1
|
Zhu Y, Huang H, Gou H, Sun S, Liao Y. Reductive Catalytic Fractionation of Lignocellulosic Biomass: The Impact of Impurities in Catalyst. CHEMSUSCHEM 2025:e2500199. [PMID: 40257929 DOI: 10.1002/cssc.202500199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Catalytic fractionation of lignocellulosic biomass is a promising technology for obtaining different fractions and the valorization of lignin. Reductive catalytic fractionation (RCF) is one of these technologies in which catalysts play an essential role. In this work, the impact of impurities in catalysts on the output of RCF is investigated. It is found that the yield of phenolic monomers is almost not influenced by the residual chloride (Cl) ions in the commercially available Ru/C catalyst. However, the presence of Cl ions in the catalyst facilitated hemicellulose removal and delignification. Moreover, the enzymatic conversion rate of cellulose in the solid residue increases after RCF, attributed to the enhanced removal of lignin and hemicellulose in the presence of Cl ions. The impact of Cl ions can be eliminated by removing the Cl ions in the catalyst. This work provides an engineering perspective for upscaling RCF technology using large-scale synthesized catalysts.
Collapse
Affiliation(s)
- Yiping Zhu
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou, 510640, P. R. China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Haiyun Huang
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou, 510640, P. R. China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Haibin Gou
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou, 510640, P. R. China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Shuaihao Sun
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou, 510640, P. R. China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Yuhe Liao
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou, 510640, P. R. China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| |
Collapse
|
2
|
Cui C, Zhu L, Shi Z, Zhou Z, Qi F. Guidelines for Identifying the Structure of Heavy Phenolics in Lignin Depolymerization by using High-Resolution Tandem Mass Spectrometry. CHEMSUSCHEM 2025; 18:e202401827. [PMID: 39388347 DOI: 10.1002/cssc.202401827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
The efficient conversion of lignin contributes to reducing human reliance on fossil energy. As a complicated biopolymer, studies on the mechanism of lignin depolymerization is limited by inadequate structural identification of high molecular weight (MW) products like heavy phenolics. Up to now, no individual method can generate both MW and structural information in operando conditions. As a promising approach, tandem mass spectrometry (MS/MS) techniques can provide structural information via the dissociation of target ions. In this study, MS/MS technique was performed both in offline and in-situ mode during lignin depolymerization. The fundamental guidelines based on MS/MS dissociation principles for typical inter-unit linkages like β-O-4, 5-5, β-β, β-5, and β-1 were well established. Based on that, major phenolic dimers are successfully identified, including chemical formula and types of inter-unit linkages. More significantly, real-time monitoring of structural evolution was achieved by applying in-situ MS/MS analysis during lignin depolymerization. The results show the different evolution pathways of isomers with same chemical formula, confirming that structural changes during lignin depolymerization are common and obvious. Overall, this study develops an advanced strategy for the full-view analysis of lignin depolymerization, achieving the static analysis of composition and structure, both monitoring the dynamic evolution of structures.
Collapse
Affiliation(s)
- Cunhao Cui
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), 4221 Xiang 'an Road, Xiamen Fujian, 361005, P.R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Siming South Road, Xiamen Fujian, 361005, P.R. China
| | - Linyu Zhu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Zaifa Shi
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), 4221 Xiang 'an Road, Xiamen Fujian, 361005, P.R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Siming South Road, Xiamen Fujian, 361005, P.R. China
| | - Zhongyue Zhou
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Fei Qi
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| |
Collapse
|
3
|
Zhou Z, Cui C, Zhu L, Zhang J, Ren H, Xiao X, Qi F. Online Mass Spectrometric Characterization of Oligomeric Products in High-Pressure Liquid-Phase Lignin Depolymerization Reactions. ACS MEASUREMENT SCIENCE AU 2025; 5:9-18. [PMID: 39991037 PMCID: PMC11843499 DOI: 10.1021/acsmeasuresciau.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 02/25/2025]
Abstract
Lignin depolymerization involves complex reactions that occur in heterogeneous environments, leading to the formation of a wide range of products with diverse molecular structures. The complexity of these products arises from the different bond strengths and locations within the lignin polymer, which makes it difficult to fully understand the reaction pathways. Conventional analytical techniques often fall short of providing a clear and comprehensive picture of the reaction mechanism. This highlights the need for more advanced methods that can offer real-time, in situ analysis to probe product evolutions and unravel the detailed mechanisms of lignin depolymerization. Herein, we present a concise perspective of the recent developments in online mass spectrometry, particularly its applications in probing heavy oligomeric products formed during lignindepolymerization. After introducing the current analytical technologies and analytical challenges, we focus on the development of online mass spectrometric method, especially those combined with batch and flow-through reactors, for the real-time characterization of lignin depolymerization products. Several key case studies are highlighted. Finally, we discuss the potential opportunities and remaining challenges in this field.
Collapse
Affiliation(s)
- Zhongyue Zhou
- School
of Mechanical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, P.R. China
| | - Cunhao Cui
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen 361005, P.R. China
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, P.R. China
| | - Linyu Zhu
- School
of Mechanical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, P.R. China
| | - Jing Zhang
- School
of Mechanical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, P.R. China
| | - Hairong Ren
- School
of Mechanical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, P.R. China
| | - Xintong Xiao
- School
of Mechanical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, P.R. China
| | - Fei Qi
- School
of Mechanical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
4
|
Wang S, Li X, Ma R, Song G. Catalytic Hydrogenolysis of Lignin into Serviceable Products. Acc Chem Res 2025; 58:529-542. [PMID: 39908014 DOI: 10.1021/acs.accounts.4c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
ConspectusLignin, a major component of lignocellulosic biomass, accounts for nearly 30% of organic carbon on Earth, making it the most abundant renewable source of aromatic carbon. The valorization of lignin beyond low-value heat and power has been one of the foremost challenges for a long time. On the other hand, aromatic compounds, constituting a substantial segment of the chemical industry and projected to reach a market value of $382 billion by 2030, are predominantly derived from fossil resources, contributing to increased CO2 emissions. Integrating lignin into the aromatic chemical supply chain will offer a promising strategy to reduce the carbon footprint and boost the economic viability of biorefineries. Thus, depolymerizing lignin biopolymers into aromatic chemicals suitable for downstream processing is an important starting point for its valorization. However, owing to lignin's complexity and heterogeneity, achieving efficient and selective depolymerization that yields desirable, isolable aromatic monomers remains a significant scientific challenge.The structure of lignins varies significantly in terms of subunits and linkages across plant species, leading to considerable differences in their reactivity, in the distribution of resulting monomers, and in their subsequent utilization. In this context, this Account highlights our recent studies on the catalytic hydrogenolysis of lignin into serviceable products for preparing valuable materials, fuels, and chemicals. First, we designed a series of catalytic systems for lignin hydrogenolysis specifically tailored to the structural features of lignin from wood, grass, and certain seed coats. To reduce reliance on expensive commercial catalysts like Pd/C, Ru/C, and Pt/C, we advanced heterogeneous metal catalysts by shifting from high-loaded nanostructured metals to low-loaded, atomically dispersed metals and replacing precious metals with nonprecious alternatives. This approach significantly reduces the cost of catalysts, enhances their atomic economy, and improves their catalytic activity and/or selectivity. Then, using the developed catalysts, phenolic monomers tethering a distinct side chain were selectively generated from the hydrogenolysis of lignin (from various plants), achieving yields close to the theoretical maximum. The high selectivity allowed the separation and purification of monomeric phenols from lignin reaction mixtures readily. To gain deeper insights into the cleavage of lignin C-O bonds, we designed deuterium-incorporated β-O-4 mimics (dimers and one polymer) for a mechanistic study, which excluded the pathways involving the loss of linkage protons and led to the proposal of a concerted hydrogenolysis process for β-O-4 cleavage. Finally, to enable the utilization of depolymerized lignin phenolic monomers, unconventional feedstocks in the current chemical industry, we developed a series of methods to transform them into valuable bioactive molecules, functional materials, and high-energy fuels. Overall, these contributions opened new avenues for converting lignin into serviceable products, encompassing upstream processing and downstream applications.
Collapse
Affiliation(s)
- Shuizhong Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xiancheng Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Rumin Ma
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Guoyong Song
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Zhai Q, Li J, Miao K, Song Y, Yang S, Zhao S, Lu Y, Hu J. Atmospheric one-pot fractionation and catalytic conversion of lignocellulose in multifunctional deep eutectic solvent system. Int J Biol Macromol 2025; 290:138736. [PMID: 39675620 DOI: 10.1016/j.ijbiomac.2024.138736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
This study developed a "one-pot" three-stage process using a "multifunctional" deep eutectic solvent (DES) containing choline chloride (ChCl), ethylene glycol (EG), and protonic acids for the production of phenolic monomers, furfural, and glucose. In the first stage, the DES effectively dissolved over 70 % of lignin and 78 % of hemicellulose while preserving aryl ether bonds in lignin due to the grafting of EG onto the aryl ether bonds. Concurrently, the retention of a near-quantitative amount of cellulose led to a glucose yield of >80 % after enzymatic saccharification. In the next stage, the DES enabled the catalytic depolymerization of lignin using a Ru/C catalyst at mild temperatures and atmospheric pressure, eliminating the need for an external hydrogen source and yielding G/S-propyl and G/S-propenyl monomers at 13.8 %. Additionally, the ratio of ChCl to EG in the DES could regulate the composition and selectivity of the phenolic monomers. Following this, the hemicellulose sugars dissolved in the DES underwent catalytic hydrolysis in a DES/water system, achieving a furfural yield of 36.4 % under optimized conditions. The results of this study offer important insights into the valorization of lignocellulose in "one-pot" under mild conditions, thereby advancing the field of biorefining.
Collapse
Affiliation(s)
- Qiaolong Zhai
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jie Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Kangze Miao
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yunhao Song
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Shaoqi Yang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Shuheng Zhao
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanju Lu
- College of Chemical Engineering, Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, International Innovation Highland of Forest Products Chemistry and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jianjun Hu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
6
|
Zhang Z, Guo G, Yang H, Csechala L, Wang Z, Cziegler C, Zijlstra DS, Lahive CW, Zhang X, Bornscheuer UT, Deuss PJ. One-Pot Catalytic Cascade for the Depolymerization of the Lignin β-O-4 Motif to Non-phenolic Dealkylated Aromatics. Angew Chem Int Ed Engl 2024; 63:e202410382. [PMID: 39083320 DOI: 10.1002/anie.202410382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Indexed: 11/03/2024]
Abstract
Aromatic monomers obtained by selective depolymerization of the lignin β-O-4 motif are typically phenolic and contain (oxygenated) alkyl substitutions. This work reveals the potential of a one-pot catalytic lignin β-O-4 depolymerization cascade strategy that yields a uniform set of methoxylated aromatics without alkyl side-chains. This cascade consists of the selective acceptorless dehydrogenation of the γ-hydroxy group, a subsequent retro-aldol reaction that cleaves the Cα-Cβ bond, followed by in situ acceptorless decarbonylation of the formed aldehydes. This three-step cascade reaction, catalyzed by an iridium(I)-BINAP complex, resulted in 75 % selectivity for 1,2-dimethoxybenzene from G-type lignin dimers, alongside syngas (CO : H2≈1.4 : 1). Applying this method to a synthetic G-type polymer, 11 wt % 1,2-dimethoxybenzene was obtained. This versatile compound can be easily transformed into 3,4-dimethoxyphenol, a valuable precursor for pharmaceutical synthesis, through an enzymatic catalytic approach. Moreover, the hydrodeoxygenation potential of 1,2-dimethoxybenzene offers a pathway to produce valuable cyclohexane or benzene derivatives, presenting enticing opportunities for sustainable chemical transformations without the necessity for phenolic mixture upgrading via dealkylation.
Collapse
Affiliation(s)
- Zhenlei Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), 102249, Beijing, China
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ge Guo
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Huaizhou Yang
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Lina Csechala
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Zhiwen Wang
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Institute of Chemistry, Organic and Bioorganic Chemistry, University of Graz, 8010, Graz, Austria
| | - Clemens Cziegler
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Douwe S Zijlstra
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ciaran W Lahive
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Xiangping Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), 102249, Beijing, China
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Peter J Deuss
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
7
|
Webber MS, Watson J, Zhu J, Jang JH, Çağlayan M, Heyne JS, Beckham GT, Román-Leshkov Y. Lignin deoxygenation for the production of sustainable aviation fuel blendstocks. NATURE MATERIALS 2024; 23:1622-1638. [PMID: 39592761 DOI: 10.1038/s41563-024-02024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/06/2024] [Indexed: 11/28/2024]
Abstract
Lignin is an abundant source of renewable aromatics that has long been targeted for valorization. Traditionally, the inherent heterogeneity and reactivity of lignin has relegated it to direct combustion, but its higher energy density compared with polysaccharides makes it an ideal candidate for biofuel production. This Review critically assesses lignin's potential as a substrate for sustainable aviation fuel blendstocks. Lignin can generate the necessary cyclic compounds for a fully renewable, sustainable aviation fuel when integrated with current paraffinic blends and can meet the current demand 2.5 times over. Using an energy-centric analysis, we show that lignin conversion technologies have the near-term potential to match the enthalpic yields of existing commercial sustainable aviation fuel production processes. Key factors influencing the viability of technologies for converting lignin to sustainable aviation fuel include lignin structure, delignification extent, depolymerization performance, and the development of stable and tunable deoxygenation catalysts.
Collapse
Affiliation(s)
- Matthew S Webber
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jamison Watson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jie Zhu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jun Hee Jang
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
- Center for Bioenergy Innovation, Oak Ridge, TN, USA
| | - Mustafa Çağlayan
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Joshua S Heyne
- Bioproduct Sciences and Engineering Laboratory, School of Engineering and Applied Science, Washington State University, Richland, WA, USA
- Energy and Environment Directorate, Energy Processes and Materials Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA.
- Center for Bioenergy Innovation, Oak Ridge, TN, USA.
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Li H, Sun X, Li T, Zhao Z, Wang H, Yang X, Zhang C, Wang F. Photothermal catalytic transfer hydrogenolysis of protolignin. Nat Commun 2024; 15:10176. [PMID: 39580480 PMCID: PMC11585588 DOI: 10.1038/s41467-024-54664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Photothermal catalysis is a promising strategy to combine the advantages of both thermal-catalysis and photocatalysis. Herein we achieve the protolignin conversion to aromatics via the photothermal catalytic transfer hydrogenolysis process intensified by the in-situ protection strategy. The Pd/TiO2 at 140 °C with UV irradiation can catalyze the reforming of primary alcohols to aldehydes and active H* species, which further participate in the acetalation protection of the 1,3-diol group of β-O-4 linkage and mediate the hydrogenolysis of Cβ-OAr bonds, respectively. The conversion of birch sawdust with ethanol as the hydrogen donor provides a 40 wt% yield of phenolic monomers, compared with an 11 wt% monomer yield obtained from the conversion of extracted 1,3-diol-protected lignin under the same conditions. The synergistic effect of photocatalysis and thermal-catalysis contributes to the prior cleavage of the Cβ-OAr bond before other C-O bonds. The feasibility of solar-light-driven photothermal catalytic system is demonstrated.
Collapse
Affiliation(s)
- Hongji Li
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, China.
| | - Xiaotong Sun
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, China
| | - Ting Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, 159 LongPan Road, Nanjing, China
| | - Zhitong Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Hui Wang
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, China
| | - Xiaomei Yang
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, China
| | - Chaofeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, 159 LongPan Road, Nanjing, China.
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Batiste DC, Pfau-Cloud MR, Kim HJ, Ellison CJ, Hillmyer MA. Alkyl-Substituted Polycaprolactone Poly(urethane-urea)s as Mechanically Competitive and Chemically Recyclable Materials. ACS Macro Lett 2024; 13:1449-1455. [PMID: 39404051 DOI: 10.1021/acsmacrolett.4c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
We report the mechanical performance and chemical recycling advantages of implementing alkyl-substituted poly(ε-caprolactones) (PCLs) as soft segments in thermoplastic poly(urethane-urea) (TPUU) materials. Poly(4-methylcaprolactone) (P4MCL) and poly(4-propylcaprolactone) (P4PrCL) were prepared, reacted with isophorone diisocyanate, and chain-extended with water to form TPUUs. The resulting materials' tensile properties were similar or superior to a commercially available polyester thermoplastic poly(urethane) and had superior elastic recovery properties compared to a PCL analogue due to the noncrystalline nature of P4MCL and P4PrCL. Additionally, monomers were recovered from the TPUU materials in high yields via ring-closing depolymerization using a reactive distillation approach at an elevated temperature and a reduced pressure (240-260 °C, 25-140 mTorr) with zinc chloride (ZnCl2) as the catalyst. The thermodynamics of polymerization were estimated using Van't Hoff analyses for 4MCL and 4PrCL; these results indicated that the propyl group in 4PrCL results in a lower practical ceiling temperature (Tc) for P4PrCL.
Collapse
Affiliation(s)
- Derek C Batiste
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michaela R Pfau-Cloud
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hee Joong Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Bugli F, Baldelli A, Thomas S, Sgarzi M, Gigli M, Crestini C, Cavani F, Tabanelli T. Improved Reductive Catalytic Fractionation of Lignocellulosic Biomass through the Application of a Recyclable Magnetic Catalyst. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:16638-16651. [PMID: 39545101 PMCID: PMC11558807 DOI: 10.1021/acssuschemeng.4c05299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
The reductive catalytic fractionation (RCF) of second generation lignocellulosic biomass is an elegant one-pot process to obtain a highly delignified cellulose pulp, sugar-derived polyols, and depolymerized and stabilized lignin oils. However, the need of noble metal catalysts to prompt the reactions may impact the economic sustainability of the overall "lignin-first" biorefinery if the catalyst recovery and recyclability are not guaranteed. Herein, the use of a novel catalyst based on supported ruthenium over maghemite for the RCF of poplar sawdust is reported for the first time. This material allows us to obtain a pure cellulose pulp with a quantitative magnetic recovery efficiency after the first cycle. The obtained lignin oil is composed by a 12% yield in phenolic monomers (i.e., benzyl alcohol, 4-n-propylguaiacol, and 4-n-propylsyringol), together with dimers and trimers as confirmed by GPC analyses. The catalytic material was found to be stable and recyclable for three reaction cycles with only minor loss of RCF efficiency. On the other hand, the straightforward, lab-scale, magnetic recovery procedure needs to be further improved in the future to ensure quantitative recovery of the catalyst also after several RCF cycles.
Collapse
Affiliation(s)
- Federico Bugli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, viale del Risorgimento 4, Bologna 40136, Italy
- Center
for Chemical Catalysis—C, Alma Mater Studiorum Università di Bologna, viale Risorgimento 4, Bologna 40136, Italy
| | - Alessio Baldelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, viale del Risorgimento 4, Bologna 40136, Italy
| | - Sam Thomas
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, viale del Risorgimento 4, Bologna 40136, Italy
| | - Massimo Sgarzi
- Department
of Molecular Sciences and Nanosystems, Ca’
Foscari University of Venice, Via Torino 155, Venice 30172, Italy
| | - Matteo Gigli
- Department
of Molecular Sciences and Nanosystems, Ca’
Foscari University of Venice, Via Torino 155, Venice 30172, Italy
| | - Claudia Crestini
- Department
of Molecular Sciences and Nanosystems, Ca’
Foscari University of Venice, Via Torino 155, Venice 30172, Italy
| | - Fabrizio Cavani
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, viale del Risorgimento 4, Bologna 40136, Italy
- Center
for Chemical Catalysis—C, Alma Mater Studiorum Università di Bologna, viale Risorgimento 4, Bologna 40136, Italy
| | - Tommaso Tabanelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, viale del Risorgimento 4, Bologna 40136, Italy
- Center
for Chemical Catalysis—C, Alma Mater Studiorum Università di Bologna, viale Risorgimento 4, Bologna 40136, Italy
| |
Collapse
|
11
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
12
|
Jang JH, Callejón Álvarez J, Neuendorf QS, Román-Leshkov Y, Beckham GT. Reducing Solvent Consumption in Reductive Catalytic Fractionation through Lignin Oil Recycling. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:12919-12926. [PMID: 39211385 PMCID: PMC11351702 DOI: 10.1021/acssuschemeng.4c04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Reductive catalytic fractionation (RCF) enables the simultaneous valorization of lignin and carbohydrates in lignocellulosic biomass through solvent-based lignin extraction, followed by depolymerization and catalytic stabilization of the extracted lignin. Process modeling has shown that the use of exogenous organic solvent in RCF is a challenge for economic and environmental feasibility, and previous works proposed that lignin oil, a mixture of lignin-derived monomers and oligomers produced by RCF, can be used as a cosolvent in RCF. Here, we further explore the potential of RCF solvent recycling with lignin oil, extending the feasible lignin oil concentration in the solvent to 100 wt %, relative to the previously demonstrated 0-19 wt % range. Solvents containing up to 80 wt % lignin oil exhibited 83-93% delignification, comparable to 83% delignification with a methanol-water mixture, and notably, using lignin oil solely as a solvent achieved 67% delignification in the absence of water. In additional experiments, applying the RCF solvent recycling approach to ten consecutive RCF reactions resulted in a final lignin oil concentration of 11 wt %, without detrimental impacts on lignin extraction, lignin oil molar mass distribution, aromatic monomer selectivity, and cellulose retention. Overall, this work further demonstrates the potential for using lignin oil as an effective cosolvent in RCF, which can reduce the burden on downstream solvent recovery.
Collapse
Affiliation(s)
- Jun Hee Jang
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Júlia Callejón Álvarez
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Quinn S. Neuendorf
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Yuriy Román-Leshkov
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Gregg T. Beckham
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
13
|
Dixon RA, Puente-Urbina A, Beckham GT, Román-Leshkov Y. Enabling Lignin Valorization Through Integrated Advances in Plant Biology and Biorefining. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:239-263. [PMID: 39038247 DOI: 10.1146/annurev-arplant-062923-022602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite lignin having long been viewed as an impediment to the processing of biomass for the production of paper, biofuels, and high-value chemicals, the valorization of lignin to fuels, chemicals, and materials is now clearly recognized as a critical element for the lignocellulosic bioeconomy. However, the intended application for lignin will likely require a preferred lignin composition and form. To that end, effective lignin valorization will require the integration of plant biology, providing optimal feedstocks, with chemical process engineering, providing efficient lignin transformations. Recent advances in our understanding of lignin biosynthesis have shown that lignin structure is extremely diverse and potentially tunable, while simultaneous developments in lignin refining have resulted in the development of several processes that are more agnostic to lignin composition. Here, we review the interface between in planta lignin design and lignin processing and discuss the advances necessary for lignin valorization to become a feature of advanced biorefining.
Collapse
Affiliation(s)
- Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, USA;
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Allen Puente-Urbina
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Gregg T Beckham
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Kenny J, Neefe SR, Brandner DG, Stone ML, Happs RM, Kumaniaev I, Mounfield WP, Harman-Ware AE, Devos KM, Pendergast TH, Medlin JW, Román-Leshkov Y, Beckham GT. Design and Validation of a High-Throughput Reductive Catalytic Fractionation Method. JACS AU 2024; 4:2173-2187. [PMID: 38938803 PMCID: PMC11200236 DOI: 10.1021/jacsau.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
Reductive catalytic fractionation (RCF) is a promising method to extract and depolymerize lignin from biomass, and bench-scale studies have enabled considerable progress in the past decade. RCF experiments are typically conducted in pressurized batch reactors with volumes ranging between 50 and 1000 mL, limiting the throughput of these experiments to one to six reactions per day for an individual researcher. Here, we report a high-throughput RCF (HTP-RCF) method in which batch RCF reactions are conducted in 1 mL wells machined directly into Hastelloy reactor plates. The plate reactors can seal high pressures produced by organic solvents by vertically stacking multiple reactor plates, leading to a compact and modular system capable of performing 240 reactions per experiment. Using this setup, we screened solvent mixtures and catalyst loadings for hydrogen-free RCF using 50 mg poplar and 0.5 mL reaction solvent. The system of 1:1 isopropanol/methanol showed optimal monomer yields and selectivity to 4-propyl substituted monomers, and validation reactions using 75 mL batch reactors produced identical monomer yields. To accommodate the low material loadings, we then developed a workup procedure for parallel filtration, washing, and drying of samples and a 1H nuclear magnetic resonance spectroscopy method to measure the RCF oil yield without performing liquid-liquid extraction. As a demonstration of this experimental pipeline, 50 unique switchgrass samples were screened in RCF reactions in the HTP-RCF system, revealing a wide range of monomer yields (21-36%), S/G ratios (0.41-0.93), and oil yields (40-75%). These results were successfully validated by repeating RCF reactions in 75 mL batch reactors for a subset of samples. We anticipate that this approach can be used to rapidly screen substrates, catalysts, and reaction conditions in high-pressure batch reactions with higher throughput than standard batch reactors.
Collapse
Affiliation(s)
- Jacob
K. Kenny
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Sasha R. Neefe
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - David G. Brandner
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Michael L. Stone
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Renee M. Happs
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Ivan Kumaniaev
- Department
of Organic Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - William P. Mounfield
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Anne E. Harman-Ware
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Katrien M. Devos
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
- Institute
of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, United States
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United States
- Department
of Plant Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Thomas H. Pendergast
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
- Institute
of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, United States
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United States
- Department
of Plant Biology, University of Georgia, Athens, Georgia 30602, United States
| | - J. Will Medlin
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Yuriy Román-Leshkov
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Gregg T. Beckham
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
15
|
Zhu L, Cui C, Xiao X, Zhang J, Kuang X, Liu H, Zhou Z, Qi F. Online Compositional Analysis of Complex Oligomers in Biomass Degradation by High-Pressure Flow-Through Reactor Coupled with High-Resolution Mass Spectrometry. Anal Chem 2024; 96:8657-8664. [PMID: 38738643 DOI: 10.1021/acs.analchem.4c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Online analysis of the composition and evolution of complex oligomeric intermediates in biomass degradation is highly desirable to elucidate the mechanism of bond cleavage and study the effect of conditions on the selective conversion of feedstocks. However, harsh reaction conditions and complicated conversion systems pose tremendous challenges for conventional, state-of-the-art analytical techniques. Herein, we introduce a continuous and rapid compositional analysis strategy coupling a high-pressure flow-through reactor with online high-resolution mass spectrometry, which enables the molecular-level characterization of most biomass-related products throughout the conversion for over 2 h. Catalytic depolymerization of one model compound was studied, and temperature-dependent data of over 50 intermediates as well as recondensation dimers and oligomers were obtained, which have rarely been reported in the literature. Thousands of products during the flow-through conversion of birch wood with molecular weights up to 1000 Da were presented, and 8 typical lignin dimers and oligomers with various interunit linkages were identified at the molecular level, demonstrating the potential to analyze more complicated systems far beyond conventional methods, especially for complex oligomers. The continuous evolutions of different components and typical products were unveiled for the first time, providing valuable insights into the investigation of the structure, composition, and decomposition mechanism of lignocellulose as well as the influence of reaction conditions. This method leads to the previously unattained ability to probe and reveal complicated chemical compositions in high-pressure reactions and can be applied to all other high-pressure heterogeneous aqueous reactions.
Collapse
Affiliation(s)
- Linyu Zhu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Cunhao Cui
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xintong Xiao
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Jing Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xun Kuang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Haoran Liu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zhongyue Zhou
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Fei Qi
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
16
|
Maisterra M, Atienza-Martínez M, Hablich K, Moreira R, Martínez-Merino V, Gandía LM, Cornejo A, Bimbela F. Innovative flow-through reaction system for the sustainable production of phenolic monomers from lignocellulose catalyzed by supported Mo 2C. CHEMSUSCHEM 2024; 17:e202301591. [PMID: 38179896 DOI: 10.1002/cssc.202301591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Molybdenum carbide supported on activated carbon (β-Mo2C/AC) has been tested as catalyst in the reductive catalytic fractionation (RCF) of lignocellulosic biomass both in batch and in Flow-Through (FT) reaction systems. High phenolic monomer yields (34 wt.%) and selectivity to monomers with reduced side alkyl chains (up to 80 wt.%) could be achieved in batch in the presence of hydrogen. FT-RCF were made with no hydrogen feed, thus via transfer hydrogenation from ethanol. Similar selectivity could be attained in FT-RCF using high catalyst/biomass ratios (0.6) and high molybdenum loading (35 wt.%) in the catalyst, although selectivity decreased with lower catalyst/biomass ratios or molybdenum contents. Regardless of these parameters, high delignification of the lignocellulosic biomass and similar monomer yields were observed in the FT mode (13-15 wt.%) while preserving the holocellulose fractions in the delignified pulp. FT-RCF system outperforms the batch reaction mode in the absence of hydrogen, both in terms of activity and selectivity to reduced monomers that is attributed to the two-step non-equilibrium processes and the removal of diffusional limitations that occur in the FT mode. Even though some molybdenum leaching was detected, the catalytic performance could be maintained with negligible loss of activity or selectivity for 15 consecutive runs.
Collapse
Affiliation(s)
- Maitane Maisterra
- Institute for Advanced Material and Mathematics (INAMAT2) -, Department of Sciences, Universidad Pública de Navarra, Ed. 'Los Acebos', Campus de Arrosadia S/N, 31006, Pamplona, Spain
| | - María Atienza-Martínez
- Institute for Advanced Material and Mathematics (INAMAT2) -, Department of Sciences, Universidad Pública de Navarra, Ed. 'Los Acebos', Campus de Arrosadia S/N, 31006, Pamplona, Spain
| | - Karina Hablich
- Institute for Advanced Material and Mathematics (INAMAT2) -, Department of Sciences, Universidad Pública de Navarra, Ed. 'Los Acebos', Campus de Arrosadia S/N, 31006, Pamplona, Spain
| | - Rui Moreira
- CIEPQPF, FCTUC, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, Coimbra, Portugal
| | - Víctor Martínez-Merino
- Institute for Advanced Material and Mathematics (INAMAT2) -, Department of Sciences, Universidad Pública de Navarra, Ed. 'Los Acebos', Campus de Arrosadia S/N, 31006, Pamplona, Spain
| | - Luis M Gandía
- Institute for Advanced Material and Mathematics (INAMAT2) -, Department of Sciences, Universidad Pública de Navarra, Ed. 'Los Acebos', Campus de Arrosadia S/N, 31006, Pamplona, Spain
| | - Alfonso Cornejo
- Institute for Advanced Material and Mathematics (INAMAT2) -, Department of Sciences, Universidad Pública de Navarra, Ed. 'Los Acebos', Campus de Arrosadia S/N, 31006, Pamplona, Spain
| | - Fernando Bimbela
- Institute for Advanced Material and Mathematics (INAMAT2) -, Department of Sciences, Universidad Pública de Navarra, Ed. 'Los Acebos', Campus de Arrosadia S/N, 31006, Pamplona, Spain
| |
Collapse
|
17
|
Kramarenko A, Uslu A, Etit D, D'Angelo FN. 2-step lignin-first catalytic fractionation with bifunctional Pd/ß-zeolite catalyst in a flow-through reactor. CHEMSUSCHEM 2024:e202301404. [PMID: 38193653 DOI: 10.1002/cssc.202301404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
This work demonstrates an additive and hydrogen-free 2-step lignin-first fractionation in flow-through. First, solvolytic delignification renders lignin liquors with its native chemical structure largely intact; and second, ß-zeolite catalytic depolymerization of these liquors leads to similar monomer yields as the corresponding 1-step fractionation process. Higher delignification temperatures lead to slightly lower ß-O-4 content in the solvated lignin, but does not affect significantly the monomer yield, so a higher temperature was overall preferred as it promotes faster delignification. Deposition of Pd on ß-zeolite resulted in a bifunctional hydrogenation/dehydration catalyst, tested during the catalytic depolymerization of solvated lignin with and without hydrogen addition. Pd/ß-zeolite displays synergistic effects (compared to the Pd/γ-Al2 O3 and ß-zeolite tested individually and as a mixed bed), resulting in higher monomer yield. This is likely caused by increased acidity and the proximity between the metallic and acid active sites. Furthermore, different ß-zeolite with varying SAR and textural properties were studied to shed light onto the effect of acidity and porosity in the stabilization of lignin monomers. While some of the catalysts showed stable performance, characterization of the spent catalyst reveals Al leaching (causing acidity loss and changes in textural properties), and some degree of coking and Pd sintering.
Collapse
Affiliation(s)
- A Kramarenko
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 145612, AZ, Eindhoven, Nederlands
| | - A Uslu
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 145612, AZ, Eindhoven, Nederlands
| | - D Etit
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 145612, AZ, Eindhoven, Nederlands
- Department of Chemical Engineering, Imperial college, London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - F Neira D'Angelo
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 145612, AZ, Eindhoven, Nederlands
| |
Collapse
|
18
|
Bai J, Li H, Zhu Y, Zhu Y, Wang C, Wang H, Liao Y. Synthesis of 2,6-Dimethoxy-p-aminophenol from Hardwood Lignin. CHEMSUSCHEM 2023; 16:e202300558. [PMID: 37449540 DOI: 10.1002/cssc.202300558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Although the multiple functional groups in biomass offer notable chances for producing high-value chemicals, most of the current studies focused on the (deep) defunctionalization of biomass and its derivates. Herein, we present a catalytic approach to valorize birch wood lignin with maintaining the methoxy and hydroxy groups in the final product (i. e., 2,6-dimethoxy-p-aminophenol), which has applications in different sectors such as pharmaceuticals. The proved approach involves four steps with a high yield (19.8 wt % on the basis of used lignin) to 2,6-dimethoxy-p-aminophenol. The native lignin in birch wood was first converted using alkaline aerobic oxidation in the presence of copper ions toward high-yield syringaldehyde, which was then selectively oxidized toward 2,6-dimethoxy-1,4-benzoquinone using H2 O2 and V2 O5 . Oximation of 2,6-dimethoxy-1,4-benzoquinone can selectively form 2,6-dimethoxy-1,4-benzoquinone-4-oxime, which can be quantitatively hydrogenated toward 2,6-dimethoxy-p-aminophenol. This work highlights the unique potential of biomass and its derivates for the sustainable production of high-value products with exploring the value of inherent functional groups.
Collapse
Affiliation(s)
- Jing Bai
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Henan Outstanding Foreign Scientist's Workroom, Zhengzhou, 450001, P. R. China
| | - Hao Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yuting Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Yiping Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Chenguang Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Haiyong Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Yuhe Liao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| |
Collapse
|
19
|
Cheng J, Huang C, Zhan Y, Liu X, Wang J, Huang C, Fang G, Ragauskas AJ, Xie Z, Meng X. A novel mineral-acid free biphasic deep eutectic solvent/γ-valerolactone system for furfural production and boosting the enzymatic hydrolysis of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 387:129653. [PMID: 37573979 DOI: 10.1016/j.biortech.2023.129653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
The failure of hemicellulose valorization in a deep eutectic solvent (DES) pretreatment has become a bottleneck that challenges its further development. To address this issue, this study developed a DES/GVL (γ-valerolactone) biphasic system for effective hemicellulose-furfural conversion, enhanced cellulose saccharification and lignin isolation. The results indicated that the biphasic system could significantly improve the lignin removal (as high as 89.1%), 86.0% higher than the monophasic DES, accompanied by ∼100% hemicellulose degradation. Notably, the GVL in the biphasic solvent restricted the condensation of hemicellulose degradation products, which as a result generated large amount of furfural in the pretreatment liquid with a yield of 68.6%. With the removal of hemicellulose and lignin, cellulose enzymatic hydrolysis yield was boosted and reached near 100%. This study highlighted that the novel DES/GVL is capable of fractionating the biomass and benefiting their individual utilization, which could provide a new biorefinery configuration for a DES pretreatment.
Collapse
Affiliation(s)
- Jinyuan Cheng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Yunni Zhan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Xuze Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Jia Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zhanghong Xie
- Yibin Paper Industry Co., LTD, YiBin City 644109, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| |
Collapse
|
20
|
Jindal M, Uniyal P, Thallada B. Reductive catalytic fractionation as a novel pretreatment/lignin-first approach for lignocellulosic biomass valorization: A review. BIORESOURCE TECHNOLOGY 2023; 385:129396. [PMID: 37369316 DOI: 10.1016/j.biortech.2023.129396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Presently, the use of lignocellulosic biomass is mainly focused on creating pulp/paper, energy, sugars and bioethanol from the holocellulose component, leaving behind lignin to be discarded or burned as waste despite of its highest aromatic carbon and energy content (22-29 KJ/g). During the pulping process, lignin undergoes significant structural changes to yield technical lignin. For a circular bioeconomy, there is an urgent need to enhance the use of native lignin for generating more valuable products. Over the last few years, a new method called 'lignin-first', or 'reductive catalytic fractionation' (RCF), has been devised to achieve selective phenolic monomers under mild reaction conditions. This involves deconstructing lignin before capitalizing on carbohydrates. The objective of this study is to record the recent developments of the 'lignin-first' process. This review also underlines the contribution of RCF biorefinery towards achieving sustainable development goals (SDGs) and concludes with an overview of challenges and upcoming opportunities.
Collapse
Affiliation(s)
- Meenu Jindal
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India; Material Resource Efficiency Division, CSIR - Indian Institute of Petroleum, Dehradun-248005, Uttarakhand, India
| | - Priyanka Uniyal
- Material Resource Efficiency Division, CSIR - Indian Institute of Petroleum, Dehradun-248005, Uttarakhand, India
| | - Bhaksar Thallada
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India; Material Resource Efficiency Division, CSIR - Indian Institute of Petroleum, Dehradun-248005, Uttarakhand, India.
| |
Collapse
|
21
|
Chen J, Si X, Wang Y, Ren Z, Liu Q, Lu F. Efficient Fractionation and Catalytic Valorization of Raw Biomass in ϵ-Caprolactone and Water. CHEMSUSCHEM 2023; 16:e202202162. [PMID: 36610014 DOI: 10.1002/cssc.202202162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Efficient fractionation and utilization of the whole biomass is particularly attractive but remains a great challenge, owing to the recalcitrance of biomass. In this study, a simple and efficient approach is developed to obtain high-purity cellulose with a delignification degree of 97.5 % in ϵ-caprolactone and water. FTIR spectroscopy reveals that ϵ-caprolactone and water act in synergy to remove lignin from raw biomass and afford cellulose with clear macrofibrils. A linear positive correlation between the contents of hemicellulose and lignin is observed for the separated cellulose pulp. This mixed solvent exhibits good performance for the removal of lignin from various agricultural and forestry wastes. Moreover, nearly complete transformation of the whole biomass constituents is achieved with Ni-Al catalyst.
Collapse
Affiliation(s)
- Jiali Chen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xiaoqin Si
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Yubao Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Zhiwen Ren
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Qian Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Fang Lu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
22
|
Rinken R, Posthuma D, Rinaldi R. Lignin Stabilization and Carbohydrate Nature in H-transfer Reductive Catalytic Fractionation: The Role of Solvent Fractionation of Lignin Oil in Structural Profiling. CHEMSUSCHEM 2023; 16:e202201875. [PMID: 36469562 PMCID: PMC10108069 DOI: 10.1002/cssc.202201875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Reductive Catalytic Fractionation (RCF) of lignocellulosic materials produces lignin oil rich in monomer products and high-quality cellulosic pulps. RCF lignin oil also contains lignin oligomers/polymers and hemicellulose-derived carbohydrates. The variety of components makes lignin oil a complex matrix for analytical methods. As a result, the signals are often convoluted and overlapped, making detecting and quantifying key intermediates challenging. Therefore, to investigate the mechanisms underlining lignin stabilization and elucidate the structural features of carbohydrates occurring in the RCF lignin oil, fractionation methods reducing the RCF lignin oil complexity are required. This report examines the solvent fractionation of RCF lignin oil as a facile method for producing lignin oil fractions for advanced characterization. Solvent fractionation uses small volumes of environmentally benign solvents (methanol, acetone, and ethyl acetate) to produce multigram lignin fractions comprising products in different molecular weight ranges. This feature allows the determination of structural heterogeneity across the entire molecular weight distribution of the RCF lignin oil by high-resolution HSQC NMR spectroscopy. This study provides detailed insight into the role of the hydrogenation catalyst (Raney Ni) in stabilizing lignin fragments and defining the structural features of hemicellulose-derived carbohydrates in lignin oil obtained by the H-transfer RCF process.
Collapse
Affiliation(s)
- Raul Rinken
- Department of Chemical EngineeringImperial College LondonSouth Kensington CampusSW7 2AZLondonUK
| | - Dean Posthuma
- Department of Chemical EngineeringImperial College LondonSouth Kensington CampusSW7 2AZLondonUK
| | - Roberto Rinaldi
- Department of Chemical EngineeringImperial College LondonSouth Kensington CampusSW7 2AZLondonUK
| |
Collapse
|
23
|
Al‐Naji M, Brandi F, Drieß M, Rosowski F. From Lignin to Chemicals: An Expedition from Classical to Modern Catalytic Valorization Technologies. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Majd Al‐Naji
- Technische Universität Berlin BasCat – UniCat BASF JointLab Hardenbergstraße 36, Sekr. EW K-01 10623 Berlin Germany
| | - Francesco Brandi
- KU Leuven Center for Sustainable Catalysis and Engineering Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Matthias Drieß
- Technische Universität Berlin BasCat – UniCat BASF JointLab Hardenbergstraße 36, Sekr. EW K-01 10623 Berlin Germany
- Technische Universität Berlin Department of Chemistry, Metalorganics and Inorganic Materials Straße des 17. Juni 115, Sekr. C2 10623 Berlin Germany
| | - Frank Rosowski
- Technische Universität Berlin BasCat – UniCat BASF JointLab Hardenbergstraße 36, Sekr. EW K-01 10623 Berlin Germany
- BASF SE Process Research and Chemical Engineering 67056 Ludwigshafen Germany
| |
Collapse
|
24
|
Thermodynamic Characteristics Study with Pyrolysis Steam Coupled Multi-Stage Condensers. Processes (Basel) 2022. [DOI: 10.3390/pr10102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A four-stage condensers in series system was adopted to solve the problems of insufficient condensation of high-temperature pyrolysis steam and difficulty in the classification and recovery of pyrolysis oil, where the internal fluids conducted countercurrent convection heat exchange. A steady-state physical and mathematical model of a single condenser was established to clarify the discipline of heat transfer between the internal fluids. Meanwhile, the model of pyrolysis steam coupled multi-stage condensers was proposed with the help of the model compound firstly. A numerical simulation was carried out and the results showed that when the number of condensers in series was four, the heat transfer process of the system reached saturation, and the heat exchange of the cold and hot fluids was completely realized, and it was of little significance to continue to connect more condensers in series for the condensation of pyrolysis steam. To quickly condense the hot fluid, the key was to increase the mass flow rate of the cold fluid in the first-stage condenser. Compared with the experimental values, the calculated values of hot fluid outlet temperature were not higher than 10%, indicating that the model was highly reliable.
Collapse
|
25
|
Ma H, Zhang W, Chen D. Catalytic hydrodeoxygenation of phenolic compounds over Ru-MoFeP/Al2O3 catalyst. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Zhu L, Cui C, Liu H, Zhou Z, Qi F. Thermochemical depolymerization of lignin: Process analysis with state-of-the-art soft ionization mass spectrometry. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.982126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lignin valorization via thermochemical approaches has the potential to produce renewable fuels and value-added chemicals, which are of great significance to the sustainable development of human beings. During the thermochemical depolymerization which involves acid-catalyzed, alkali-catalyzed, oxidative, reductive, pyrolytic, and other reactions, the lignin structure will undergo a series of bond cleavage, condensation, and functional group changes, while the mechanism is still unclear. To improve the efficiency, the analysis of the evolution of intermediates during depolymerization is very important, among which soft ionization mass spectrometry plays a vital role. This review aims to summarize the research progress of process analysis of lignin depolymerization in both gas-phase, typically thermal and catalytic pyrolysis, and liquid-phase via online mass spectrometry. The challenges and our insights into the future development of the lignin valorization as well as soft ionization mass spectrometry methods are also discussed.
Collapse
|
27
|
Liu Z, Li H, Gao X, Guo X, Wang S, Fang Y, Song G. Rational highly dispersed ruthenium for reductive catalytic fractionation of lignocellulose. Nat Commun 2022; 13:4716. [PMID: 35953497 PMCID: PMC9372153 DOI: 10.1038/s41467-022-32451-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/28/2022] [Indexed: 01/23/2023] Open
Abstract
Producing monomeric phenols from lignin biopolymer depolymerization in a detachable and efficient manner comes under the spotlight on the fullest utilization of sustainable lignocellulosic biomass. Here, we report a low-loaded and highly dispersed Ru anchored on a chitosan-derived N-doped carbon catalyst (RuN/ZnO/C), which exhibits outstanding performance in the reductive catalytic fractionation of lignocellulose. Nearly theoretical maximum yields of phenolic monomers from lignin are achieved, corresponding to TON as 431 molphenols molRu-1, 20 times higher than that from commercial Ru/C catalyst; high selectivity toward propyl end-chained guaiacol and syringol allow them to be readily purified. The RCF leave high retention of (hemi)cellulose amenable to enzymatic hydrolysis due to the successful breakdown of biomass recalcitrance. The RuN/ZnO/C catalyst shows good stability in recycling experiments as well as after a harsh hydrothermal treatment, benefiting from the coordination of Ru species with N atoms. Characterizations of the RuN/ZnO/C imply a transformation from Ru single atoms to nanoclusters under current reaction conditions. Time-course experiment, as well as reactivity screening of a series of lignin model compounds, offer insight into the mechanism of current RCF over RuN/ZnO/C. This work opens a new opportunity for achieving the valuable aromatic products from lignin and promoting the industrial economic feasibility of lignocellulosic biomass.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Helong Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Xueying Gao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Xuan Guo
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuizhong Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China.
| | - Yunming Fang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
28
|
Wu X, Galkin MV, Stern T, Sun Z, Barta K. Fully lignocellulose-based PET analogues for the circular economy. Nat Commun 2022; 13:3376. [PMID: 35697677 PMCID: PMC9192716 DOI: 10.1038/s41467-022-30735-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Polyethylene terephthalate is one of the most abundantly used polymers, but also a significant pollutant in oceans. Due to growing environmental concerns, polyethylene terephthalate alternatives are highly sought after. Here we present readily recyclable polyethylene terephthalate analogues, made entirely from woody biomass. Central to the concept is a two-step noble metal free catalytic sequence (Cu20-PMO catalyzed reductive catalytic fractionation and Raney Ni mediated catalytic funneling) that allows for obtaining a single aliphatic diol 4-(3-hydroxypropyl) cyclohexan-1-ol in high isolated yield (11.7 wt% on lignin basis), as well as other product streams that are converted to fuels, achieving a total carbon yield of 29.5%. The diol 4-(3-hydroxypropyl) cyclohexan-1-ol is co-polymerized with methyl esters of terephthalic acid and furan dicarboxylic acid, both of which can be derived from the cellulose residues, to obtain polyesters with competitive Mw and thermal properties (Tg of 70-90 °C). The polymers show excellent chemical recyclability in methanol and are thus promising candidates for the circular economy.
Collapse
Affiliation(s)
- Xianyuan Wu
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Maxim V Galkin
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Tobias Stern
- University of Graz, Institute of Systems Sciences, Innovation and Sustainability Research, Merangasse 18/I, 8010, Graz, Austria
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, 100083, P. R. China.
| | - Katalin Barta
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010, Graz, Austria.
| |
Collapse
|
29
|
Sang Y, Chen H, Khalifeh M, Li Y. Catalysis and chemistry of lignin depolymerization in alcohol solvents - A review. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
30
|
You H, Yang Z, Lin J, Shu R, Yin T, Tian Z, Wang C, Chen Y. Hydrogenation of Lignin‐derived Phenolic Compounds over Ru/C Enhanced by Al
2
O
3
Catalyst at Room Temperature. ChemistrySelect 2022. [DOI: 10.1002/slct.202200709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hongyun You
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter School of Materials and Energy Guangdong University of Technology Guangzhou 510006 PR China
| | - Zhi Yang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter School of Materials and Energy Guangdong University of Technology Guangzhou 510006 PR China
| | - Jingjun Lin
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter School of Materials and Energy Guangdong University of Technology Guangzhou 510006 PR China
| | - Riyang Shu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter School of Materials and Energy Guangdong University of Technology Guangzhou 510006 PR China
| | - Tao Yin
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter School of Materials and Energy Guangdong University of Technology Guangzhou 510006 PR China
| | - Zhipeng Tian
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter School of Materials and Energy Guangdong University of Technology Guangzhou 510006 PR China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter School of Materials and Energy Guangdong University of Technology Guangzhou 510006 PR China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter School of Materials and Energy Guangdong University of Technology Guangzhou 510006 PR China
| |
Collapse
|
31
|
Kumar A, Jindal M, Rawat S, Kumar J, Sripadi P, Yang B, Thallada B. Upgradation of sugarcane bagasse lignin: Fractionation to cyclic alcohols production. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
32
|
Wu X, Liao Y, Bomon J, Tian G, Bai ST, Van Aelst K, Zhang Q, Vermandel W, Wambacq B, Maes BUW, Yu J, Sels BF. Lignin-First Monomers to Catechol: Rational Cleavage of C-O and C-C Bonds over Zeolites. CHEMSUSCHEM 2022; 15:e202102248. [PMID: 34927813 DOI: 10.1002/cssc.202102248] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
A catalytic route is developed to synthesize bio-renewable catechol from softwood-derived lignin-first monomers. This process concept consists of two steps: 1) O-demethylation of 4-n-propylguaiacol (4-PG) over acidic beta zeolites in hot pressurized liquid water delivering 4-n-propylcatechol (4-PC); 2) gas-phase C-dealkylation of 4-PC providing catechol and propylene over acidic ZSM-5 zeolites in the presence of water. With large pore sized beta-19 zeolite as catalyst, 4-PC is formed with more than 93 % selectivity at nearly full conversion of 4-PG. The acid-catalyzed C-dealkylation over ZSM-5 zeolite with medium pore size gives a catechol yield of 75 %. Overall, around 70 % catechol yield is obtained from pure 4-PG, or 56 % when starting from crude 4-PG monomers obtained from softwood by lignin-first RCF biorefinery. The selective cleavage of functional groups from biobased platform molecules through a green and sustainable process highlights the potential to shift feedstock from fossil oil to biomass, providing drop ins for the chemicals industry.
Collapse
Affiliation(s)
- Xian Wu
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Yuhe Liao
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
| | - Jeroen Bomon
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Guilong Tian
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Shao-Tao Bai
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Korneel Van Aelst
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry; International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Walter Vermandel
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Ben Wambacq
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry; International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Bert F Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| |
Collapse
|
33
|
Brandi F, Al‐Naji M. Sustainable Sorbitol Dehydration to Isosorbide using Solid Acid Catalysts: Transition from Batch Reactor to Continuous-Flow System. CHEMSUSCHEM 2022; 15:e202102525. [PMID: 34931452 PMCID: PMC9305242 DOI: 10.1002/cssc.202102525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Indexed: 06/09/2023]
Abstract
Isosorbide is one of the most interesting cellulosic-derived molecules with great potential to be implemented in wide range of products that shaping our daily life. This Review describes the recent developments in the production of isosorbide from sorbitol in batch and continuous-flow systems under hydrothermal conditions using solid acid catalysts. Moreover, the current hurdles and challenges regarding the synthesis of isosorbide from cellulosic biomass in continuous-flow process using solid acid catalysts are summarized, as well as the scaling-up of this process into pilot level, which will lead to an established industrial process with high sustainability metrics.
Collapse
Affiliation(s)
- Francesco Brandi
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Majd Al‐Naji
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
34
|
Fan Y, Li H, Su S, Chen J, Liu C, Wang S, Xu X, Song G. Integration of Ru/C and base for reductive catalytic fractionation of triploid poplar. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63881-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Kenny JK, Brandner DG, Neefe SR, Michener WE, Román-Leshkov Y, Beckham GT, Medlin JW. Catalyst choice impacts aromatic monomer yields and selectivity in hydrogen-free reductive catalytic fractionation. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00275b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd/C and Pt/C show high activity for hydrogen-free reductive catalytic fractionation compared to Ru/C and Ni/C.
Collapse
Affiliation(s)
- Jacob K. Kenny
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder 80303, CO, USA
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO 80401, USA
| | - David G. Brandner
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO 80401, USA
| | - Sasha R. Neefe
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO 80401, USA
| | - William E. Michener
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO 80401, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Cambridge, MA 02139, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO 80401, USA
| | - J. Will Medlin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder 80303, CO, USA
| |
Collapse
|
36
|
Tavana J, Faysal A, Vithanage A, Gramlich WM, Schwartz TJ. Pathway to fully-renewable biobased polyesters derived from HMF and phenols. Polym Chem 2022. [DOI: 10.1039/d1py01441b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Building on previous work where 5-hydroxymethylfurfural (HMF) was selectively functionalized by etherification with phenols, we demonstrated that the oxidized versions of these HMF ethers can be converted to functionalized δ-hexalactones...
Collapse
|
37
|
Muangmeesri S, Li N, Georgouvelas D, Ouagne P, Placet V, Mathew AP, Samec JSM. Holistic Valorization of Hemp through Reductive Catalytic Fractionation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:17207-17213. [PMID: 34976442 PMCID: PMC8715730 DOI: 10.1021/acssuschemeng.1c06607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/10/2021] [Indexed: 05/05/2023]
Abstract
Despite the increased use of hemp fiber, negligible attention has been given to upgrade the hemp hurd, which constitutes up to 70 wt % of the hemp stalk and is currently considered a low-value byproduct. In this work, valorization of hemp hurd was performed by reductive catalytic fractionation (RCF) in the presence of a metal catalyst. We found an unexpectedly high yield of monophenolic compounds (38.3 wt %) corresponding to above 95% of the theoretical maximum yield. The high yield is explained by both a thin cell wall and high S-lignin content. In addition, organosolv pulping was performed to generate a pulp that was bleached to produce dissolving-grade pulp suitable for textile fiber production (viscosity, 898 mL/g; ISO-brightness, 90.2%) and nanocellulose. Thus, we have demonstrated a novel value chain from a low-value side stream of hemp fiber manufacture that has the potential to increase textile fiber production with 100% yield and also give bio-oil for green chemicals.
Collapse
Affiliation(s)
| | - Ning Li
- Department
of Organic Chemistry, Stockholm University, 106 91 Stockholm, Sweden
- State
Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for
Clean Energy (DNL), Dalian Institute of
Chemical Physics (DICP), Dalian 116023, People’s Republic
of China
| | - Dimitrios Georgouvelas
- Department
of Materials and Environmental Chemistry, Stockholm University, 106
91 Stockholm, Sweden
| | - Pierre Ouagne
- Laboratoire
Génie de Production, Université
de Toulouse, ENIT, 65016 Tarbes, France
| | - Vincent Placet
- Department
of Applied Mechanics, Univ. Bourgogne Franche-Comté, FEMTO-ST Institute, UFC/CNRS/ENSMM/UTBM, F-25000 Besançon, France
| | - Aji P. Mathew
- Department
of Materials and Environmental Chemistry, Stockholm University, 106
91 Stockholm, Sweden
| | - Joseph S. M. Samec
- Department
of Organic Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
38
|
Tang D, Huang X, Tang W, Jin Y. Lignin-to-chemicals: Application of catalytic hydrogenolysis of lignin to produce phenols and terephthalic acid via metal-based catalysts. Int J Biol Macromol 2021; 190:72-85. [PMID: 34480907 DOI: 10.1016/j.ijbiomac.2021.08.188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/06/2021] [Accepted: 08/25/2021] [Indexed: 01/11/2023]
Abstract
Lignin is the only renewable aromatic material in nature and contains a large number of oxygen-containing functional groups. High-value and green utilization of "lignin-to-chemicals" can be realized via using lignin to produce fine chemicals such as phenols and carboxylic acids, which can not only reduce the waste of lignin in the process of lignocellulosic biomass treatment, but gradually make the substitution of traditional fossil fuels come true. The hydrogenolysis process under catalysis of metal catalyst has high product selectivity and less impurity, which is suitable for the production of same type or single fine chemicals. Hydrogenolysis of lignin via metal catalysts to produce lignin oil, and further modification of functional groups (e.g. methoxyl, alkyl and hydroxyl group) of depolymerized monomers in the bio-oil to yeild phenols and terephthalic acid are reviewed, and catalytic mechanisms are briefly summarized in this paper. Finally, the problems of lignin catalytic conversion existing currently are investigated, and the future development of this field is also prospected.
Collapse
Affiliation(s)
- Daobin Tang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaozhen Huang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Weizhong Tang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yanqiao Jin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
39
|
Cui C, Chen X, Liu C, Zhu Y, Zhu L, Ouyang J, Shen Y, Zhou Z, Qi F. In Situ Reactor-Integrated Electrospray Ionization Mass Spectrometry for Heterogeneous Catalytic Reactions and Its Application in the Process Analysis of High-Pressure Liquid-Phase Lignin Depolymerization. Anal Chem 2021; 93:12987-12994. [PMID: 34520172 DOI: 10.1021/acs.analchem.1c02710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Process analysis of heterogeneous catalytic reactions such as lignin depolymerization is essential to understand the reaction mechanism at the molecular level, but it is always challenging due to harsh conditions. Herein, we report an operando process analysis strategy by combining a microbatch reactor with high-resolution mass spectrometry (MS) via a reactor-integrated electrospray ionization (R-ESI) technique. R-ESI-MS expands the applications of traditional in situ MS to a heterogeneous and high-pressure liquid-phase system. With this strategy, we present the evolution of a series of monomers, dimers, and oligomers during lignin depolymerization under operando conditions (methanol solvent, 260 °C, ∼8 MPa), which is the first experimental elucidation of a progressive depolymerization pathway and evidence of repolymerization of active monomers. The proposed R-ESI-MS is crucial in probing depolymerization intermediates of lignin; it also provides a flexible strategy for process analysis of heterogeneous catalytic reactions under operando conditions.
Collapse
Affiliation(s)
- Cunhao Cui
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Xiamin Chen
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Chunjiang Liu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yanan Zhu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Linyu Zhu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Jianfeng Ouyang
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yang Shen
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Zhongyue Zhou
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Fei Qi
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
40
|
Luo H, Weeda EP, Alherech M, Anson CW, Karlen SD, Cui Y, Foster CE, Stahl SS. Oxidative Catalytic Fractionation of Lignocellulosic Biomass under Non-alkaline Conditions. J Am Chem Soc 2021; 143:15462-15470. [PMID: 34498845 PMCID: PMC8487257 DOI: 10.1021/jacs.1c08635] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biomass pretreatment methods are commonly used to isolate carbohydrates from biomass, but they often lead to modification, degradation, and/or low yields of lignin. Catalytic fractionation approaches provide a possible solution to these challenges by separating the polymeric sugar and lignin fractions in the presence of a catalyst that promotes cleavage of the lignin into aromatic monomers. Here, we demonstrate an oxidative fractionation method conducted in the presence of a heterogeneous non-precious-metal Co-N-C catalyst and O2 in acetone as the solvent. The process affords a 15 wt% yield of phenolic products bearing aldehydes (vanillin, syringaldehyde) and carboxylic acids (p-hydroxybenzoic acid, vanillic acid, syringic acid), complementing the alkylated phenols obtained from existing reductive catalytic fractionation methods. The oxygenated aromatics derived from this process have appealing features for use in polymer synthesis and/or biological funneling to value-added products, and the non-alkaline conditions associated with this process support preservation of the cellulose, which remains insoluble at reaction conditions and is recovered as a solid.
Collapse
Affiliation(s)
- Hao Luo
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
| | - Eric P. Weeda
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
| | - Manar Alherech
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
| | - Colin W. Anson
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
| | - Steven D. Karlen
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Yanbin Cui
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
| | - Cliff E. Foster
- D.O.E. Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, United States
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
| |
Collapse
|
41
|
Kramarenko A, Etit D, Laudadio G, D'Angelo FN. β-Zeolite-Assisted Lignin-First Fractionation in a Flow-Through Reactor*. CHEMSUSCHEM 2021; 14:3838-3849. [PMID: 34259395 PMCID: PMC8518628 DOI: 10.1002/cssc.202101157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Indexed: 06/13/2023]
Abstract
In the present work, a hydrogen-free one-step catalytic fractionation of woody biomass using commercial β-zeolite as catalyst in a flow-through reactor was carried out. Birch, spruce, and walnut shells were compared as lignocellulosic feedstocks. β-Zeolite acted as a bifunctional catalyst, preventing lignin repolymerization due to its size-selective properties and also cleaving β-O-4 lignin intralinkages while stabilizing reactive intermediates. A rate-limiting step analysis using different reactor configurations revealed a mixed regime where the rates of both solvolytic delignification and zeolite-catalyzed depolymerization and dehydration affected the net rate of aromatic monomer production. Oxalic acid co-feeding was found to enhance monomer production at moderate concentrations by improving solvolysis, while it caused structural changes to the zeolite and led to lower monomer yields at higher concentrations. Zeolite stability was assessed through catalyst recycling and characterization. Main catalyst deactivation mechanisms were found to be coking and leaching, leading to widening of the pores and decrease of zeolite acidity, respectively.
Collapse
Affiliation(s)
- Alexei Kramarenko
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyHet Kranenveld 145612 AZEindhovenThe Netherlands
| | - Deniz Etit
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyHet Kranenveld 145612 AZEindhovenThe Netherlands
| | - Gabriele Laudadio
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyHet Kranenveld 145612 AZEindhovenThe Netherlands
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA, 92037USA
| | - Fernanda Neira D'Angelo
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyHet Kranenveld 145612 AZEindhovenThe Netherlands
| |
Collapse
|
42
|
Bartling AW, Stone ML, Hanes RJ, Bhatt A, Zhang Y, Biddy MJ, Davis R, Kruger JS, Thornburg NE, Luterbacher JS, Rinaldi R, Samec JSM, Sels BF, Román-Leshkov Y, Beckham GT. Techno-economic analysis and life cycle assessment of a biorefinery utilizing reductive catalytic fractionation. ENERGY & ENVIRONMENTAL SCIENCE 2021; 14:4147-4168. [PMID: 36324336 PMCID: PMC9562980 DOI: 10.1039/d1ee01642c] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/08/2021] [Indexed: 05/05/2023]
Abstract
Reductive catalytic fractionation (RCF) is a promising approach to fractionate lignocellulose and convert lignin to a narrow product slate. To guide research towards commercialization, cost and sustainability must be considered. Here we report a techno-economic analysis (TEA), life cycle assessment (LCA), and air emission analysis of the RCF process, wherein biomass carbohydrates are converted to ethanol and the RCF oil is the lignin-derived product. The base-case process, using a feedstock supply of 2000 dry metric tons per day, methanol as a solvent, and H2 gas as a hydrogen source, predicts a minimum selling price (MSP) of crude RCF oil of $1.13 per kg when ethanol is sold at $2.50 per gallon of gasoline-equivalent ($0.66 per liter of gasoline-equivalent). We estimate that the RCF process accounts for 57% of biorefinery installed capital costs, 77% of positive life cycle global warming potential (GWP) (excluding carbon uptake), and 43% of positive cumulative energy demand (CED). Of $563.7 MM total installed capital costs, the RCF area accounts for $323.5 MM, driven by high-pressure reactors. Solvent recycle and water removal via distillation incur a process heat demand equivalent to 73% of the biomass energy content, and accounts for 35% of total operating costs. In contrast, H2 cost and catalyst recycle are relatively minor contributors to operating costs and environmental impacts. In the carbohydrate-rich pulps, polysaccharide retention is predicted not to substantially affect the RCF oil MSP. Analysis of cases using different solvents and hemicellulose as an in situ hydrogen donor reveals that reducing reactor pressure and the use of low vapor pressure solvents could reduce both capital costs and environmental impacts. Processes that reduce the energy demand for solvent separation also improve GWP, CED, and air emissions. Additionally, despite requiring natural gas imports, converting lignin as a biorefinery co-product could significantly reduce non-greenhouse gas air emissions compared to burning lignin. Overall, this study suggests that research should prioritize ways to lower RCF operating pressure to reduce capital expenses associated with high-pressure reactors, minimize solvent loading to reduce reactor size and energy required for solvent recovery, implement condensed-phase separations for solvent recovery, and utilize the entirety of RCF oil to maximize value-added product revenues.
Collapse
Affiliation(s)
- Andrew W Bartling
- Catalytic Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory Golden CO 80401 USA
- Center for Bioenergy Innovation Oak Ridge TN 37830 USA
| | - Michael L Stone
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Rebecca J Hanes
- Center for Bioenergy Innovation Oak Ridge TN 37830 USA
- Strategic Energy Analysis Center, National Renewable Energy Laboratory Golden CO 80401 USA
| | - Arpit Bhatt
- Strategic Energy Analysis Center, National Renewable Energy Laboratory Golden CO 80401 USA
| | - Yimin Zhang
- Strategic Energy Analysis Center, National Renewable Energy Laboratory Golden CO 80401 USA
| | - Mary J Biddy
- Catalytic Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory Golden CO 80401 USA
- Center for Bioenergy Innovation Oak Ridge TN 37830 USA
| | - Ryan Davis
- Catalytic Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory Golden CO 80401 USA
| | - Jacob S Kruger
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory Golden CO 80401 USA
| | - Nicholas E Thornburg
- Catalytic Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory Golden CO 80401 USA
| | - Jeremy S Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Roberto Rinaldi
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Joseph S M Samec
- Department of Organic Chemistry, Stockholm University SE-106 91 Stockholm Sweden
| | - Bert F Sels
- Center for Sustainable Catalysis and Engineering KU Leuven, Celestijnenlaan 200F 3001 Leuven Belgium
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Gregg T Beckham
- Catalytic Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory Golden CO 80401 USA
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory Golden CO 80401 USA
| |
Collapse
|
43
|
Chen L, van Muyden AP, Cui X, Fei Z, Yan N, Laurenczy G, Dyson PJ. Lignin First: Confirming the Role of the Metal Catalyst in Reductive Fractionation. JACS AU 2021; 1:729-733. [PMID: 34467329 PMCID: PMC8395662 DOI: 10.1021/jacsau.1c00018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rhodium nanoparticles embedded on the interior of hollow porous carbon nanospheres, able to sieve monomers from polymers, were used to confirm the precise role of metal catalysts in the reductive catalytic fractionation of lignin. The study provides clear evidence that the primary function of the metal catalyst is to hydrogenate monomeric lignin fragments into more stable forms following a solvent-based fractionation and fragmentation of lignin.
Collapse
Affiliation(s)
- Lu Chen
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fedérale de Lausanne, 1015 Lausanne, Switzerland
| | - Antoine P. van Muyden
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fedérale de Lausanne, 1015 Lausanne, Switzerland
| | - Xinjiang Cui
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fedérale de Lausanne, 1015 Lausanne, Switzerland
| | - Zhaofu Fei
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fedérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ning Yan
- Faculty
of Engineering, University of Singapore, 21 Lower Kent Ridge Road, 119077 Singapore
| | - Gabor Laurenczy
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fedérale de Lausanne, 1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fedérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
44
|
The Impact of Biomass and Acid Loading on Methanolysis during Two-Step Lignin-First Processing of Birchwood. Catalysts 2021. [DOI: 10.3390/catal11060750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We optimized the solvolysis step in methanol for two-step lignin-first upgrading of woody biomass. Birchwood was first converted via sulfuric acid methanolysis to cellulose pulp and a lignin oil intermediate, which comprises a mixture of lignin oligomers and C5 sugars in the methanol solvent. The impact of reaction temperature (140–200 °C), acid loading (0.24–0.81 wt%, dry biomass), methanol/biomass ratio (2.3/1–15.8/1 w/w) and reaction time (2 h and 0.5 h) was investigated. At high biomass loadings (ratio < 6.3/1 w/w), operation at elevated pressure facilitates delignification by keeping methanol in the liquid phase. A high degree of delignification goes together to a large extent with C5 sugar release, mostly in the form of methyl xylosides. Gel permeation chromatography and heteronuclear single quantum coherence NMR of lignin fractions obtained at high acid (0.81 wt%) and low biomass (15.8/1 w/w) loading revealed extensive cleavage of β-O-4′ bonds during acidolysis at 180 °C for 2 h. At an optimized methanol/biomass ratio of 2.3/1 w/w and acid loading (0.24 wt%), more β-O-4′ bonds could be preserved, i.e., about 33% after 2 h and 47% after 0.5 h. The high reactivity of the extracted lignin fragments was confirmed by a second hydrogenolysis step. Reductive treatment with Pd/C under mild conditions led to disappearance of ether linkages and molecular weight reduction in the hydrotreated lignin oil.
Collapse
|
45
|
Pore Blocking by Phenolates as Deactivation Path during the Cracking of 4-Propylphenol over ZSM-5. Catalysts 2021. [DOI: 10.3390/catal11060721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cracking of propyl side chains from 4-propylphenol, a model compound for lignin monomers, is studied for a commercial ZSM-5 zeolite catalyst. The decline of 4-propylphenol conversion with time on stream can be delayed by co-feeding water. FTIR spectroscopy shows the formation of chemisorbed phenolates during reactions and significant amounts of phenolics are detected by GC-MS of the extract from the spent catalysts. Thus, chemisorbed phenolates are identified as the main reason for deactivation in the absence of water. Regardless of the amount of co-fed water, substituted monoaromatics and polyaromatic species are formed. Comprehensive characterization of the spent catalysts including Raman and solid-state 27Al NMR spectroscopy, and thermogravimetric analysis points to a combination of deactivation processes. First, phenolates bind to Lewis acid sites within the zeolite framework and hinder diffusion unless they are hydrolyzed by water. In addition, light olefins created during the cracking process react to form a polyaromatic coke that deactivates the catalyst more permanently.
Collapse
|
46
|
Zhang H, Fu S, Du X, Deng Y. Advances in Versatile Nanoscale Catalyst for the Reductive Catalytic Fractionation of Lignin. CHEMSUSCHEM 2021; 14:2268-2294. [PMID: 33811470 DOI: 10.1002/cssc.202100067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
In the past five years, biomass-derived biofuels and biochemicals were widely studied both in academia and industry as promising alternatives to petroleum. In this Review, the latest progress of the synthesis and fabrication of porous nanocatalysts that are used in catalytic transformations involving hydrogenolysis of lignin is reviewed in terms of their textural properties, catalytic activities, and stabilities. A particular emphasis is made with regard to the catalyst design for the hydrogenolysis of lignin and/or lignin model compounds. Furthermore, the effects of different supports on the lignin hydrogenolysis/hydrogenation are discussed in detail. Finally, the challenges and future opportunities of lignin hydrogenolysis over nanomaterial-supported catalysts are also presented.
Collapse
Affiliation(s)
- Haichuan Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
- School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Xu Du
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Yulin Deng
- School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| |
Collapse
|
47
|
Zijlstra DS, de Korte J, de Vries EPC, Hameleers L, Wilbers E, Jurak E, Deuss PJ. Highly Efficient Semi-Continuous Extraction and In-Line Purification of High β-O-4 Butanosolv Lignin. Front Chem 2021; 9:655983. [PMID: 34041222 PMCID: PMC8141753 DOI: 10.3389/fchem.2021.655983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Innovative biomass fractionation is of major importance for economically competitive biorefineries. Lignin is currently severely underutilized due to the use of high severity fractionation methodologies that yield complex condensed lignin that limits high-value applicability. Mild lignin fractionation conditions can lead to lignin with a more regular C-O bonded structure that has increased potential for higher value applications. Nevertheless, such extraction methodologies typically suffer from inadequate lignin extraction efficiencies and yield. (Semi)-continuous flow extractions are a promising method to achieve improved extraction efficiency of such C-O linked lignin. Here we show that optimized organosolv extraction in a flow-through setup resulted in 93-96% delignification of 40 g walnut shells (40 wt% lignin content) by applying mild organosolv extraction conditions with a 2 g/min flowrate of a 9:1 n-butanol/water mixture with 0.18 M H2SO4 at 120°C in 2.5 h. 85 wt% of the lignin (corrected for alcohol incorporation, moisture content and carbohydrate impurities) was isolated as a powder with a high retention of the β-aryl ether (β-O-4) content of 63 linking motifs per 100 C9 units. Close examination of the isolated lignin showed that the main carbohydrate contamination in the recovered lignin was butyl-xyloside and other butoxylate carbohydrates. The work-up and purification procedure were investigated and improved by the implementation of a caustic soda treatment step and phase separation with a continuous integrated mixer/separator (CINC). This led to a combined 75 wt% yield of the lignin in 3 separate fractions with 3% carbohydrate impurities and a very high β-O-4 content of 67 linking motifs per 100 C9 units. Analysis of all the mass flows showed that 98% of the carbohydrate content was removed with the inline purification step, which is a significant improvement to the 88% carbohydrate removal for the traditional lignin precipitation work-up procedure. Overall we show a convenient method for inline extraction and purification to obtain high β-O-4 butanosolv lignin in excellent yields.
Collapse
Affiliation(s)
- Douwe Sjirk Zijlstra
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Joren de Korte
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Ernst P. C. de Vries
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Lisanne Hameleers
- Department of Bioproduct Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Erwin Wilbers
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Edita Jurak
- Department of Bioproduct Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Peter Joseph Deuss
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| |
Collapse
|
48
|
Nishide R, Truong JH, Abu-Omar MM. Organosolv Fractionation of Walnut Shell Biomass to Isolate Lignocellulosic Components for Chemical Upgrading of Lignin to Aromatics. ACS OMEGA 2021; 6:8142-8150. [PMID: 33817473 PMCID: PMC8014912 DOI: 10.1021/acsomega.0c05936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Renewable carbon sources are a rapidly growing field of research because of the finite supply of fossil carbon. The lignocellulosic biomass walnut shell (WS) is an attractive renewable feedstock because it has a high lignin content (38-44 wt %) and is an agricultural waste stream. Lignin, a major component of lignocellulosic biomass that is currently a waste stream in pulping processes, has unique potential for chemical upgrading because its subunits are aromatic. In the interest of improving the sustainability and reducing the environmental impact of biomass processing, valorization of agricultural waste streams is important. Herein, three lab-scale, batch organosolv procedures are explored in the interest of optimal isolation of protected WS lignin (WSL). One system uses acetic acid, one MeOH, and the final EtOH as the primary solvent. The optimal condition for protected WSL isolation, which resulted in a 64% yield, was methanol and dilute sulfuric acid with formaldehyde to act as a protecting group at 170 °C. Select samples were upgraded by hydrogenolysis over a nickel catalyst. Protected lignin recovered from the optimal condition showed 77% by weight conversion to monomeric phenols, demonstrating that the protected WSL can selectively afford high value products. One key finding from this study was that MeOH is a superior solvent for isolating WSL versus EtOH because the latter exhibited lignin recondensation. The second was that the Ni/C-catalyzed reductive catalytic fractionation (RCF) directly of WS biomass was not selective relative to RCF of isolated WSL; conversion of raw WS to monomers produced significantly more side products.
Collapse
Affiliation(s)
- Rebecca
N. Nishide
- Department
of Chemistry & Biochemistry, University
of California, Santa Barbara, California 93106-9510, United States
| | - Julianne H. Truong
- Department
of Chemistry & Biochemistry, University
of California, Santa Barbara, California 93106-9510, United States
| | - Mahdi M. Abu-Omar
- Department
of Chemistry & Biochemistry, University
of California, Santa Barbara, California 93106-9510, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
49
|
Wang S, Zhang K, Li H, Xiao LP, Song G. Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst. Nat Commun 2021; 12:416. [PMID: 33462206 PMCID: PMC7814062 DOI: 10.1038/s41467-020-20684-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/14/2020] [Indexed: 02/02/2023] Open
Abstract
C-lignin is a homo-biopolymer, being made up of caffeyl alcohol exclusively. There is significant interest in developing efficient and selective catalyst for depolymerization of C-lignin, as it represents an ideal feedstock for producing catechol derivatives. Here we report an atomically dispersed Ru catalyst, which can serve as an efficient catalyst for the hydrogenolysis of C-lignin via the cleavage of C-O bonds in benzodioxane linkages, giving catechols in high yields with TONs up to 345. A unique selectivity to propenylcatechol (77%) is obtained, which is otherwise hard to achieve, because this catalyst is capable of hydrogenolysis rather than hydrogenation. This catalyst also demonstrates good reusability in C-lignin depolymerization. Detailed investigations by model compounds concluded that the pathways involving dehydration and/or dehydrogenation reactions are incompatible routes; we deduced that caffeyl alcohol generated via concurrent C-O bonds cleavage of benzodioxane unit may act as an intermediate in the C-lignin hydrogenolysis. Current demonstration validates that atomically dispersed metals can not only catalyze small molecules reactions, but also drive the transformation of abundant and renewable biopolymer.
Collapse
Affiliation(s)
- Shuizhong Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Kaili Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Helong Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Ling-Ping Xiao
- Center for Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P.R. China
| | - Guoyong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China.
| |
Collapse
|
50
|
van Scodeller I, De Oliveira Vigier K, Muller E, Ma C, Guégan F, Wischert R, Jérôme F. A Combined Experimental-Theoretical Study on Diels-Alder Reaction with Bio-Based Furfural: Towards Renewable Aromatics. CHEMSUSCHEM 2021; 14:313-323. [PMID: 33022869 DOI: 10.1002/cssc.202002111] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The synthesis of relevant renewable aromatics from bio-based furfural derivatives and cheap alkenes is carried out by using a Diels-Alder/aromatization sequence. The prediction and the control of the ortho/meta selectivity in the Diels-Alder step is an important issue to pave the way to a wide range of renewable aromatics, but it remains a challenging task. A combined experimental-theoretical approach reveals that, as a general trend, ortho and meta cycloadducts are the kinetic and thermodynamic products, respectively. The nature of substituents, both on the dienes and dienophiles, significantly impacts the feasibility of the reaction, through a modulation on the nucleo- and electrophilicity of the reagents, as well as the ortho/meta ratio. We show that the ortho/meta selectivity at the reaction equilibrium stems from a subtle interplay between charge interactions, favoring the ortho products, and steric interactions, favoring the meta isomers. This work also points towards a path to optimize the aromatization step.
Collapse
Affiliation(s)
- I van Scodeller
- Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS, Université de Poitiers, 1 rue Marcel Doré, 86073, Poitiers, France
| | - Karine De Oliveira Vigier
- Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS, Université de Poitiers, 1 rue Marcel Doré, 86073, Poitiers, France
| | - Eric Muller
- Centre de Recherche Solvay, 85 Avenue des Frères Perret, 69190, Saint-Fons, France
| | - Changru Ma
- Eco-Efficient Products and Processes Laboratory, UMI 3464 CNRS/Solvay, 3966 Jin Du Road, Xinzhuang, Industrial Zone, Shanghai, 201108, P. R. China
| | - Frédéric Guégan
- Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS, Université de Poitiers, 1 rue Marcel Doré, 86073, Poitiers, France
| | - Raphael Wischert
- Eco-Efficient Products and Processes Laboratory, UMI 3464 CNRS/Solvay, 3966 Jin Du Road, Xinzhuang, Industrial Zone, Shanghai, 201108, P. R. China
| | - François Jérôme
- Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS, Université de Poitiers, 1 rue Marcel Doré, 86073, Poitiers, France
| |
Collapse
|