pharmacological solution that may be used to overcome barriers associated with such devices. Due to the challenges of delivering therapeutic agents to the inner ear, bile acids are being explored as potential drug excipients and permeation enhancers. This review, therefore, aims to explore the pathophysiology of hearing loss, the challenges in treatment and the manners in which bile acids could potentially aid in overcoming these challenges.
Collapse
Affiliation(s)
- Michael Lewkowicz
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Melissa Jones
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| |
Collapse
|
8
|
Zhang L, Chen J, Chen Y, Zou D, Pu Y, Wei M, Huang Y, Li Y, Huang Q, Chen J. Alantolactone Inhibits Melanoma Cell Culture Viability and Migration and Promotes Apoptosis by Inhibiting Wnt/β-Catenin Signaling. Anticancer Agents Med Chem 2023; 23:94-104. [PMID: 35598249 DOI: 10.2174/1871520622666220519100054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Melanoma is a highly invasive and metastatic malignant tumor originating from melanocytes and is associated with a poor prognosis. Surgical resection and chemotherapy are currently the main therapeutic options for malignant melanoma; however, their efficacy is poor, highlighting the need for the development of new, safe, and effective drugs for the treatment of this cancer. OBJECTIVE To investigate the effects of alantolactone (ALT) on the proliferative, migratory, invasive, and apoptotic ability of malignant melanoma cells and explore its potential anticancer mechanism. METHODS Melanoma cells (A375 and B16) were treated with different concentrations (4, 6, 8, and 10 μmol/L) of ALT, with DMSO and no treatment serving as controls. The effects of the different concentrations of the drug on cell proliferation were assessed by crystal violet staining and CCK-8 assay. The effects on cell migration and invasion were detected by wound healing and Transwell assays, respectively. Flow cytometry was used to evaluate the effects of the drug on apoptosis and the cell cycle. ALT target genes in melanoma were screened using network pharmacology. Western blotting was used to measure the expression levels of the proliferation-related protein PCNA; the apoptosisrelated proteins Bax, Bcl-2, and caspase-3; the invasion and metastasis-related proteins MMP-2, MMP-7, MMP-9, vimentin, E-cadherin, and N-cadherin; and the canonical Wnt signaling pathway-related proteins β-catenin, c-Myc, and p-GSK3β. In addition, an l model of melanoma was established by the subcutaneous injection of A375 melanoma cells into nude mice, following which the effects of ALT treatment on malignant melanoma were determined in vivo. RESULTS Compared with the controls, the proliferative, migratory, and invasive capacity of ALT-treated melanoma cells was significantly inhibited, whereas apoptosis was enhanced (P<0.01), showing effects that were exerted in a dose-dependent manner. The expression levels of the pro-apoptotic proteins Bax and caspase-3, as well as those of the interstitial marker E-cadherin, were upregulated in melanoma cells irrespective of the ALT concentration (P<0.05). In contrast, the expression levels of the anti-apoptotic protein Bcl-2, the proliferation-related protein PCNA, and the invasion and metastasis-related proteins MMP-2, MMP-7, MMP-9, N-cadherin, and vimentin were downregulated (P<0.05). The network pharmacology results indicated that GSK3β may be a key ALT target in melanoma. Meanwhile, western blotting assays showed that ALT treatment markedly suppressed the expression of β-catenin as well as that of its downstream effector c-Myc, and could also inhibit GSK3β phosphorylation. CONCLUSION ALT can effectively inhibit the culture viability, migration, and invasion of A375 and B16 melanoma cells while also promoting their apoptosis. ALT may exert its anti-melanoma effects by inhibiting the Wnt/β-catenin signaling pathway. Combined, our data indicate that ALT has the potential as an effective and safe therapeutic drug for the treatment of melanoma.
Collapse
Affiliation(s)
- Lingzhao Zhang
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jiayi Chen
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yangmei Chen
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Daopei Zou
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, 710032, China
| | - Yihuan Pu
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Mengqi Wei
- Key Laboratory of Clinical Diagnosis of Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yanran Huang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuxin Li
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Qing Huang
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jin Chen
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
9
|
Wang C, Zhang Q, Liu Y, Xu Q. Characterization of EPO H131S as a key mutation site in the hypoxia-adaptive evolution of Gymnocypris dobula. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:723-733. [PMID: 35553293 DOI: 10.1007/s10695-022-01080-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Erythropoietin (EPO) is a glycoprotein hormone involved in proerythropoiesis, antioxidation, and antiapoptosis. It also contributes to cellular immune function in high-altitude species, such as the schizothoracine fish Gymnocypris dobula. Six mutation sites previously identified in EPO from G. dobula (GD-EPO) were injected into zebrafish embryos, and their effects were compared with EPO from the low-altitude schizothoracine Schizothorax prenanti. The key mutation site in GD-EPO was identified as H131S. Under hypoxic conditions, the levels of superoxide dismutase and malondialdehyde were decreased, whereas that of nitric oxide was increased in zebrafish injected with GD-EPO compared with those injected with S. prenanti-EPO (SP-EPO). The results suggest that EPO in high-altitude schizothoracine species is both antioxidative and antiapoptotic, driven by the H131S mutation site. Thus, this enhanced the ability of this species to adapt to the high-altitude hypoxic environment. These results provide a basis for investigating further the hypoxia adaptation mechanisms of teleosts.
Collapse
Affiliation(s)
- Congcong Wang
- College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, 201306, People's Republic of China.
- National Distant-Water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Key Laboratory of Ocean Fisheries Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, People's Republic of China.
- Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China.
| | - Qin Zhang
- College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Yang Liu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, 201306, People's Republic of China
- National Distant-Water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Key Laboratory of Ocean Fisheries Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, People's Republic of China
| | - Qianghua Xu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, 201306, People's Republic of China.
- National Distant-Water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Key Laboratory of Ocean Fisheries Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai, 201306, People's Republic of China.
- Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
10
|
Gong L, Chen B, Chen J, Li Y. Protective Effects of Vitamin C against Neomycin-Induced Apoptosis in HEI-OC1 Auditory Cell. Neural Plast 2022; 2022:1298692. [PMID: 35601667 PMCID: PMC9117069 DOI: 10.1155/2022/1298692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Ototoxic hearing loss results from hair cell death via reactive oxygen species (ROS) overproduction and consequent apoptosis. We investigated the effects of vitamin C (VC) on neomycin-induced HEI-OC1 cell damage, as well as the mechanism of inhibition. HEI-OC1 cells were treated with neomycin or with vitamin C (VC). The results indicated that VC had a protective effect on neomycin-induced HEI-OC1 cell death. Mechanistically, VC decreased neomycin-induced ROS generation, suppressed cell death, and increased cell viability. VC inhibited neomycin-induced apoptosis, ameliorated neomycin reduced antiapoptotic Bcl-2 expression, and suppressed neomycin increased expression of proapoptotic Bax, caspase-3 cleavage and caspase-8. TUNEL labeling demonstrated that VC blocked neomycin-induced apoptosis. Further study revealed that the effect of VC on neomycin-induced hair cell death was through interference with JNK activation and p38 phosphorylation. These results indicate that VC via suppressed ROS generation, which inhibited cell death by counteracting apoptotic signaling induced by neomycin in cells. Hence, VC is a potential candidate for protection agent against neomycin-induced HEI-OC1 cell ototoxicity.
Collapse
Affiliation(s)
- Liang Gong
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Biao Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Jingyuan Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Yongxin Li
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| |
Collapse
|
11
|
Lin JN, Wang JS, Lin CC, Lin HY, Yu SH, Wen YH, Tseng GF, Hsu CJ, Wu HP. Ameliorative effect of taxifolin on gentamicin-induced ototoxicity via down-regulation of apoptotic pathways in mouse cochlear UB/OC-2 cells. J Chin Med Assoc 2022; 85:617-626. [PMID: 35286283 DOI: 10.1097/jcma.0000000000000708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Taxifolin is a flavanonol with efficacious cytoprotective properties, such as anti-inflammatory, antioxidant, anticancer, hepatoprotective, and nephroprotective effects. However, the potential protective effects of taxifolin against gentamicin-induced ototoxicity have not been confirmed. In this study, the possible mechanisms underlying the effects of taxifolin on gentamicin-induced death of UB/OC-2 cochlear cells were investigated. METHODS Mouse cochlear UB/OC-2 cells with or without taxifolin pretreatment were exposed to gentamicin, and the effects on cytotoxicity, reactive oxygen species (ROS) production, mitochondrial permeability transition, and apoptotic marker expression were examined using biochemical techniques, flow cytometry, western blotting, and fluorescent staining. RESULTS Little or no apparent effect of taxifolin on cell viability was observed at concentrations less than 40 μM. Further investigations showed that gentamicin significantly inhibited cell viability in a concentration-dependent manner. Pretreatment with taxifolin attenuated gentamicin-induced lactate dehydrogenase release, as well as cellular cytotoxicity. In addition, taxifolin significantly prevented gentamicin-induced cell damage by decreasing ROS production, stabilizing mitochondrial membrane potential, and downregulating the mitochondrial pathway of apoptosis. CONCLUSION In summary, pretreatment with taxifolin is effective for mitigating gentamicin-induced apoptotic cell death mediated by the mitochondrial pathway. Our data suggest that taxifolin provides a new approach to combat gentamicin-induced ototoxicity.
Collapse
Affiliation(s)
- Jia-Ni Lin
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
| | - Jen-Shu Wang
- Department of Chinese Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chung-Ching Lin
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
| | - Hui-Yi Lin
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan, ROC
| | - Szu-Hui Yu
- Department of Music, Tainan University of Technology, Tainan, Taiwan, ROC
| | - Yu-Hsuan Wen
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
- Department of Otolaryngology, Head and Neck Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Guo-Fang Tseng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chuan-Jen Hsu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Hung-Pin Wu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| |
Collapse
|
12
|
Matsumoto H, Miyagi H, Nakamura N, Shiga Y, Ohta T, Fujiwara S, Tsuzuki M. Carbonic anhydrase inhibitor induces otic hair cell apoptosis via an intrinsic pathway and ER stress in zebrafish larvae. Toxicol Rep 2021; 8:1937-1947. [PMID: 34926172 PMCID: PMC8648832 DOI: 10.1016/j.toxrep.2021.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022] Open
Abstract
CA inhibitor EZA causes lateral line organ death in zebrafish larvae. Neuromast hair cells are especially sensitive to EZA during embryo development. EZA induces apoptosis in otic hair cells via an intrinsic pathway and ER stress.
Carbonic anhydrase (CA) catalyzes reversible hydration of CO2 to HCO3− to mediate pH and ion homeostasis. Some chemical pollutants have been reported to have inhibitory effects on fish CA. In this study, we investigated effects of a CA inhibitor ethoxyzolamide (EZA) on neuromasts development during zebrafish embryogenesis, since embryogenesis in aquatic organisms can be particularly sensitive to water pollution. EZA caused alteration of pH and calcium concentration and production of reactive oxygen species (ROS) in larvae, and induced apoptosis in hair cells especially in the otic neuromast, in which CA2 was distributed on the body surface. mRNA levels of apoptotic genes and caspase activities were increased by EZA, whereas anti-oxidants and apoptotic inhibitors, Bax, NF-κB, and p53 inhibitors significantly relieved the induction of hair cell death. Also, mRNA levels of Bip and CHOP, which are induced in response to ER stress, were upregulated by EZA, suggesting that EZA induces otic hair cell apoptosis via the intrinsic mitochondrial pathway and ER stress. Our results demonstrated an essential role of CA in neuromast development via maintenance of ion transport and pH, and that the CA, which is directly exposed to the ambient water, shows marked sensitivity to EZA.
Collapse
Affiliation(s)
- Hiroko Matsumoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hisako Miyagi
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Nobuhiro Nakamura
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Yasuhiro Shiga
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Toshihiro Ohta
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shoko Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
- Corresponding author at: School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Mikio Tsuzuki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
13
|
Fursultiamine Prevents Drug-Induced Ototoxicity by Reducing Accumulation of Reactive Oxygen Species in Mouse Cochlea. Antioxidants (Basel) 2021; 10:antiox10101526. [PMID: 34679662 PMCID: PMC8533091 DOI: 10.3390/antiox10101526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/04/2021] [Accepted: 09/23/2021] [Indexed: 01/19/2023] Open
Abstract
Drug-induced hearing loss is a major type of acquired sensorineural hearing loss. Cisplatin and aminoglycoside antibiotics have been known to cause ototoxicity, and excessive accumulation of intracellular reactive oxygen species (ROS) are suggested as the common major pathology of cisplatin- and aminoglycoside antibiotics-induced ototoxicity. Fursultiamine, also called thiamine tetrahydrofurfuryl disulfide, is a thiamine disulfide derivative that may have antioxidant effects. To evaluate whether fursultiamine can prevent cisplatin- and kanamycin-induced ototoxicity, we investigated their preventive potential using mouse cochlear explant culture system. Immunofluorescence staining of mouse cochlear hair cells showed that fursultiamine pretreatment reduced cisplatin- and kanamycin-induced damage to both inner and outer hair cells. Fursultiamine attenuated mitochondrial ROS accumulation as evidenced by MitoSOX Red staining and restored mitochondrial membrane potential in a JC-1 assay. In addition, fursultiamine pretreatment reduced active caspase-3 and TUNEL signals after cisplatin or kanamycin treatment, indicating that fursultiamine decreased apoptotic hair cell death. This study is the first to show a protective effect of fursultiamine against cisplatin- and aminoglycoside antibiotics-induced ototoxicity. Our results suggest that fursultiamine could act as an antioxidant and anti-apoptotic agent against mitochondrial oxidative stress.in cochlear hair cells.
Collapse
|
14
|
Zhou X, Gao Y, Hu Y, Ma X. Melatonin protects cochlear hair cells from nicotine-induced injury through inhibiting apoptosis, inflammation, oxidative stress and endoplasmic reticulum stress. Basic Clin Pharmacol Toxicol 2021; 129:308-318. [PMID: 34254721 DOI: 10.1111/bcpt.13638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022]
Abstract
Hearing loss positively links with cigarette smoking. However, the involved mechanism and treatment strategies are largely unrevealed. This study aimed to investigate the damaging effect of nicotine on cochlear hair cells, reveal the underlying mechanism and evaluate the therapeutic effect of melatonin on nicotine-induced injury. The results showed that nicotine induced cytotoxicity of House Ear Institute-Organ of Corti 1 (HEI-OC1) cochlear hair cells in a dose-dependent manner (0, 2.5, 5, 10, 20, 40 and 80 μM). Functional investigations showed that nicotine (10 μM) stimulation dramatically promoted apoptosis, inflammatory response, oxidative stress and endoplasmic reticulum stress in HEI-OC1 cells. Moreover, melatonin treatment dose-dependently alleviated the nicotine-induced cytotoxicity in HEI-OC1 cells (0, 10 25, 50 and 100 μM). Further investigation showed that melatonin (100 μM) effectively attenuated the nicotine-induced apoptosis, inflammation, oxidative stress and endoplasmic reticulum stress in HEI-OC1 cells. Collectively, we demonstrated that nicotine induced apoptosis, inflammation, oxidative stress and endoplasmic reticulum stress of cochlear hair cells in an in vitro cell model. Melatonin showed protective effect on these aspects, suggesting that melatonin may be a potential agent for treating smoking-induced hearing loss.
Collapse
Affiliation(s)
- Xinjia Zhou
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuan Gao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Hu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiulan Ma
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
A Review on Recent Advancement on Age-Related Hearing Loss: The Applications of Nanotechnology, Drug Pharmacology, and Biotechnology. Pharmaceutics 2021; 13:pharmaceutics13071041. [PMID: 34371732 PMCID: PMC8309044 DOI: 10.3390/pharmaceutics13071041] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022] Open
Abstract
Aging is considered a contributing factor to many diseases such as cardiovascular disease, Alzheimer’s disease, and hearing loss. Age-related hearing loss, also termed presbycusis, is one of the most common sensory impairments worldwide, affecting one in five people over 50 years of age, and this prevalence is growing annually. Associations have emerged between presbycusis and detrimental health outcomes, including social isolation and mental health. It remains largely untreatable apart from hearing aids, and with no globally established prevention strategies in the clinical setting. Hence, this review aims to explore the pathophysiology of presbycusis and potential therapies, based on a recent advancement in bile acid-based bio-nanotechnologies. A comprehensive online search was carried out using the following keywords: presbycusis, drugs, hearing loss, bile acids, nanotechnology, and more than 150 publications were considered directly relevant. Evidence of the multifaceted oxidative stress and chronic inflammation involvement in cellular damage and apoptosis that is associated with a loss of hair cells, damaged and inflamed stria vascularis, and neuronal signalling loss and apoptosis continues to emerge. New robust and effective therapies require drug delivery deeper into the various layers of the cochlea. Bile acid-based nanotechnology has gained wide interest in its permeation-enhancing ability and potential for numerous applications in treating presbycusis.
Collapse
|
16
|
Beaulac HJ, Gilels F, Zhang J, Jeoung S, White PM. Primed to die: an investigation of the genetic mechanisms underlying noise-induced hearing loss and cochlear damage in homozygous Foxo3-knockout mice. Cell Death Dis 2021; 12:682. [PMID: 34234110 PMCID: PMC8263610 DOI: 10.1038/s41419-021-03972-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
The prevalence of noise-induced hearing loss (NIHL) continues to increase, with limited therapies available for individuals with cochlear damage. We have previously established that the transcription factor FOXO3 is necessary to preserve outer hair cells (OHCs) and hearing thresholds up to two weeks following mild noise exposure in mice. The mechanisms by which FOXO3 preserves cochlear cells and function are unknown. In this study, we analyzed the immediate effects of mild noise exposure on wild-type, Foxo3 heterozygous (Foxo3+/-), and Foxo3 knock-out (Foxo3-/-) mice to better understand FOXO3's role(s) in the mammalian cochlea. We used confocal and multiphoton microscopy to examine well-characterized components of noise-induced damage including calcium regulators, oxidative stress, necrosis, and caspase-dependent and caspase-independent apoptosis. Lower immunoreactivity of the calcium buffer Oncomodulin in Foxo3-/- OHCs correlated with cell loss beginning 4 h post-noise exposure. Using immunohistochemistry, we identified parthanatos as the cell death pathway for OHCs. Oxidative stress response pathways were not significantly altered in FOXO3's absence. We used RNA sequencing to identify and RT-qPCR to confirm differentially expressed genes. We further investigated a gene downregulated in the unexposed Foxo3-/- mice that may contribute to OHC noise susceptibility. Glycerophosphodiester phosphodiesterase domain containing 3 (GDPD3), a possible endogenous source of lysophosphatidic acid (LPA), has not previously been described in the cochlea. As LPA reduces OHC loss after severe noise exposure, we treated noise-exposed Foxo3-/- mice with exogenous LPA. LPA treatment delayed immediate damage to OHCs but was insufficient to ultimately prevent their death or prevent hearing loss. These results suggest that FOXO3 acts prior to acoustic insult to maintain cochlear resilience, possibly through sustaining endogenous LPA levels.
Collapse
MESH Headings
- Animals
- Cell Death
- Disease Models, Animal
- Female
- Forkhead Box Protein O3/deficiency
- Forkhead Box Protein O3/genetics
- Gene Expression Regulation
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Hearing
- Hearing Loss, Noise-Induced/drug therapy
- Hearing Loss, Noise-Induced/genetics
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Homozygote
- Lysophospholipids/metabolism
- Lysophospholipids/pharmacology
- Male
- Mice, Knockout
- Noise
- Phosphoric Diester Hydrolases/genetics
- Phosphoric Diester Hydrolases/metabolism
- Time Factors
- Mice
Collapse
Affiliation(s)
- Holly J Beaulac
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Felicia Gilels
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pathology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jingyuan Zhang
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Otolaryngology, Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston Children's Hospital Center for Life Science, Boston, MA, USA
| | - Sarah Jeoung
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Patricia M White
- Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
17
|
SOD2 Alleviates Hearing Loss Induced by Noise and Kanamycin in Mitochondrial DNA4834-deficient Rats by Regulating PI3K/MAPK Signaling. Curr Med Sci 2021; 41:587-596. [PMID: 34169429 DOI: 10.1007/s11596-021-2376-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
Superoxide dismutase 2 (SOD2)-mediated gene therapy has significant protective effects against kanamycin-induced hearing loss and hair cell loss in the inner ear, but the underlying mechanisms are still unclear. Herein, an in vivo aging model of mitochondrial DNA (mtDNA)4834 deletion mutation was established using D-galactose, and the effects of noise or kanamycin on inner ear injury was investigated. Rats subjected to mtDNA4834 mutation via D-galactose administration showed hearing loss characterized by the disruption of inner ear structure (abnormal cell morphology, hair cell lysis, and the absence of the organ of Corti), increased SOD2 promoter methylation, and an increase in the degree of apoptosis. Exposure to noise or kanamycin further contributed to the effects of D-galactose. SOD2 overexpression induced by viral injection accordingly counteracted the effects of noise and kanamycin and ameliorated the symptoms of hearing loss, suggesting the critical involvement of SOD2 in preventing deafness and hearing-related conditions. The PI3K and MAPK signaling pathways were also regulated by noise/kanamycin exposure and/or SOD2 overexpression, indicating that they may be involved in the therapeutic effect of SOD2 against age-related hearing loss.
Collapse
|
18
|
Gong J, Qian P, Hu Y, Guo C, Wei G, Wang C, Cai C, Wang H, Liu D. Claudin h Is Essential for Hair Cell Morphogenesis and Auditory Function in Zebrafish. Front Cell Dev Biol 2021; 9:663995. [PMID: 34046408 PMCID: PMC8147561 DOI: 10.3389/fcell.2021.663995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/18/2021] [Indexed: 01/15/2023] Open
Abstract
Hereditary hearing loss caused by defective hair cells is one of the most common congenital diseases, whose nosogenesis is still unclear because many of the causative genes remain unidentified. Claudins are one kind of transmembrane proteins that constitute the most important components of the tight junctions and paracellular barrier and play important roles in neurodevelopment. In this study, we investigated the function of claudin h in morphogenesis and auditory function of the hair cell in zebrafish. The results of in situ hybridization showed that claudin h was specifically localized in the otic vesicle and neuromasts in zebrafish embryos. The deficiency of claudin h caused significant reduction of otic vesicle size and loss of utricle otolith. Moreover, the startle response and vestibulo-ocular reflex experiments revealed that loss of claudin h led to serious hearing loss and vestibular dysfunction. Importantly, the confocal microscopy observation found that compared to the control zebrafish, the claudin h morphants and mutants displayed significantly reduced the number of cristae hair cells and shortened kinocilia. Besides, the deficiency of claudin h also caused the loss of hair cells in neuromasts which could be rescued by injecting claudin h mRNA into the mutant embryos at one cell stage. Furthermore, the immunohistochemistry experiments demonstrated remarkable apoptosis of hair cells in the neuromasts, which might contribute to the loss of hair cells number. Overall, these data indicated that claudin h is indispensable for the development of hair cells, vestibular function, and hearing ability of zebrafish.
Collapse
Affiliation(s)
- Jie Gong
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Peipei Qian
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Yuebo Hu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Chao Guo
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Guanyun Wei
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Cheng Wang
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Chengyun Cai
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Haibo Wang
- Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| |
Collapse
|
19
|
An Implanted Vestibular Prosthesis Improves Spatial Orientation in Animals with Severe Vestibular Damage. J Neurosci 2021; 41:3879-3888. [PMID: 33731447 DOI: 10.1523/jneurosci.2204-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/10/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022] Open
Abstract
Gravity is a pervasive environmental stimulus, and accurate graviception is required for optimal spatial orientation and postural stability. The primary graviceptors are the vestibular organs, which include angular velocity (semicircular canals) and linear acceleration (otolith organs) sensors. Graviception is degraded in patients with vestibular damage, resulting in spatial misperception and imbalance. Since minimal therapy is available for these patients, substantial effort has focused on developing a vestibular prosthesis or vestibular implant (VI) that reproduces information normally provided by the canals (since reproducing otolith function is very challenging technically). Prior studies demonstrated that angular eye velocity responses could be driven by canal VI-mediated angular head velocity information, but it remains unknown whether a canal VI could improve spatial perception and posture since these behaviors require accurate estimates of angular head position in space relative to gravity. Here, we tested the hypothesis that a canal VI that transduces angular head velocity and provides this information to the brain via motion-modulated electrical stimulation of canal afferent nerves could improve the perception of angular head position relative to gravity in monkeys with severe vestibular damage. Using a subjective visual vertical task, we found that normal female monkeys accurately sensed the orientation of the head relative to gravity during dynamic tilts, that this ability was degraded following bilateral vestibular damage, and improved when the canal VI was used. These results demonstrate that a canal VI can improve graviception in vestibulopathic animals, suggesting that it could reduce the disabling perceptual and postural deficits experienced by patients with severe vestibular damage.SIGNIFICANCE STATEMENT Patients with vestibular damage experience impaired vision, spatial perception, and balance, symptoms that could potentially respond to a vestibular implant (VI). Anatomic features facilitate semicircular canal (angular velocity) prosthetics but inhibit approaches with the otolith (linear acceleration) organs, and canal VIs that sense angular head velocity can generate compensatory eye velocity responses in vestibulopathic subjects. Can the brain use canal VI head velocity information to improve estimates of head orientation (e.g., head position relative to gravity), which is a prerequisite for accurate spatial perception and posture? Here we show that a canal VI can improve the perception of head orientation in vestibulopathic monkeys, results that are highly significant because they suggest that VIs mimicking canal function can improve spatial orientation and balance in vestibulopathic patients.
Collapse
|
20
|
Stojkovic M, Han D, Jeong M, Stojkovic P, Stankovic KM. Human induced pluripotent stem cells and CRISPR/Cas-mediated targeted genome editing: Platforms to tackle sensorineural hearing loss. STEM CELLS (DAYTON, OHIO) 2021; 39:673-696. [PMID: 33586253 DOI: 10.1002/stem.3353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/13/2020] [Indexed: 11/09/2022]
Abstract
Hearing loss (HL) is a major global health problem of pandemic proportions. The most common type of HL is sensorineural hearing loss (SNHL) which typically occurs when cells within the inner ear are damaged. Human induced pluripotent stem cells (hiPSCs) can be generated from any individual including those who suffer from different types of HL. The development of new differentiation protocols to obtain cells of the inner ear including hair cells (HCs) and spiral ganglion neurons (SGNs) promises to expedite cell-based therapy and screening of potential pharmacologic and genetic therapies using human models. Considering age-related, acoustic, ototoxic, and genetic insults which are the most frequent causes of irreversible damage of HCs and SGNs, new methods of genome editing (GE), especially the CRISPR/Cas9 technology, could bring additional opportunities to understand the pathogenesis of human SNHL and identify novel therapies. However, important challenges associated with both hiPSCs and GE need to be overcome before scientific discoveries are correctly translated to effective and patient-safe applications. The purpose of the present review is (a) to summarize the findings from published reports utilizing hiPSCs for studies of SNHL, hence complementing recent reviews focused on animal studies, and (b) to outline promising future directions for deciphering SNHL using disruptive molecular and genomic technologies.
Collapse
Affiliation(s)
- Miodrag Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Dongjun Han
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Minjin Jeong
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Petra Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
21
|
Xiao L, Sun Y, Liu C, Zheng Z, Shen Y, Xia L, Yang G, Feng Y. Molecular Behavior of HMGB1 in the Cochlea Following Noise Exposure and in vitro. Front Cell Dev Biol 2021; 9:642946. [PMID: 33732708 PMCID: PMC7959764 DOI: 10.3389/fcell.2021.642946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is characterized by cellular damage to the inner ear, which is exacerbated by inflammation. High-mobility group box 1 (HMGB1), a representative damage-associated molecular pattern (DAMP), acts as a mediator of inflammation or an intercellular messenger according to its cellular localization. Blocking or regulating HMGB1 offers an attractive approach in ameliorating NIHL. However, the precise therapeutic intervention must be based on a deeper understanding of its dynamic molecular distribution and function in cochlear pathogenesis after acoustic trauma. Here, we have presented the spatiotemporal dynamics of the expression of HMGB1, exhibiting distribution variability in specific cochlear regions and cells following noise exposure. After gene manipulation, we further investigated the characteristics of cellular HMGB1 in HEI-OC1 cells. The higher cell viability observed in the HMGB1 knocked-down group after stimulation with H2O2 indicated the possible negative effect of HMGB1 on cellular lifespan. In conclusion, this study demonstrated that HMGB1 is involved in NIHL pathogenesis and its molecular biology has essential and subtle influences, preserving a translational potential for pharmacological intervention.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yan Sun
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Chengqi Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhong Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ying Shen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Liang Xia
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Guang Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yanmei Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
22
|
Man R, Yin H, Zhao J, Yang Q, Yang H, Yu X, Zhang W, Li J. A Newly-Synthesized Chalcone Derivative of Ligustrazine Induces Caspase-Dependent and Apoptosis-Inducing Factor-Dependent Apoptosis in Cochlear Hair Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective: A newly synthesized derivative of ligustrazine chalcone, named as Z11, has shown a variety of promising biological activities. Here we aim to explore the effects of Z11 on the cochlear hair cells (HCs). Methods: Immunostaining and transmission electron microscopy
(TEM) were used to examine the survival of HCs and their morphological changes. Furthermore, apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and the mRNA expression of apoptosis related genes including Caspase-9, Caspase-3, Bcl-2, Bax and
Apaf1 were measured by RT-PCR. In addition, the protein expression of cleaved-Caspas-3 and cleaved-Caspase-9 were analyzed by Western blot respectively, and the protein expressionof AIF and cleaved-Caspase-3 were assessed by immunofluorescence as well. Results: Immunostaining showed
that Z11 was ototoxic to mouse cochlear hair cells and significantly triggered cell death in a concentration-, time- and location-dependent manner. TUNEL assays evidenced that Z11 exerts its cytotoxicity through induction of apoptosis of cochlear hair cells in vitro. Immunofluorescence
and western blot assay showed that Z11 activated the translation of apoptosis-inducing factor (AIF) and Caspase-9/Caspase-3 dependent apoptotic pathway in cochlear hair cells (HCs). Conclusion:These findings suggest that Z11 exhibits its ototoxicity through inducing apoptosis of HCs
via both Caspase-dependent and AIF translocation pathways in mouse cochlear cultures.
Collapse
Affiliation(s)
- Rongjun Man
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR. China
| | - Haiyan Yin
- Department of Histology and Embryology, College of Basic Medicine, Jining Medical University, Jining, Shandong, 272067, PR. China
| | - Jia Zhao
- Department of Otolaryngology-Head and Neck Surgery, Zibo Central Hospital, Zibo, Shandong, 255036, P.R. China
| | - Qianqian Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, P.R. China
| | - Huiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR. China
| | - Xiaoyu Yu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, P. R. China
| | - Weiwei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR. China
| | - Jianfeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR. China
| |
Collapse
|
23
|
Schmit M, Bielinsky AK. Congenital Diseases of DNA Replication: Clinical Phenotypes and Molecular Mechanisms. Int J Mol Sci 2021; 22:E911. [PMID: 33477564 PMCID: PMC7831139 DOI: 10.3390/ijms22020911] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Deoxyribonucleic acid (DNA) replication can be divided into three major steps: initiation, elongation and termination. Each time a human cell divides, these steps must be reiteratively carried out. Disruption of DNA replication can lead to genomic instability, with the accumulation of point mutations or larger chromosomal anomalies such as rearrangements. While cancer is the most common class of disease associated with genomic instability, several congenital diseases with dysfunctional DNA replication give rise to similar DNA alterations. In this review, we discuss all congenital diseases that arise from pathogenic variants in essential replication genes across the spectrum of aberrant replisome assembly, origin activation and DNA synthesis. For each of these conditions, we describe their clinical phenotypes as well as molecular studies aimed at determining the functional mechanisms of disease, including the assessment of genomic stability. By comparing and contrasting these diseases, we hope to illuminate how the disruption of DNA replication at distinct steps affects human health in a surprisingly cell-type-specific manner.
Collapse
Affiliation(s)
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
24
|
Alvarado JC, Fuentes-Santamaría V, Melgar-Rojas P, Gabaldón-Ull MC, Cabanes-Sanchis JJ, Juiz JM. Oral Antioxidant Vitamins and Magnesium Limit Noise-Induced Hearing Loss by Promoting Sensory Hair Cell Survival: Role of Antioxidant Enzymes and Apoptosis Genes. Antioxidants (Basel) 2020; 9:E1177. [PMID: 33255728 PMCID: PMC7761130 DOI: 10.3390/antiox9121177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
Noise induces oxidative stress in the cochlea followed by sensory cell death and hearing loss. The proof of principle that injections of antioxidant vitamins and Mg2+ prevent noise-induced hearing loss (NIHL) has been established. However, effectiveness of oral administration remains controversial and otoprotection mechanisms are unclear. Using auditory evoked potentials, quantitative PCR, and immunocytochemistry, we explored effects of oral administration of vitamins A, C, E, and Mg2+ (ACEMg) on auditory function and sensory cell survival following NIHL in rats. Oral ACEMg reduced auditory thresholds shifts after NIHL. Improved auditory function correlated with increased survival of sensory outer hair cells. In parallel, oral ACEMg modulated the expression timeline of antioxidant enzymes in the cochlea after NIHL. There was increased expression of glutathione peroxidase-1 and catalase at 1 and 10 days, respectively. Also, pro-apoptotic caspase-3 and Bax levels were diminished in ACEMg-treated rats, at 10 and 30 days, respectively, following noise overstimulation, whereas, at day 10 after noise exposure, the levels of anti-apoptotic Bcl-2, were significantly increased. Therefore, oral ACEMg improves auditory function by limiting sensory hair cell death in the auditory receptor following NIHL. Regulation of the expression of antioxidant enzymes and apoptosis-related proteins in cochlear structures is involved in such an otoprotective mechanism.
Collapse
Affiliation(s)
- Juan C. Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (V.F.-S.); (P.M.-R.); (M.C.G.-U.); (J.J.C.-S.)
| | - Verónica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (V.F.-S.); (P.M.-R.); (M.C.G.-U.); (J.J.C.-S.)
| | - Pedro Melgar-Rojas
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (V.F.-S.); (P.M.-R.); (M.C.G.-U.); (J.J.C.-S.)
| | - María C. Gabaldón-Ull
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (V.F.-S.); (P.M.-R.); (M.C.G.-U.); (J.J.C.-S.)
| | - José J. Cabanes-Sanchis
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (V.F.-S.); (P.M.-R.); (M.C.G.-U.); (J.J.C.-S.)
| | - José M. Juiz
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (V.F.-S.); (P.M.-R.); (M.C.G.-U.); (J.J.C.-S.)
- Department of Otolaryngology, Hannover Medical School, NIFE-VIANNA, Cluster of Excellence Hearing4all-German Research Foundation, 30625 Hannover, Germany
| |
Collapse
|
25
|
Molecular Mechanisms and Biological Functions of Autophagy for Genetics of Hearing Impairment. Genes (Basel) 2020; 11:genes11111331. [PMID: 33187328 PMCID: PMC7697636 DOI: 10.3390/genes11111331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023] Open
Abstract
The etiology of hearing impairment following cochlear damage can be caused by many factors, including congenital or acquired onset, ototoxic drugs, noise exposure, and aging. Regardless of the many different etiologies, a common pathologic change is auditory cell death. It may be difficult to explain hearing impairment only from the aspect of cell death including apoptosis, necrosis, or necroptosis because the level of hearing loss varies widely. Therefore, we focused on autophagy as an intracellular phenomenon functionally competing with cell death. Autophagy is a dynamic lysosomal degradation and recycling system in the eukaryotic cell, mandatory for controlling the balance between cell survival and cell death induced by cellular stress, and maintaining homeostasis of postmitotic cells, including hair cells (HCs) and spiral ganglion neurons (SGNs) in the inner ear. Autophagy is considered a candidate for the auditory cell fate decision factor, whereas autophagy deficiency could be one of major causes of hearing impairment. In this paper, we review the molecular mechanisms and biologic functions of autophagy in the auditory system and discuss the latest research concerning autophagy-related genes and sensorineural hearing loss to gain insight into the role of autophagic mechanisms in inner-ear disorders.
Collapse
|
26
|
Taneja MK. Prevention and Rehabilitation of Old Age Deafness. Indian J Otolaryngol Head Neck Surg 2020; 72:524-531. [PMID: 33088786 DOI: 10.1007/s12070-020-01856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022] Open
Abstract
Hearing impairment is one of the most common sensory deficit affecting 466 million people globally and in majority of old age people it can not corrected. Since presbycusis is always associated with diminished cognition power resulting in two fold loss in understanding of speech. There is no treatment available till date to regenerate the hair cells but certainly we can augment hearing by preventing and regenerating (apoptosis) atrophy of stria vascularis, spiral neural cells degeneration, atrophy of auditory nerve and cerebral cortex by modified greeva, skandh chalan, dynamic neurobics, tratak (focused concentration), Bhramari, Kumbhak along with mindful relaxation technique.
Collapse
Affiliation(s)
- M K Taneja
- Indian Institute of Ear Diseases, E-982 C. R. Park, New Delhi, India
| |
Collapse
|
27
|
Gu S, Olszewski R, Taukulis I, Wei Z, Martin D, Morell RJ, Hoa M. Characterization of rare spindle and root cell transcriptional profiles in the stria vascularis of the adult mouse cochlea. Sci Rep 2020; 10:18100. [PMID: 33093630 PMCID: PMC7581811 DOI: 10.1038/s41598-020-75238-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
The stria vascularis (SV) in the cochlea generates and maintains the endocochlear potential, thereby playing a pivotal role in normal hearing. Knowing transcriptional profiles and gene regulatory networks of SV cell types establishes a basis for studying the mechanism underlying SV-related hearing loss. While we have previously characterized the expression profiles of major SV cell types in the adult mouse, transcriptional profiles of rare SV cell types remained elusive due to the limitation of cell capture in single-cell RNA-Seq. The role of these rare cell types in the homeostatic function of the adult SV remain largely undefined. In this study, we performed single-nucleus RNA-Seq on the adult mouse SV in conjunction with sample preservation treatments during the isolation steps. We distinguish rare SV cell types, including spindle cells and root cells, from other cell types, and characterize their transcriptional profiles. Furthermore, we also identify and validate novel specific markers for these rare SV cell types. Finally, we identify homeostatic gene regulatory networks within spindle and root cells, establishing a basis for understanding the functional roles of these cells in hearing. These novel findings will provide new insights for future work in SV-related hearing loss and hearing fluctuation.
Collapse
Affiliation(s)
- Shoujun Gu
- Auditory Development and Restoration Program, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892, USA
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892, USA
| | - Ian Taukulis
- Auditory Development and Restoration Program, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892, USA
| | - Zheng Wei
- Biomedical Research Informatics Office, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892, USA
| | - Daniel Martin
- Biomedical Research Informatics Office, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892, USA
| | - Robert J Morell
- Computational Biology and Genomics Core, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institutes on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Qian F, Wang X, Yin Z, Xie G, Yuan H, Liu D, Chai R. The slc4a2b gene is required for hair cell development in zebrafish. Aging (Albany NY) 2020; 12:18804-18821. [PMID: 33044947 PMCID: PMC7732325 DOI: 10.18632/aging.103840] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
Hair cells (HCs) function as important sensory receptors that can detect movement in their immediate environment. HCs in the inner ear can sense acoustic signals, while in aquatic vertebrates HCs can also detect movements, vibrations, and pressure gradients in the surrounding water. Many genes are responsible for the development of HCs, and developmental defects in HCs can lead to hearing loss and other sensory dysfunctions. Here, we found that the solute carrier family 4, member 2b (slc4a2b) gene, which is a member of the anion-exchange family, is expressed in the otic vesicles and lateral line neuromasts in developing zebrafish embryos. An in silico analysis showed that the slc4a2b is evolutionarily conserved, and we found that loss of function of slc4a2b resulted in a decreased number of HCs in zebrafish neuromasts due to increased HC apoptosis. Taken together, we conclude that slc4a2b plays a critical role in the development of HCs in zebrafish.
Collapse
Affiliation(s)
- Fuping Qian
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xin Wang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Zhenhua Yin
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Gangcai Xie
- Medical School, Nantong University, Nantong 226019, China
| | - Huijun Yuan
- Medical Genetics Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Dong Liu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Renjie Chai
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China,School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| |
Collapse
|
29
|
Li MC. Serum Per- and Polyfluoroalkyl Substances Are Associated with Increased Hearing Impairment: A Re-Analysis of the National Health and Nutrition Examination Survey Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165836. [PMID: 32806617 PMCID: PMC7460726 DOI: 10.3390/ijerph17165836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 11/16/2022]
Abstract
Although studies have shown that per- and polyfluoroalkyl substances (PFAS) are potential environmental ototoxicants, epidemiologic study has been limited. I conducted a cross-sectional study to re-examine the associations between PFAS and hearing impairment. Data were obtained from the National Health and Nutrition Examination Survey (NHANES) 1999–2000, 2003-06, 2009-12, and 2015-16. Perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) were measured in serum samples. Participants were divided into quartiles for each PFAS. Air conduction pure-tone audiometry was administered. Hearing impairment (1: yes, 0: no) was defined as a hearing threshold of more than 25 dB at 500, 1000, 2000, 4000, and 8000 Hz in the worse ear. I assessed the relation of serum PFAS with hearing impairment by the generalized linear mixed model with a logit link and binary distribution. Tests for linear trend across quartiles of serum PFAS were conducted using the median serum PFAS in each quartile as a continuous variable. After adjusting for age, sex, body mass index, education, ethnicity group, and family income, I found positive correlations between PFOA and hearing impairment at 2000 Hz (p-trend < 0.01) and 3000 Hz (p-trend = 0.02); between PFOS and hearing impairment at 500 Hz (p-trend < 0.01), 2000 Hz (p-trend < 0.0001) and 3000 Hz (p-trend = 0.02); between PFNA and hearing impairment at 2000 Hz (p-trend = 0.05), 3000 Hz (p-trend < 0.01), 4000 Hz (p-trend = 0.02), and 8000 Hz (p-trend < 0.01); between PFHxS and hearing impairment at 500 Hz (p-trend = 0.04), 1000 Hz (p-trend = 0.03), and 2000 Hz (p-trend < 0.01). However, some of the findings were not significant when only comparing the highest with the lowest quartile of PFASs. In conclusion, several background serum PFASs are positively correlated with hearing impairment in the United States adult population.
Collapse
Affiliation(s)
- Ming-Chieh Li
- Department of Public Health, China Medical University College of Public Health, Taichung 40402, Taiwan
| |
Collapse
|
30
|
Serra LSM, de Araújo JG, Vieira ALS, da Silva EM, de Andrade RR, Kückelhaus SAS, Sampaio ALL. Role of melatonin in prevention of age-related hearing loss. PLoS One 2020; 15:e0228943. [PMID: 32040524 PMCID: PMC7010238 DOI: 10.1371/journal.pone.0228943] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Age-related hearing loss (ARHL) is a consequence of aging of the auditory system. The best known mechanism of cell death in ARHL is apoptosis due to increased production of reactive oxygen species. In this context, it is hypothesized that melatonin, owing to its high antioxidant potential and its action in the mitochondria, helps prevent or delay outer hair cell dysfunction (HCD). AIMS To evaluate the effect of melatonin on the prevention of HCD dysfunction in the ARHL process in a susceptible murine C57BL/6J model. METHOD C57BL/6J animals were divided into two groups: control (CG) and melatonin (MG). The CG received a saline and ethanol solution and the MG, melatonin (10 mg/kg/day). The solutions were offered daily (50 μl) orally over a 10-month period. Distortion Product Otoacoustic Emissions (DPOAE) measurements were conducted once a month. RESULTS There was a decrease in DPOAE values in both groups over time and a differentiation between them from the 10th month of life onwards. At 10 months, the MG maintained higher DPOAE values than the CG at all frequencies tested. CONCLUSION The use of melatonin has otoprotective effects on HCD in the ARHL process in the C57BL/6J model.
Collapse
Affiliation(s)
| | - Juliana Gusmão de Araújo
- Laboratory of Otorhinolaryngology Research, University of Brasilia, Brasília, Distrito Federal, Brazil
| | | | | | - Rafael Rocha de Andrade
- Laboratory of Experimental Surgery, University of Brasilia, Brasília, Distrito Federal, Brazil
| | | | - André Luiz Lopes Sampaio
- Laboratory of Otorhinolaryngology Research, University of Brasilia, Brasília, Distrito Federal, Brazil
| |
Collapse
|
31
|
Eshraghi AA, Wolfovitz A, Yilmazer R, Garnham C, Yilmazer AB, Bas E, Ashman P, Roell J, Bohorquez J, Mittal R, Hessler R, Sieber D, Mittal J. Otoprotection to Implanted Cochlea Exposed to Noise Trauma With Dexamethasone Eluting Electrode. Front Cell Neurosci 2019; 13:492. [PMID: 31824265 PMCID: PMC6882736 DOI: 10.3389/fncel.2019.00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
Cochlear implantation (CI) is now widely used to provide auditory rehabilitation to individuals having severe to profound sensorineural hearing loss (SNHL). However, CI can lead to electrode insertion trauma (EIT) that can cause damage to sensory cells in the inner ear resulting in loss of residual hearing. Even with soft surgical techniques where there is minimal macroscopic damage, we can still observe the generation of molecular events that may initiate programmed cell death via various mechanisms such as oxidative stress, the release of pro-inflammatory cytokines, and activation of the caspase pathway. In addition, individuals with CI may be exposed to noise trauma (NT) due to occupation and leisure activities that may affect their hearing ability. Recently, there has been an increased interest in the auditory community to determine the efficacy of drug-eluting electrodes for the protection of residual hearing. The objective of this study is to determine the effect of NT on implanted cochlea as well as the otoprotective efficacy of dexamethasone eluting electrode to implanted cochlea exposed to NT in a guinea pig model of CI. Animals were divided into five groups: EIT with dexamethasone eluting electrode exposed to NT; EIT exposed to NT; NT only; EIT only and naïve animals (control group). The hearing thresholds were determined by auditory brainstem recordings (ABRs). The cochlea was harvested and analyzed for transcript levels of inflammation, apoptosis and fibrosis genes. We observed that threshold shifts were significantly higher in EIT, NT or EIT + NT groups compared to naive animals at all the tested frequencies. The dexamethasone eluting electrode led to a significant decrease in hearing threshold shifts in implanted animals exposed to NT. Proapoptotic tumor necrosis factor-α [TNF-α, TNF-α receptor 1a (TNFαR1a)] and pro-fibrotic transforming growth factor β1 (TGFβ) genes were more than two-fold up-regulated following EIT and EIT + NT compared to the control group. The use of dexamethasone releasing electrode significantly decreased the transcript levels of pro-apoptotic and pro-fibrotic genes. The dexamethasone releasing electrode has shown promising results for hearing protection in implanted animals exposed to NT. The results of this study suggest that dexamethasone releasing electrode holds great potential in developing effective treatment modalities for NT in the implanted cochlea.
Collapse
Affiliation(s)
- Adrien A Eshraghi
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States.,Department of Neurological Surgery, Miller School of Medicine, Miami, FL, United States.,Department of Biomedical Engineering, University of Miami, Miami, Coral Gables, FL, United States
| | - Amit Wolfovitz
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States
| | - Rasim Yilmazer
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States
| | | | - Ayca Baskadem Yilmazer
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States
| | - Esperanza Bas
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States
| | - Peter Ashman
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States
| | - Jonathan Roell
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States
| | - Jorge Bohorquez
- Department of Biomedical Engineering, University of Miami, Miami, Coral Gables, FL, United States
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States
| | | | | | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Hearing Research Laboratory, Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
32
|
Evidence Supporting the Hypothesis That Inflammation-Induced Vasospasm Is Involved in the Pathogenesis of Acquired Sensorineural Hearing Loss. Int J Otolaryngol 2019; 2019:4367240. [PMID: 31781229 PMCID: PMC6875011 DOI: 10.1155/2019/4367240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/04/2019] [Accepted: 10/19/2019] [Indexed: 12/15/2022] Open
Abstract
Sensorineural hearing loss is mainly acquired and affects an estimated 1.3 billion humans worldwide. It is related to aging, noise, infection, ototoxic drugs, and genetic defects. It is essential to identify reversible and preventable causes to be able to reduce the burden of this disease. Inflammation is involved in most causes and leads to tissue injury through vasospasm-associated ischemia. Vasospasm is reversible. This review summarized evidence linking inflammation-induced vasospasm to several forms of acquired sensorineural hearing loss. The link between vasospasm and sensorineural hearing loss is directly evident in subarachnoid haemorrhage, which involves the release of vasoconstriction-inducing cytokines like interleukin-1, endothelin-1, and tumour necrosis factor. These proinflammatory cytokines can also be released in response to infection, autoimmune disease, and acute or chronically increased inflammation in the ageing organism as in presbyacusis or in noise-induced cochlear injury. Evidence of vasospasm and hearing loss has also been discovered in bacterial meningitis and brain injury. Resolution of inflammation-induced vasospasm has been associated with improvement of hearing in autoimmune diseases involving overproduction of interleukin-1 from inflammasomes. There is mainly indirect evidence for vasospasm-associated sensorineural hearing loss in most forms of systemic or injury- or infection-induced local vascular inflammation. This opens up avenues in prevention and treatment of vascular and systemic inflammation as well as vasospasm itself as a way to prevent and treat most forms of acquired sensorineural hearing loss. Future research needs to investigate interventions antagonising vasospasm and vasospasm-inducing proinflammatory cytokines and their production in randomised controlled trials of prevention and treatment of acquired sensorineural hearing loss. Prime candidates for interventions are hereby inflammasome inhibitors and vasospasm-reducing drugs like nitric oxide donors, rho-kinase inhibitors, and magnesium which have the potential to reduce sensorineural hearing loss in meningitis, exposure to noise, brain injury, arteriosclerosis, and advanced age-related and autoimmune disease-related inflammation.
Collapse
|
33
|
Yizhar-Barnea O, Valensisi C, Jayavelu ND, Kishore K, Andrus C, Koffler-Brill T, Ushakov K, Perl K, Noy Y, Bhonker Y, Pelizzola M, Hawkins RD, Avraham KB. DNA methylation dynamics during embryonic development and postnatal maturation of the mouse auditory sensory epithelium. Sci Rep 2018; 8:17348. [PMID: 30478432 PMCID: PMC6255903 DOI: 10.1038/s41598-018-35587-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
The inner ear is a complex structure responsible for hearing and balance, and organ pathology is associated with deafness and balance disorders. To evaluate the role of epigenomic dynamics, we performed whole genome bisulfite sequencing at key time points during the development and maturation of the mouse inner ear sensory epithelium (SE). Our single-nucleotide resolution maps revealed variations in both general characteristics and dynamics of DNA methylation over time. This allowed us to predict the location of non-coding regulatory regions and to identify several novel candidate regulatory factors, such as Bach2, that connect stage-specific regulatory elements to molecular features that drive the development and maturation of the SE. Constructing in silico regulatory networks around sites of differential methylation enabled us to link key inner ear regulators, such as Atoh1 and Stat3, to pathways responsible for cell lineage determination and maturation, such as the Notch pathway. We also discovered that a putative enhancer, defined as a low methylated region (LMR), can upregulate the GJB6 gene and a neighboring non-coding RNA. The study of inner ear SE methylomes revealed novel regulatory regions in the hearing organ, which may improve diagnostic capabilities, and has the potential to guide the development of therapeutics for hearing loss by providing multiple intervention points for manipulation of the auditory system.
Collapse
Affiliation(s)
- Ofer Yizhar-Barnea
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Cristina Valensisi
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Naresh Doni Jayavelu
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Kamal Kishore
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, 20139, Italy
| | - Colin Andrus
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Tal Koffler-Brill
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Kathy Ushakov
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Kobi Perl
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yael Noy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yoni Bhonker
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, 20139, Italy
| | - R David Hawkins
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
34
|
Tauroursodeoxycholic acid attenuates gentamicin-induced cochlear hair cell death in vitro. Toxicol Lett 2018; 294:20-26. [PMID: 29751043 DOI: 10.1016/j.toxlet.2018.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Abstract
Gentamycin is one of the most clinically used aminoglycoside antibiotics which induce intrinsic apoptosis of hair cells. Tauroursodeoxycholic acid (TUDCA) is known as safe cell-protective agent in disorders associated with apoptosis. We aimed to investigate the protective effects of TUDCA against gentamicin-induced ototoxicity. House Ear Institute-Organ of Corti 1(HEI-OC1) cells and explanted cochlear tissue were treated with gentamicin and TUDCA, followed by serial analyses including cell viability assay, hair cell staining, qPCR, ELISA and western blotting to determine the cell damage by the parameters relevant to cell apoptosis and endoplasmic reticulum stress. TUDCA significantly attenuated gentamicin-induced cell damage in cultured HEI-OC1 cells and explanted cochlear hair cells. TUDCA alleviated gentamicin-induced cell apoptosis, supported by the decreased Bax/Bcl2 ratio compared with that of gentamicin treated alone. TUDCA decreased gentamicin-induced nitric oxide production and protein nitration in both models. In addition, TUDCA suppressed gentamicin-induced endoplasmic reticulum stress as reflected by inversing the expression levels of Binding immunoglobulin protein (Bip), CCAAT/-enhancer-binding protein homologous protein (CHOP) and Caspase 3. TUDCA attenuated gentamicin-induced hair cell death by inhibiting protein nitration activation and ER stress, providing new insights into the new potential therapies for sensorineural deafness.
Collapse
|