1
|
Perez M, Barroso Spejo A, Bortolança Chiarotto G, Silveira Guimarães F, Leite Rodrigues de Oliveira A, Politti Cartarozzi L. Selective blockade of cannabinoid receptors influences motoneuron survival and glial responses after neonatal axotomy. Neuroscience 2025; 565:265-276. [PMID: 39481830 DOI: 10.1016/j.neuroscience.2024.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Sciatic nerve crush in neonatal rats leads to an extensive death of motor and sensory neurons, serving as a platform to develop new neuroprotective approaches. The endocannabinoid system plays important neuromodulatory roles and has been involved in neurodevelopment and neuroprotection. The present work investigated the role of the cannabinoid receptors CB1 and CB2 in the neuroprotective response after neonatal axotomy. CB1 and CB2 antagonists (AM251 and AM630, respectively) were used after sciatic nerve crush in 2-day-old Wistar rats. Five days after lesion and treatment, the rats were perfused, and the spinal cords and dorsal root ganglia (DRG) were obtained and processed to investigate neuronal survival and immunohistochemistry changes, or RT-qPCR analysis. Motoneuron survival analysis showed that blocking CB2 alone or in combination with CB1 was neuroprotective. This effect was associated with a decrease in astrogliosis and microglial reaction. Interestingly, Cnr1 (CB1) and Bdnf gene transcripts were downregulated in the spinal cords of the antagonist-treated groups. Despite no intergroup difference regarding neuronal survival in the DRG, the simultaneous blockade of CB1 and CB2 receptors led to an increased expression of both Cnr1 and Cnr2, combined with Gdnf upregulation. The results indicate that the selective antagonism of cannabinoid receptors facilitates neuroprotection and decreases glial reactivity, suggesting new potential treatment approaches.
Collapse
Affiliation(s)
- Matheus Perez
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083-862, Campinas, SP, Brazil; Center for Studies in Anatomy, São Francisco University - USF, Av. São Francisco de Assis, 218 14049-900, Bragança Paulista, SP, Brazil
| | - Aline Barroso Spejo
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083-862, Campinas, SP, Brazil
| | - Gabriela Bortolança Chiarotto
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083-862, Campinas, SP, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900 14040-907, Ribeirão Preto, SP, Brazil
| | - Alexandre Leite Rodrigues de Oliveira
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083-862, Campinas, SP, Brazil
| | - Luciana Politti Cartarozzi
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083-862, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Cooper AH, Barry AM, Chrysostomidou P, Lolignier R, Wang J, Redondo Canales M, Titterton HF, Bennett DL, Weir GA. Peripheral nerve injury results in a biased loss of sensory neuron subpopulations. Pain 2024; 165:2863-2876. [PMID: 39158319 PMCID: PMC11562755 DOI: 10.1097/j.pain.0000000000003321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/11/2024] [Accepted: 05/25/2024] [Indexed: 08/20/2024]
Abstract
ABSTRACT There is a rich literature describing the loss of dorsal root ganglion (DRG) neurons following peripheral axotomy, but the vulnerability of discrete subpopulations has not yet been characterised. Furthermore, the extent or even presence of neuron loss following injury has recently been challenged. In this study, we have used a range of transgenic recombinase driver mouse lines to genetically label molecularly defined subpopulations of DRG neurons and track their survival following traumatic nerve injury. We find that spared nerve injury leads to a marked loss of cells containing DRG volume and a concomitant loss of small-diameter DRG neurons. Neuron loss occurs unequally across subpopulations and is particularly prevalent in nonpeptidergic nociceptors, marked by expression of Mrgprd. We show that this subpopulation is almost entirely lost following spared nerve injury and severely depleted (by roughly 50%) following sciatic nerve crush. Finally, we used an in vitro model of DRG neuron survival to demonstrate that nonpeptidergic nociceptor loss is likely dependent on the absence of neurotrophic support. Together, these results profile the extent to which DRG neuron subpopulations can survive axotomy, with implications for our understanding of nerve injury-induced plasticity and pain.
Collapse
Affiliation(s)
- Andrew H. Cooper
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Allison M. Barry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Romane Lolignier
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Jinyi Wang
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | | | - Heather F. Titterton
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Greg A. Weir
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Zhang X, Liu H, Xiu X, Cheng J, Li T, Wang P, Men L, Qiu J, Jin Y, Zhao J. Exosomal GDNF from Bone Marrow Mesenchymal Stem Cells Moderates Neuropathic Pain in a Rat Model of Chronic Constriction Injury. Neuromolecular Med 2024; 26:34. [PMID: 39167282 DOI: 10.1007/s12017-024-08800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Both of exosomes derived from mesenchymal stem cells (MSCs) and glial cell line-derived neurotrophic factor (GDNF) show potential for the treatment of neuropathic pain. Here, the analgesic effects of exosomes derived from bone marrow MSCs (BMSCs) were investigated. BMSCs-derived exosomes were isolated and characterized. Chronic constriction injury (CCI) was constructed to induce neuropathic pain in rats, which were then treated with exosomes. Pain behaviors were evaluated by measuring paw withdrawal thresholds and latency. The changes of key proteins, including cytokines, were explored using Western blot and ELISA. Administration of BMSCs-derived exosomes alleviated neuropathic pain, as demonstrated by the decrease of thermal hyperalgesia and mechanical allodynia, as well as the reduced secretion of pro-inflammatory cytokines in CCI rats. These effects were comparable to the treatment of GDNF alone. Mechanically, the exosomes suppressed the CCI-induced activation of TLR2/MyD88/NF-κB signaling pathway, while GDNF knockdown impaired their analgesic effects on CCI rat. BMSCs-derived exosomes may alleviate CCI-induced neuropathic pain and inflammation in rats by transporting GDNF.
Collapse
Affiliation(s)
- Xuelei Zhang
- Graduate School, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Luquan District, Shijiazhuang, 050200, Hebei, China.
- Department of Hand Microsurgery, The Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, 061000, Hebei, China.
- Hebei Key Laboratory of Intergraded Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, 061000, Hebei, China.
| | - Huan Liu
- Graduate School, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Luquan District, Shijiazhuang, 050200, Hebei, China
| | - Xiaolei Xiu
- Department of Hand Microsurgery, The Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, 061000, Hebei, China
| | - Jibo Cheng
- Chengde Medical University, Anyuan Road, Chengde, 067000, Hebei, China
| | - Tong Li
- Department of Hand Microsurgery, The Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, 061000, Hebei, China
| | - Ping Wang
- Department of Hand Microsurgery, The Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, 061000, Hebei, China
| | - Lili Men
- Department of Hand Microsurgery, The Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, 061000, Hebei, China
| | - Junru Qiu
- Department of Hand Microsurgery, The Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, 061000, Hebei, China
| | - Yanyan Jin
- Department of Hand Microsurgery, The Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, 061000, Hebei, China
| | - Jianyong Zhao
- Department of Hand Microsurgery, The Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, 061000, Hebei, China.
| |
Collapse
|
4
|
Glial-derived neurotrophic factor regulates the expression of TREK2 in rat primary sensory neurons leading to attenuation of axotomy-induced neuropathic pain. Exp Neurol 2022; 357:114190. [PMID: 35907583 DOI: 10.1016/j.expneurol.2022.114190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/24/2022] [Indexed: 11/24/2022]
Abstract
TREK2 is a member of the 2-pore domain family of K+ channels (K2P) preferentially expressed by unmyelinated, slow-conducting and non-peptidergic isolectin B4-binding (IB4+) primary sensory neurons of the dorsal root ganglia (DRG). IB4+ neurons depend on the glial-derived neurotrophic factor (GDNF) family of ligands (GFL's) to maintain their phenotype. In our previous work, we demonstrated that 7 days after spinal nerve axotomy (SNA) of the L5 DRG, TREK2 moves away from the cell membrane resulting in a more depolarised resting membrane potential (Em). Given that axotomy deprives DRG neurons from peripherally-derived GFL's, we hypothesized that they might control the expression of TREK2. Using a combination of immunohistochemistry, immunocytochemistry, western blotting, in vivo pharmacological manipulation and behavioral tests we examined the ability of the GFL's (GDNF, neurturin and artemin) and their selective receptors (GFRα1, GFRα2 and GFRα3) to regulate the expression and function of TREK2 in the DRG. We found that TREK2 correlated strongly with the three receptors normally and ipsilaterally for all GFR's after SNA. GDNF, but not NGF, neurturin or artemin up-regulated the expression of TREK2 in cultured DRG neurons. In vivo continuous, subcutaneous administration of GDNF restored the subcellular distribution of TREK2 ipsilaterally and reversed mechanical and cold allodynia 7 days after SNA. This is the first demonstration that GDNF controls the expression of a K2P channel in nociceptors. As TREK2 controls the Em of C-nociceptors affecting their excitability, our finding has therapeutic potential in the treatment of chronic pain.
Collapse
|
5
|
Ma L, Yu L, Jiang BC, Wang J, Guo X, Huang Y, Ren J, Sun N, Gao DS, Ding H, Lu J, Zhou H, Zou L, Gao Y, Wang L, Sun K, Ming Y, Meng Z, Tao YX, Yan M. ZNF382 controls mouse neuropathic pain via silencer-based epigenetic inhibition of Cxcl13 in DRG neurons. J Exp Med 2021; 218:e20210920. [PMID: 34762123 PMCID: PMC8590274 DOI: 10.1084/jem.20210920] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/06/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Nerve injury-induced changes of gene expression in dorsal root ganglion (DRG) are critical for neuropathic pain genesis. However, how these changes occur remains elusive. Here we report the down-regulation of zinc finger protein 382 (ZNF382) in injured DRG neurons after nerve injury. Rescuing this down-regulation attenuates nociceptive hypersensitivity. Conversely, mimicking this down-regulation produces neuropathic pain symptoms, which are alleviated by C-X-C motif chemokine 13 (CXCL13) knockdown or its receptor CXCR5 knockout. Mechanistically, an identified cis-acting silencer at distal upstream of the Cxcl13 promoter suppresses Cxcl13 transcription via binding to ZNF382. Blocking this binding or genetically deleting this silencer abolishes the ZNF382 suppression on Cxcl13 transcription and impairs ZNF382-induced antinociception. Moreover, ZNF382 down-regulation disrupts the repressive epigenetic complex containing histone deacetylase 1 and SET domain bifurcated 1 at the silencer-promoter loop, resulting in Cxcl13 transcriptional activation. Thus, ZNF382 down-regulation is required for neuropathic pain likely through silencer-based epigenetic disinhibition of CXCL13, a key neuropathic pain player, in DRG neurons.
Collapse
Affiliation(s)
- Longfei Ma
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bao-Chun Jiang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Jingkai Wang
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinying Guo
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Yangyuxin Huang
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxuan Ren
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Na Sun
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dave Schwinn Gao
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Ding
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lijing Zou
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yibo Gao
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lieju Wang
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Sun
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Ming
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhipeng Meng
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Min Yan
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Viisanen H, Nuotio U, Kambur O, Mahato AK, Jokinen V, Lilius T, Li W, Santos HA, Karelson M, Rauhala P, Kalso E, Sidorova YA. Novel RET agonist for the treatment of experimental neuropathies. Mol Pain 2021; 16:1744806920950866. [PMID: 32811276 PMCID: PMC7440726 DOI: 10.1177/1744806920950866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) alleviate symptoms of experimental neuropathy, protect and stimulate regeneration of sensory neurons in animal models of neuropathic pain, and restore their functional activity. However, clinical development of GFL proteins is complicated by their poor pharmacokinetic properties and multiple effects mediated by several receptors. Previously, we have identified a small molecule that selectively activates the major signal transduction unit of the GFL receptor complex, receptor tyrosine kinase RET, as an alternative to GFLs, for the treatment of neuropathic pain. We then introduced a series of chemical changes to improve the biological activity of these compounds and tested an optimized compound named BT44 in a panel of biological assays. BT44 efficiently and selectively stimulated the GFL receptor RET and activated the intracellular mitogene-activated protein kinase/extracellular signal-regulated kinase pathway in immortalized cells. In cultured sensory neurons, BT44 stimulated neurite outgrowth with an efficacy comparable to that of GFLs. BT44 alleviated mechanical hypersensitivity in surgery- and diabetes-induced rat models of neuropathic pain. In addition, BT44 normalized, to a certain degree, the expression of nociception-related neuronal markers which were altered by spinal nerve ligation, the neuropathy model used in this study. Our results suggest that the GFL mimetic BT44 is a promising new lead for the development of novel disease-modifying agents for the treatment of neuropathy and neuropathic pain.
Collapse
Affiliation(s)
- Hanna Viisanen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ulpukka Nuotio
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Oleg Kambur
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Arun Kumar Mahato
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Viljami Jokinen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuomas Lilius
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wei Li
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mati Karelson
- Institute of Chemistry, Tartu University, Tartu, Estonia
| | - Pekka Rauhala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eija Kalso
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Yulia A Sidorova
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Ferrini F, Salio C, Boggio EM, Merighi A. Interplay of BDNF and GDNF in the Mature Spinal Somatosensory System and Its Potential Therapeutic Relevance. Curr Neuropharmacol 2021; 19:1225-1245. [PMID: 33200712 PMCID: PMC8719296 DOI: 10.2174/1570159x18666201116143422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022] Open
Abstract
The growth factors BDNF and GDNF are gaining more and more attention as modulators of synaptic transmission in the mature central nervous system (CNS). The two molecules undergo a regulated secretion in neurons and may be anterogradely transported to terminals where they can positively or negatively modulate fast synaptic transmission. There is today a wide consensus on the role of BDNF as a pro-nociceptive modulator, as the neurotrophin has an important part in the initiation and maintenance of inflammatory, chronic, and/or neuropathic pain at the peripheral and central level. At the spinal level, BDNF intervenes in the regulation of chloride equilibrium potential, decreases the excitatory synaptic drive to inhibitory neurons, with complex changes in GABAergic/glycinergic synaptic transmission, and increases excitatory transmission in the superficial dorsal horn. Differently from BDNF, the role of GDNF still remains to be unraveled in full. This review resumes the current literature on the interplay between BDNF and GDNF in the regulation of nociceptive neurotransmission in the superficial dorsal horn of the spinal cord. We will first discuss the circuitries involved in such a regulation, as well as the reciprocal interactions between the two factors in nociceptive pathways. The development of small molecules specifically targeting BDNF, GDNF and/or downstream effectors is opening new perspectives for investigating these neurotrophic factors as modulators of nociceptive transmission and chronic pain. Therefore, we will finally consider the molecules of (potential) pharmacological relevance for tackling normal and pathological pain.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Canada
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Elena M. Boggio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- National Institute of Neuroscience, Grugliasco, Italy
| |
Collapse
|
8
|
Huang SH, Yang SM, Lo JJ, Wu SH, Tai MH. Irisin Gene Delivery Ameliorates Burn-Induced Sensory and Motor Neuropathy. Int J Mol Sci 2020; 21:ijms21207798. [PMID: 33096842 PMCID: PMC7589574 DOI: 10.3390/ijms21207798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/12/2023] Open
Abstract
Burn-related neuropathy is common and often involves pain, paresthesia, or muscle weakness. Irisin, an exercise-induced myokine after cleavage from its membrane precursor fibronectin type III domain-containing 5 (FNDC5), exhibits neuroprotective and anti-inflammatory activities. A rat model of third-degree burn on the right hind paw was used to investigate the therapeutic role of irisin/FNDC5. Rats received burn injury and were treated with intrathecal recombinant adenovirus containing the irisin sequence (Ad-irisin) at 3 weeks postburn. One week later, mechanical allodynia was examined. The expression of irisin in cerebrospinal fluid (CSF) was detected. Ipsilateral gastrocnemius muscle and lumbar spinal cord were also obtained for further investigation. Furthermore, the anti-apoptotic effect of recombinant irisin in SH-SY5Y cells was evaluated through tumor necrosis factor alpha (TNFα) stimulus to mimic burn injury. We noted intrathecal Ad-irisin attenuated pain sensitization and gastrocnemius muscle atrophy by modulating the level of irisin in CSF, and the expression of neuronal FNDC5/irisin and TNFα in the spinal cord. Ad-irisin also ameliorated neuronal apoptosis in both dorsal and ventral horns. Furthermore, recombinant irisin attenuated TNFα-induced SH-SY5Y cell apoptosis. In summary, irisin attenuated allodynia and muscle wasting by ameliorating neuroinflammation-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Shu-Hung Huang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Ming Yang
- Institute of Biomedical Sciences, National Sun Yat-Sun University, Kaohsiung 804, Taiwan;
| | - Jing-Jou Lo
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Sheng-Hua Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
- Correspondence: (S.-H.W.); (M.-H.T.)
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sun University, Kaohsiung 804, Taiwan;
- Correspondence: (S.-H.W.); (M.-H.T.)
| |
Collapse
|
9
|
Mahato AK, Sidorova YA. Glial cell line-derived neurotrophic factors (GFLs) and small molecules targeting RET receptor for the treatment of pain and Parkinson's disease. Cell Tissue Res 2020; 382:147-160. [PMID: 32556722 PMCID: PMC7529621 DOI: 10.1007/s00441-020-03227-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Rearranged during transfection (RET), in complex with glial cell line-derived (GDNF) family receptor alpha (GFRα), is the canonical signaling receptor for GDNF family ligands (GFLs) expressed in both central and peripheral parts of the nervous system and also in non-neuronal tissues. RET-dependent signaling elicited by GFLs has an important role in the development, maintenance and survival of dopamine and sensory neurons. Both Parkinson's disease and neuropathic pain are devastating disorders without an available cure, and at the moment are only treated symptomatically. GFLs have been studied extensively in animal models of Parkinson's disease and neuropathic pain with remarkable outcomes. However, clinical trials with recombinant or viral vector-encoded GFL proteins have produced inconclusive results. GFL proteins are not drug-like; they have poor pharmacokinetic properties and activate multiple receptors. Targeting RET and/or GFRα with small molecules may resolve the problems associated with using GFLs as drugs and can result in the development of therapeutics for disease-modifying treatments against Parkinson's disease and neuropathic pain.
Collapse
Affiliation(s)
- Arun Kumar Mahato
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00014, Helsinki, Finland
| | - Yulia A Sidorova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00014, Helsinki, Finland.
| |
Collapse
|
10
|
Sabaghi A, Heirani A, Kiani A, Yosofvand N, Sabaghi S. Effects of Aerobic Exercise during Pregnancy on Neurobehavioral Performances and Serum Levels of GDNF in Adult Male Mice Offspring. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Differential Expression of Neuroinflammatory mRNAs in the Rat Sciatic Nerve Following Chronic Constriction Injury and Pain-Relieving Nanoemulsion NSAID Delivery to Infiltrating Macrophages. Int J Mol Sci 2019; 20:ijms20215269. [PMID: 31652890 PMCID: PMC6862677 DOI: 10.3390/ijms20215269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The neuroinflammatory response to peripheral nerve injury is associated with chronic pain and significant changes in the molecular expression profiles of mRNAs in neurons, glia and infiltrating immune cells. Chronic constriction injury (CCI) of the rat sciatic nerve provides an opportunity to mimic neuropathic injury and quantitatively assess behavior and differential gene expression in individual animals. Previously, we have shown that a single intravenous injection of nanoemulsion containing celecoxib (0.24 mg/kg) reduces inflammation of the sciatic nerve and relieves pain-like behavior for up to 6 days. Here, we use this targeted therapy to explore the impact on mRNA expression changes in both pain and pain-relieved states. Sciatic nerve tissue recovered from CCI animals is used to evaluate the mRNA expression profiles utilizing quantitative PCR. We observe mRNA changes consistent with the reduced recruitment of macrophages evident by a reduction in chemokine and cytokine expression. Furthermore, genes associated with adhesion of macrophages, as well as changes in the neuronal and glial mRNAs are observed. Moreover, genes associated with neuropathic pain including Maob, Grin2b/NMDAR2b, TrpV3, IL-6, Cacna1b/Cav2.2, Itgam/Cd11b, Scn9a/Nav1.7, and Tac1 were all found to respond to the celecoxib loaded nanoemulsion during pain relief as compared to those animals that received drug-free vehicle. These results demonstrate that by targeting macrophage production of PGE2 at the site of injury, pain relief includes partial reversal of the gene expression profiles associated with chronic pain.
Collapse
|
12
|
Wen J, He T, Qi F, Chen H. MiR-206-3p alleviates chronic constriction injury-induced neuropathic pain through targeting HDAC4. Exp Anim 2018; 68:213-220. [PMID: 30587671 PMCID: PMC6511522 DOI: 10.1538/expanim.18-0091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
It was identified that microRNAs were involved in the regulation of chronic neuropathic pain. However, the role of miR-206-3p in neuropathic pain was still unclear. In the current study, the role of miR-206-3p, a type of mature miR-206, in neuropathic pain was investigated. The potential mechanisms were also explored. We found that the expression of miR-206-3p decreased in the dorsal root ganglion (DRG) of chronic constriction sciatic nerve injury (CCI) rats, whereas the While histone deacetylase 4 (HDAC4) level increased. Further exploration showed that administration of a miR-206-3p mimic alleviated neuropathic pain and reduced the level of HDAC4, a predicted target of miR-206-3p. Overexpression of HDAC4 attenuated the effects of miR-206-3p on neuropathic pain. Our data revealed a miR-206-3p-HDAC4 signal that played a potentially important role in CCI-induced neuropathic pain.
Collapse
Affiliation(s)
- Jing Wen
- Department of Histology and Embryology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China
| | - Tao He
- Department of Histology and Embryology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China.,Nanchang Joint Programme, Queen Mary University of London, London E1 4NS, UK
| | - Fangfang Qi
- Department of Histology and Embryology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China.,Nanchang Joint Programme, Queen Mary University of London, London E1 4NS, UK
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China.,Jiangxi Province Key Laboratory of Tumor Pathogen's and Molecular Pathology, Nanchang 330006, People's Republic of China
| |
Collapse
|
13
|
Mahmoudi J, Mohaddes G, Erfani M, Sadigh-Eteghad S, Karimi P, Rajabi M, Reyhani-Rad S, Farajdokht F. Cerebrolysin attenuates hyperalgesia, photophobia, and neuroinflammation in a nitroglycerin-induced migraine model in rats. Brain Res Bull 2018; 140:197-204. [DOI: 10.1016/j.brainresbull.2018.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
|
14
|
Abstract
Long noncoding RNAs have been implicated in neuropathy. Here, we identify and validate a long noncoding RNA, MRAK009713, as the primary regulator of neuropathic pain in chronic constriction injury (CCI) rats. MRAK009713 expression was markedly increased in CCI rats associated with enhanced pain behaviors, and small interfering RNA against MRAK009713 significantly reduced both mechanical and thermal hyperalgesia in the CCI rats. MRAK009713 is predicted to interact with the nociceptive P2X3 receptor by CatRAPID, a bioinformatics technology. Overexpression of MRAK009713 markedly increased expression of P2X3 in the dorsal root ganglia of the control rats, and MRAK009713 small interfering RNA significantly inhibited the P2X3 expression in the dorsal root ganglia of the CCI rats. MRAK009713 directly interacted with the P2X3 protein heterologously expressed in the human embryonic kidney (HEK) 293 cells and potentiated P2X3 receptor function. Thus, MRAK009713 is a novel positive regulator of neuropathic pain in rats through regulating the expression and function of the P2X3 receptor.
Collapse
|
15
|
Zheng C, Wang S, Bai Y, Luo T, Wang J, Dai C, Guo B, Luo S, Wang D, Yang Y, Wang Y. Lentiviral Vectors and Adeno-Associated Virus Vectors: Useful Tools for Gene Transfer in Pain Research. Anat Rec (Hoboken) 2018; 301:825-836. [PMID: 29149775 PMCID: PMC6585677 DOI: 10.1002/ar.23723] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/19/2017] [Indexed: 11/09/2022]
Abstract
Pain, especially chronic pain, has always been a heated point in both basic and clinical researches since it puts heavy burdens on both individuals and the whole society. A better understanding of the role of biological molecules and various ionic channels involved in pain can shed light on the mechanism under pain and advocate the development of pain management. Using viral vectors to transfer specific genes at targeted sites is a promising method for both research and clinical applications. Lentiviral vectors and adeno-associated virus (AAV) vectors which allow stable and long-term expression of transgene in non-dividing cells are widely applied in pain research. In this review, we thoroughly outline the structure, category, advantages and disadvantages and the delivery methods of lentiviral and AAV vectors. The methods through which lentiviral and AAV vectors are delivered to targeted sites are closely related with the sites, level and period of transgene expression. Focus is placed on the various delivery methods applied to deliver vectors to spinal cord and dorsal root ganglion both of which play important roles in primary nociception. Our goal is to provide insight into the features of these two viral vectors and which administration approach can be chosen for different pain researches. Anat Rec, 301:825-836, 2018. © 2017 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Chen‐Xi Zheng
- Department of Anatomy, Histology and EmbryologyK.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an 710032China
| | - Sheng‐Ming Wang
- Department of Anatomy, Histology and EmbryologyK.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an 710032China
| | - Yun‐Hu Bai
- Department of Hepatobiliary Surgery, Xi‐Jing HospitalThe Fourth Military Medical UniversityXi'an 710032China
| | - Ting‐Ting Luo
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic MedicineThe Fourth Military Medical UniversityXi'an 710032China
| | - Jia‐Qi Wang
- Department of Anatomy, Histology and EmbryologyK.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an 710032China
| | - Chun‐Qiu Dai
- Department of Anatomy, Histology and EmbryologyK.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an 710032China
| | - Bao‐Lin Guo
- Department of Anatomy, Histology and EmbryologyK.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an 710032China
| | - Shi‐Cheng Luo
- Department of Anatomy, Histology and EmbryologyK.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an 710032China
| | - Dong‐Hui Wang
- Department of Anatomy, Histology and EmbryologyK.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an 710032China
| | - Yan‐Ling Yang
- Department of Hepatobiliary Surgery, Xi‐Jing HospitalThe Fourth Military Medical UniversityXi'an 710032China
| | - Ya‐Yun Wang
- Department of Anatomy, Histology and EmbryologyK.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an 710032China
| |
Collapse
|
16
|
Chen CJ, Liu DZ, Yao WF, Gu Y, Huang F, Hei ZQ, Li X. Identification of key genes and pathways associated with neuropathic pain in uninjured dorsal root ganglion by using bioinformatic analysis. J Pain Res 2017; 10:2665-2674. [PMID: 29180893 PMCID: PMC5694199 DOI: 10.2147/jpr.s143431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Neuropathic pain is a complex chronic condition occurring post-nervous system damage. The transcriptional reprogramming of injured dorsal root ganglia (DRGs) drives neuropathic pain. However, few comparative analyses using high-throughput platforms have investigated uninjured DRG in neuropathic pain, and potential interactions among differentially expressed genes (DEGs) and pathways were not taken into consideration. The aim of this study was to identify changes in genes and pathways associated with neuropathic pain in uninjured L4 DRG after L5 spinal nerve ligation (SNL) by using bioinformatic analysis. Materials and methods The microarray profile GSE24982 was downloaded from the Gene Expression Omnibus database to identify DEGs between DRGs in SNL and sham rats. The prioritization for these DEGs was performed using the Toppgene database followed by gene ontology and pathway enrichment analyses. The relationships among DEGs from the protein interactive perspective were analyzed using protein–protein interaction (PPI) network and module analysis. Real-time polymerase chain reaction (PCR) and Western blotting were used to confirm the expression of DEGs in the rodent neuropathic pain model. Results A total of 206 DEGs that might play a role in neuropathic pain were identified in L4 DRG, of which 75 were upregulated and 131 were downregulated. The upregulated DEGs were enriched in biological processes related to transcription regulation and molecular functions such as DNA binding, cell cycle, and the FoxO signaling pathway. Ctnnb1 protein had the highest connectivity degrees in the PPI network. The in vivo studies also validated that mRNA and protein levels of Ctnnb1 were upregulated in both L4 and L5 DRGs. Conclusion This study provides insight into the functional gene sets and pathways associated with neuropathic pain in L4 uninjured DRG after L5 SNL, which might promote our understanding of the molecular mechanisms underlying the development of neuropathic pain.
Collapse
Affiliation(s)
- Chao-Jin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - De-Zhao Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wei-Feng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yu Gu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Fei Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zi-Qing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Wang HJ, Song G, Liang J, Gao YY, Wang CJ. Involvement of integrin β1/FAK signaling in the analgesic effects induced by glial cell line-derived neurotrophic factor in neuropathic pain. Brain Res Bull 2017; 135:149-156. [DOI: 10.1016/j.brainresbull.2017.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/20/2017] [Accepted: 10/11/2017] [Indexed: 12/23/2022]
|
18
|
Ota H, Katanosaka K, Murase S, Furuyashiki T, Narumiya S, Mizumura K. EP2 receptor plays pivotal roles in generating mechanical hyperalgesia after lengthening contractions. Scand J Med Sci Sports 2017; 28:826-833. [DOI: 10.1111/sms.12954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2017] [Indexed: 11/26/2022]
Affiliation(s)
- H. Ota
- Department of Neuroscience II; Graduate School of Medicine; Nagoya University; Nagoya Japan
- Department of Judo Therapy; Faculty of Medical Technology; Teikyo University; Utsunomiya Japan
- Department of Physical Therapy; College of Life and Health Sciences; Chubu University; Kasugai Japan
| | - K. Katanosaka
- Department of Neuroscience II; Graduate School of Medicine; Nagoya University; Nagoya Japan
- Department of Biomedical Sciences; College of Life and Health Sciences; Chubu University; Kasugai Japan
| | - S. Murase
- Department of Neuroscience II; Graduate School of Medicine; Nagoya University; Nagoya Japan
- Department of Physical Therapy; College of Life and Health Sciences; Chubu University; Kasugai Japan
| | - T. Furuyashiki
- Department of Pharmacology; Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - S. Narumiya
- Department of Pharmacology; Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - K. Mizumura
- Department of Neuroscience II; Graduate School of Medicine; Nagoya University; Nagoya Japan
- Department of Physical Therapy; College of Life and Health Sciences; Chubu University; Kasugai Japan
| |
Collapse
|
19
|
Sidorova YA, Bespalov MM, Wong AW, Kambur O, Jokinen V, Lilius TO, Suleymanova I, Karelson G, Rauhala PV, Karelson M, Osborne PB, Keast JR, Kalso EA, Saarma M. A Novel Small Molecule GDNF Receptor RET Agonist, BT13, Promotes Neurite Growth from Sensory Neurons in Vitro and Attenuates Experimental Neuropathy in the Rat. Front Pharmacol 2017; 8:365. [PMID: 28680400 PMCID: PMC5478727 DOI: 10.3389/fphar.2017.00365] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 05/26/2017] [Indexed: 12/25/2022] Open
Abstract
Neuropathic pain caused by nerve damage is a common and severe class of chronic pain. Disease-modifying clinical therapies are needed as current treatments typically provide only symptomatic relief; show varying clinical efficacy; and most have significant adverse effects. One approach is targeting either neurotrophic factors or their receptors that normalize sensory neuron function and stimulate regeneration after nerve damage. Two candidate targets are glial cell line-derived neurotrophic factor (GDNF) and artemin (ARTN), as these GDNF family ligands (GFLs) show efficacy in animal models of neuropathic pain (Boucher et al., 2000; Gardell et al., 2003; Wang et al., 2008, 2014). As these protein ligands have poor drug-like properties and are expensive to produce for clinical use, we screened 18,400 drug-like compounds to develop small molecules that act similarly to GFLs (GDNF mimetics). This screening identified BT13 as a compound that selectively targeted GFL receptor RET to activate downstream signaling cascades. BT13 was similar to NGF and ARTN in selectively promoting neurite outgrowth from the peptidergic class of adult sensory neurons in culture, but was opposite to ARTN in causing neurite elongation without affecting initiation. When administered after spinal nerve ligation in a rat model of neuropathic pain, 20 and 25 mg/kg of BT13 decreased mechanical hypersensitivity and normalized expression of sensory neuron markers in dorsal root ganglia. In control rats, BT13 had no effect on baseline mechanical or thermal sensitivity, motor coordination, or weight gain. Thus, small molecule BT13 selectively activates RET and offers opportunities for developing novel disease-modifying medications to treat neuropathic pain.
Collapse
Affiliation(s)
- Yulia A Sidorova
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of HelsinkiHelsinki, Finland
| | - Maxim M Bespalov
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of HelsinkiHelsinki, Finland
| | - Agnes W Wong
- Department of Anatomy and Neuroscience, The University of MelbourneMelbourne, VIC, Australia
| | - Oleg Kambur
- Department of Pharmacology, Faculty of Medicine, University of HelsinkiHelsinki, Finland
| | - Viljami Jokinen
- Department of Pharmacology, Faculty of Medicine, University of HelsinkiHelsinki, Finland
| | - Tuomas O Lilius
- Department of Pharmacology, Faculty of Medicine, University of HelsinkiHelsinki, Finland
| | - Ilida Suleymanova
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of HelsinkiHelsinki, Finland
| | | | - Pekka V Rauhala
- Department of Pharmacology, Faculty of Medicine, University of HelsinkiHelsinki, Finland
| | - Mati Karelson
- Department of Molecular Technology, Institute of Chemistry, University of TartuTartu, Estonia
| | - Peregrine B Osborne
- Department of Anatomy and Neuroscience, The University of MelbourneMelbourne, VIC, Australia
| | - Janet R Keast
- Department of Anatomy and Neuroscience, The University of MelbourneMelbourne, VIC, Australia
| | - Eija A Kalso
- Department of Pharmacology, Faculty of Medicine, University of HelsinkiHelsinki, Finland.,Pain Clinic, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University HospitalHelsinki, Finland
| | - Mart Saarma
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, University of HelsinkiHelsinki, Finland
| |
Collapse
|
20
|
Ding Z, Xu W, Zhang J, Zou W, Guo Q, Huang C, Liu C, Zhong T, Zhang JM, Song Z. Normalizing GDNF expression in the spinal cord alleviates cutaneous hyperalgesia but not ongoing pain in a rat model of bone cancer pain. Int J Cancer 2016; 140:411-422. [PMID: 27716965 DOI: 10.1002/ijc.30438] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/23/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022]
Abstract
Bone cancer pain (BCP) is the most common complication in patients with bone cancer. Glial cell line-derived neurotrophic factor (GDNF) is believed to be involved in chronic pain conditions. In this article, the expression and roles of GDNF were studied in a rat model of BCP induced by tibia injection of Walker 256 rat mammary gland carcinoma cells. Significant mechanical and thermal hyperalgesia and ongoing pain were observed beginning as early as day 5 post injection. The expression level of GDNF protein examined on day 16 after tibia injection was decreased in the L3 dorsal root ganglion (DRG) and lumbar spinal cord, but not in other spinal levels or the anterior cingulate cortex. Phosphorylation of Ret, the receptor for GDNF family ligands, was also decreased. Furthermore, normalizing GDNF expression with lentiviral vector constructs in the spinal cord significantly reduced mechanical and thermal hyperalgesia, spinal glial activation, and pERK induction induced by tibia injection, but did not affect ongoing pain. Together these findings provide new evidence for the use of GDNF as a therapeutic treatment for bone cancer pain states.
Collapse
Affiliation(s)
- Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Wei Xu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jie Zhang
- Department of Anesthesiology, The Maternal and Child Health Hospital of Hunan Province, Changsha, People's Republic of China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chang Liu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Tao Zhong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati, Cincinnati, Ohio
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
21
|
Merighi A. Targeting the glial-derived neurotrophic factor and related molecules for controlling normal and pathologic pain. Expert Opin Ther Targets 2015; 20:193-208. [PMID: 26863504 DOI: 10.1517/14728222.2016.1085972] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Glial-derived neurotrophic factor (GDNF) and its family of ligands (GFLs) have several functions in the nervous system. As a survival factor for dopaminergic neurons, GDNF was used in clinical trials for Parkinson's disease. GFLs and their receptors are also potential targets for new pain-controlling drugs. Although molecules with analgesic activities in rodents mostly failed to be effective in translational studies, this potential should not be underestimated. AREAS COVERED The circuitry, molecular, and cellular mechanisms by which GFLs control nociception and their intervention in inflammatory and neuropathic pain are considered first. The problems related to effective GDNF delivery to the brain and the possibility to target the GFL receptor complex rather than its ligands are then discussed, also considering the use of non-peptidyl agonists. EXPERT OPINION In nociceptive pathways, an ideal drug should either: i) target the release of endogenous GFLs from large dense-cored vesicles (LGVs) by acting, for example, onto the phosphatidylinositol-3-phosphate [PtdIns(3)P] pool, which is sensitive to Ca(2+) modulation, or ii) target the GFL receptor complex. Besides XIB403, a tiol molecule that enhances GFRα family receptor signaling, existing drugs such as retinoic acid and amitriptyline should be considered for effective targeting of GDNF, at least in neuropathic pain. The approach of pain modeling in experimental animals is discussed.
Collapse
Affiliation(s)
- Adalberto Merighi
- a University of Turin, Department of Veterinary Sciences , Grugliasco, TO, Italy ;
| |
Collapse
|
22
|
Kimura M, Sakai A, Sakamoto A, Suzuki H. Glial cell line-derived neurotrophic factor-mediated enhancement of noradrenergic descending inhibition in the locus coeruleus exerts prolonged analgesia in neuropathic pain. Br J Pharmacol 2015; 172:2469-78. [PMID: 25572945 DOI: 10.1111/bph.13073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/10/2014] [Accepted: 12/25/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The locus coeruleus (LC) is the principal nucleus containing the noradrenergic neurons and is a major endogenous source of pain modulation in the brain. Glial cell line-derived neurotrophic factor (GDNF), a well-established neurotrophic factor for noradrenergic neurons, is a major pain modulator in the spinal cord and primary sensory neurons. However, it is unknown whether GDNF is involved in pain modulation in the LC. EXPERIMENTAL APPROACH Rats with chronic constriction injury (CCI) of the left sciatic nerve were used as a model of neuropathic pain. GDNF was injected into the left LC of rats with CCI for 3 consecutive days and changes in mechanical allodynia and thermal hyperalgesia were assessed. The α2 -adrenoceptor antagonist yohimbine was injected intrathecally to assess the involvement of descending inhibition in GDNF-mediated analgesia. The MEK inhibitor U0126 was used to investigate whether the ERK signalling pathway plays a role in the analgesic effects of GDNF. KEY RESULTS Both mechanical allodynia and thermal hyperalgesia were attenuated 24 h after the first GDNF injection. GDNF increased the noradrenaline content in the dorsal spinal cord. The analgesic effects continued for at least 3 days after the last injection. Yohimbine abolished these effects of GDNF. The analgesic effects of GDNF were partly, but significantly, inhibited by prior injection of U0126 into the LC. CONCLUSIONS AND IMPLICATIONS GDNF injection into the LC exerts prolonged analgesic effects on neuropathic pain in rats by enhancing descending noradrenergic inhibition.
Collapse
Affiliation(s)
- M Kimura
- Department of Anesthesiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
23
|
Yu H, Fischer G, Ebert AD, Wu HE, Bai X, Hogan QH. Analgesia for neuropathic pain by dorsal root ganglion transplantation of genetically engineered mesenchymal stem cells: initial results. Mol Pain 2015; 11:5. [PMID: 25888914 PMCID: PMC4331376 DOI: 10.1186/s12990-015-0002-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/26/2015] [Indexed: 02/07/2023] Open
Abstract
Background Cell-based therapy may hold promise for treatment of chronic pain. Mesenchymal stem cells (MSCs) are readily available and robust, and their secretion of therapeutic peptides can be enhanced by genetically engineering. We explored the analgesic potential of transplanting bone marrow-derived MSCs that have been transduced with lentivectors. To optimize efficacy and safety, primary sensory neurons were targeted by MSC injection into the dorsal root ganglia (DRGs). Results MSCs were transduced using lentivectors to express enhanced green fluorescent protein (EGFP) or to co-express the analgesic peptide glial cell line-derived neurotrophic factor (GDNF) and EGFP by a viral 2A bicistronic transgene cassette. Engineered MSCs were injected into the 4th lumbar (L4) and L5 DRGs of adult allogeneic rats to evaluate survival in the DRGs. MSCs were detected by immunofluorescence staining up to 2–3 weeks after injection, distributed in the extracellular matrix space without disrupting satellite glial cell apposition to sensory neurons, suggesting well-tolerated integration of engrafted MSCs into DRG tissue. To examine their potential for inhibiting development of neuropathic pain, MSCs were injected into the L4 and L5 DRGs ipsilateral to a spinal nerve ligation injury. Animals injected with GDNF-engineered MSCs showed moderate but significant reduction in mechanical allodynia and hyperalgesia compared to controls implanted with MSCs expressing EGFP alone. We also observed diminished long-term survival of allografted MSCs at 3 weeks, and the development of a highly-proliferating population of MSCs in 12% of DRGs after transplantation. Conclusions These data indicate that genetically modified MSCs secreting analgesic peptides could potentially be developed as a novel DRG-targeted cell therapy for treating neuropathic pain. However, further work is needed to address the challenges of MSC survival and excess proliferation, possibly with trials of autologous MSCs, evaluation of clonally selected populations of MSCs, and investigation of regulation of MSC proliferation.
Collapse
Affiliation(s)
- Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| | - Gregory Fischer
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| | - Hsiang-En Wu
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| | - Xiaowen Bai
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA. .,Zablocki Veterans Affairs Medical Center, 5000 W National Ave, Milwaukee, WI, 53295, USA.
| |
Collapse
|
24
|
Abstract
Pain is an important protective system that alerts organisms to actual or possible tissue damage. However, a variety of pathologies can lead to chronic pain that is no longer beneficial. Lesions or diseases of the somatosensory nervous system cause intractable neuropathic pain that occasionally lasts even after the original pathology subsides. Chronic inflammatory diseases like arthritis are also associated with severe pain. Because conventional analgesics such as non-steroidal anti-inflammatory drugs and opioids have limited efficacy and/or severe adverse events associated with long-term use, chronic pain remains a major problem in clinical practice. Recently, causal roles of microRNAs in chronic pain and their therapeutic potential have been emerging. microRNA expressions are altered not only at the primary origin of pain, but also along the somatosensory pathways. Notably, microRNA expressions are differentially affected depending on the causes of chronic pain. This chapter summarizes current insights into the roles of microRNAs in pain based on the underlying pathologies.
Collapse
Affiliation(s)
- Atsushi Sakai
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
25
|
Sakai A, Suzuki H. Emerging roles of microRNAs in chronic pain. Neurochem Int 2014; 77:58-67. [DOI: 10.1016/j.neuint.2014.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 12/19/2022]
|
26
|
Devesa I, Ferrer-Montiel A. Neurotrophins, endocannabinoids and thermo-transient receptor potential: a threesome in pain signalling. Eur J Neurosci 2014; 39:353-62. [PMID: 24494676 DOI: 10.1111/ejn.12455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/10/2013] [Accepted: 11/15/2013] [Indexed: 01/11/2023]
Abstract
Because of the social and economic costs of chronic pain, there is a growing interest in unveiling the cellular and molecular mechanisms underlying it with the aim of developing more effective medications. Pain signalling is a multicomponent process that involves the peripheral and central nervous systems. At the periphery, nociceptor sensitisation by pro-inflammatory mediators is a primary step in pain transduction. Although pain is multifactorial at cellular and molecular levels, it is widely accepted that neurotrophin (TrkA, p75NTR, Ret and GFRs), cannabinoid (CB1 and CB2), and thermo-transient receptor potential (TRPs; TRPV1, TRPA1 and TRPM8) receptors play a pivotal role. They form a threesome for which endocannabinoids appear to be a first line of defence against pain, while neurotrophins and thermoTRPs are the major generators of painful signals. However, endocannabinoids may exhibit nociceptive activity while some neurotrophins may display anti-nociception. Accordingly, a clear-cut knowledge of the modulation and context-dependent function of these signalling cascades, along with the molecular and dynamic details of their crosstalk, is critical for understanding and controlling pain transduction. Here, the recent progress in this fascinating topic, as well as the tantalizing questions that remain unanswered, will be discussed. Furthermore, we will underline the need for using a systems biology approach (referred to as systems pain) to uncover the dynamics and interplay of these intricate signalling cascades, taking into consideration the molecular complexity and cellular heterogeneity of nociceptor populations. Nonetheless, the available information confirms that pharmacological modulation of this signalling triad is a highly valuable therapeutic strategy for effectively treating pain syndromes.
Collapse
Affiliation(s)
- Isabel Devesa
- Instituto de Biología Molecular y Celular, Universitas Miguel Hernández, Av de la Universidad, 03202, Elche, Alicante, Spain
| | | |
Collapse
|
27
|
Abstract
In the last decade, preclinical investigations of electroacupuncture mechanisms on persistent tissue injury (inflammatory), nerve injury (neuropathic), cancer, and visceral pain have increased. These studies show that electroacupuncture activates the nervous system differently in health than in pain conditions, alleviates both sensory and affective inflammatory pain, and inhibits inflammatory and neuropathic pain more effectively at 2 to 10 Hz than at 100 Hz. Electroacupuncture blocks pain by activating a variety of bioactive chemicals through peripheral, spinal, and supraspinal mechanisms. These include opioids, which desensitize peripheral nociceptors and reduce proinflammatory cytokines peripherally and in the spinal cord, and serotonin and norepinephrine, which decrease spinal N-methyl-D-aspartate receptor subunit GluN1 phosphorylation. Additional studies suggest that electroacupuncture, when combined with low dosages of conventional analgesics, provides effective pain management which can forestall the side effects of often-debilitating pharmaceuticals.
Collapse
Affiliation(s)
- Ruixin Zhang
- Assistant Professor, Center for Integrative Medicine, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Lixing Lao
- Professor, Center for Integrative Medicine, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Ke Ren
- Professor, Department of Neural and Pain Sciences, Dental School, University of Maryland, Baltimore, Maryland
| | - Brian M. Berman
- Professor, Center for Integrative Medicine, School of Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|
28
|
Augmenting glial cell-line derived neurotrophic factor signaling to treat painful neuropathies. Proc Natl Acad Sci U S A 2014; 111:2060-1. [PMID: 24474803 DOI: 10.1073/pnas.1324047111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
29
|
Murase S, Kato K, Taguchi T, Mizumura K. Glial cell line-derived neurotrophic factor sensitized the mechanical response of muscular thin-fibre afferents in rats. Eur J Pain 2013; 18:629-38. [PMID: 24174387 DOI: 10.1002/j.1532-2149.2013.00411.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2013] [Indexed: 11/07/2022]
Abstract
BACKGROUND The role of glial cell line-derived neurotrophic factor (GDNF) in pain and muscular nociceptor activities is not well understood. We examined pain-related behaviour and mechanical response of muscular thin-fibre afferents after intramuscular injection of GDNF in rats. METHODS GDNF and antagonist to transient receptor potential V1 or acid-sensing ion channels were injected into rat gastrocnemius muscle and muscular mechanical hyperalgesia was assessed with a Randall-Selitto analgesiometer. Activities of single C- (conduction velocity < 2.0 m/s) and Aδ-fibres (conduction velocity 2.0-12.0 m/s) were recorded from extensor digitorum longus muscle-nerve preparations in vitro. The changes in the responses to mechanical stimuli before and after GDNF injection were recorded. RESULTS Mechanical hyperalgesia was observed from 1 h to 1 day after GDNF (0.03 μM, 20 μL) injection. The decreased withdrawal threshold was temporarily reversed after intramuscular injection of amiloride (50 mM, 20 μL), but not capsazepine (50 μM, 20 μL). In single-fibre recordings, both phosphate buffered saline (PBS) and GDNF failed to induce any significant discharges. GDNF significantly enhanced the mechanical response when compared with the PBS group, but only in Aδ-fibre afferents. C-fibres were not affected. Significantly lowered threshold and increased response magnitude to mechanical stimuli were observed 30 or 60-120 min after injection. These times are compatible with the timing of the onset of the hyperalgesic effect of GDNF. CONCLUSIONS These results suggest that GDNF increased the response of muscular Aδ-fibre afferents to mechanical stimuli, resulting in muscular mechanical hyperalgesia.
Collapse
Affiliation(s)
- S Murase
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Kasugai, Japan; Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Japan
| | | | | | | |
Collapse
|
30
|
Groover AL, Ryals JM, Guilford BL, Wilson NM, Christianson JA, Wright DE. Exercise-mediated improvements in painful neuropathy associated with prediabetes in mice. Pain 2013; 154:2658-2667. [PMID: 23932909 DOI: 10.1016/j.pain.2013.07.052] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/18/2013] [Accepted: 07/25/2013] [Indexed: 01/28/2023]
Abstract
Recent research suggests that exercise can be effective in reducing pain in animals and humans with neuropathic pain. To investigate mechanisms in which exercise may improve hyperalgesia associated with prediabetes, C57Bl/6 mice were fed either standard chow or a high-fat diet for 12 weeks and were provided access to running wheels (exercised) or without access (sedentary). The high-fat diet induced a number of prediabetic symptoms, including increased weight, blood glucose, and insulin levels. Exercise reduced but did not restore these metabolic abnormalities to normal levels. In addition, mice fed a high-fat diet developed significant cutaneous and visceral hyperalgesia, similar to mice that develop neuropathy associated with diabetes. Finally, a high-fat diet significantly modulated neurotrophin protein expression in peripheral tissues and altered the composition of epidermal innervation. Over time, mice that exercised normalized with regards to their behavioral hypersensitivity, neurotrophin levels, and epidermal innervation. These results confirm that elevated hypersensitivity and associated neuropathic changes can be induced by a high-fat diet and exercise may alleviate these neuropathic symptoms. These findings suggest that exercise intervention could significantly improve aspects of neuropathy and pain associated with obesity and diabetes. Additionally, this work could potentially help clinicians determine those patients who will develop painful versus insensate neuropathy using intraepidermal nerve fiber quantification.
Collapse
Affiliation(s)
- Anna L Groover
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ota H, Katanosaka K, Murase S, Kashio M, Tominaga M, Mizumura K. TRPV1 and TRPV4 play pivotal roles in delayed onset muscle soreness. PLoS One 2013; 8:e65751. [PMID: 23799042 PMCID: PMC3684597 DOI: 10.1371/journal.pone.0065751] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/29/2013] [Indexed: 11/18/2022] Open
Abstract
Unaccustomed strenuous exercise that includes lengthening contraction (LC) often causes tenderness and movement related pain after some delay (delayed-onset muscle soreness, DOMS). We previously demonstrated that nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) are up-regulated in exercised muscle through up-regulation of cyclooxygenase (COX)-2, and they sensitized nociceptors resulting in mechanical hyperalgesia. There is also a study showing that transient receptor potential (TRP) ion channels are involved in DOMS. Here we examined whether and how TRPV1 and/or TRPV4 are involved in DOMS. We firstly evaluated a method to measure the mechanical withdrawal threshold of the deep tissues in wild-type (WT) mice with a modified Randall-Selitto apparatus. WT, TRPV1−/− and TRPV4−/− mice were then subjected to LC. Another group of mice received injection of murine NGF-2.5S or GDNF to the lateral gastrocnemius (LGC) muscle. Before and after these treatments the mechanical withdrawal threshold of LGC was evaluated. The change in expression of NGF, GDNF and COX-2 mRNA in the muscle was examined using real-time RT-PCR. In WT mice, mechanical hyperalgesia was observed 6–24 h after LC and 1–24 h after NGF and GDNF injection. LC induced mechanical hyperalgesia neither in TRPV1−/− nor in TRPV4−/− mice. NGF injection induced mechanical hyperalgesia in WT and TRPV4−/− mice but not in TRPV1−/− mice. GDNF injection induced mechanical hyperalgesia in WT but neither in TRPV1−/− nor in TRPV4−/− mice. Expression of NGF and COX-2 mRNA was significantly increased 3 h after LC in all genotypes. However, GDNF mRNA did not increase in TRPV4−/− mice. These results suggest that TRPV1 contributes to DOMS downstream (possibly at nociceptors) of NGF and GDNF, while TRPV4 is located downstream of GDNF and possibly also in the process of GDNF up-regulation.
Collapse
Affiliation(s)
- Hiroki Ota
- Department of Neural Regulation, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Kimiaki Katanosaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Shiori Murase
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Makiko Kashio
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, Okazaki, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kazue Mizumura
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Kasugai, Japan
- * E-mail:
| |
Collapse
|
32
|
Murase S, Terazawa E, Hirate K, Yamanaka H, Kanda H, Noguchi K, Ota H, Queme F, Taguchi T, Mizumura K. Upregulated glial cell line-derived neurotrophic factor through cyclooxygenase-2 activation in the muscle is required for mechanical hyperalgesia after exercise in rats. J Physiol 2013; 591:3035-48. [PMID: 23587883 DOI: 10.1113/jphysiol.2012.249235] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Unaccustomed strenuous exercise that includes lengthening contraction (LC) often causes delayed onset muscle soreness (DOMS), characterised as muscular mechanical hyperalgesia. Previously we reported that a bradykinin-like substance released from the muscle during exercise plays a pivotal role in triggering the process of muscular mechanical hyperalgesia by upregulating nerve growth factor (NGF) in exercised muscle of rats. We show here that cyclooxygenase (COX)-2 and glial cell line-derived neurotrophic factor (GDNF) are also involved in DOMS. COX-2 inhibitors but not COX-1 inhibitors given orally before LC completely suppressed the development of DOMS, but when given 2 days after LC they failed to reverse the mechanical hyperalgesia. COX-2 mRNA and protein in exercised muscle increased six- to 13-fold in mRNA and 1.7-2-fold in protein 0-12 h after LC. COX-2 inhibitors did not suppress NGF upregulation after LC. Instead, we found GDNF mRNA was upregulated seven- to eight-fold in the exercised muscle 12 h-1 day after LC and blocked by pretreatment of COX-2 inhibitors. In situ hybridisation studies revealed that both COX-2 and GDNF mRNA signals increased at the periphery of skeletal muscle cells 12 h after LC. The accumulation of COX-2 mRNA signals was also observed in small blood vessels. Intramuscular injection of anti-GDNF antibody 2 days after LC partly reversed DOMS. Based on these findings, we conclude that GDNF upregulation through COX-2 activation is essential to mechanical hyperalgesia after exercise.
Collapse
Affiliation(s)
- Shiori Murase
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sun NF, Zhong WY, Lu SA, Tian YL, Chen JB, Hu SY, Tian AL. Coexpression of recombinant adenovirus carrying GDNF and EDNRB genes in neural stem cells in vitro. Cell Biol Int 2013; 37:458-63. [PMID: 23504906 DOI: 10.1002/cbin.10060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 01/20/2013] [Indexed: 12/13/2022]
Abstract
Gene therapy and nerve stem cells isolated from the developing human enteric nervous system (ENS) are significant. They may open the route for the cell therapy of Hirschsprung's disease (HD). We have constructed the recombinant adenovirus-carrying glial cell line-derived neurotrophic factor (GDNF) and endothelin receptor B (EDNRB) gene, and investigated the exosomatic coexpression in neural stem cells. The recombinant adenovirus Ad-GE coexpressing GDNF and EDNRB gene was constructed by the AdEasy system and confirmed by the reverse transcription polymerase chain reaction (RT-PCR) method. Expression of exogenous genes in neural stem cells after transfection was confirmed by the flow cytometry and real-time fluorescence quantitative PCR. Fragments of pAd Track-CMV-GE were consistent with GDNF and EDNRB. The green fluorescence of the positive cells was followed by fluorescence microscopy at 24 h after NSCs had been transfected, reaching a peak at 72 h after transfection. Flow cytometry showed that the efficiency of transfection was 15.0, 23.6, and 25.4% at 24, 48 and 72 h respectively. Real-time fluorescence quantitative PCR showed the expression levels of mRNA of GDNF and EDNRB in 48 and 72 h groups were obviously higher than that in 24 and 96 h groups. Recombinant adenovirus carrying GDNF and EDNRB genes are coexpressed in neural stem cells, which may offer the possibility of a novel approach to local combination gene therapy for Hirschsprung's disease.
Collapse
Affiliation(s)
- Nian-Feng Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | | | | | | | | | | | | |
Collapse
|