1
|
Structural Elucidation and Cytotoxic Activity of New Monoterpenoid Indoles from Gelsemium elegans. Molecules 2023; 28:molecules28062531. [PMID: 36985503 PMCID: PMC10055825 DOI: 10.3390/molecules28062531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Two new monoterpenoid indole alkaloids, gelselegandines F (1) and G (2), were isolated from the aerial parts of Gelsemium elegans. Their structures were elucidated by means of spectroscopic techniques and quantum chemical calculations. The ECD calculations were conducted at the B3LYP/6-311G(d,p) level and NMR calculations were carried out using the Gauge-Including Atomic Orbitals (GIAO) method. Structurally, the two new compounds possessed rare, cage-like, monoterpenoid indole skeletons. All isolated compounds and the total alkaloids extract were tested for cytotoxicity against four different tumor cell lines. The total alkaloids extract of G. elegans exhibited significant antitumor activity with IC50 values ranging from 32.63 to 82.24 ug/mL. In order to discover anticancer leads from the active extraction, both new indole compounds (1–2) were then screened for cytotoxicity. Interestingly, compound 2 showed moderate cytotoxicity against K562 leukemia cells with an IC50 value of 57.02uM.
Collapse
|
2
|
Wei X, Yang J, Dai Z, Yu HF, Ding CF, Khan A, Zhao YL, Liu YP, Luo XD. Antitumor pyridine alkaloids hybrid with diverse units from Alangium chinense. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Gao S, Ma Y, Tang H, Luo J, Wang K. Cu–Catalyzed C5 Nitration of Indolines under Mild Conditions. ChemistrySelect 2019. [DOI: 10.1002/slct.201902743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shanshan Gao
- Materials Science and Chemical EngineeringNingbo University, Ningbo P. R. China 315211
| | - Yaorui Ma
- Materials Science and Chemical EngineeringNingbo University, Ningbo P. R. China 315211
| | - Hao Tang
- Materials Science and Chemical EngineeringNingbo University, Ningbo P. R. China 315211
| | - Junfei Luo
- Materials Science and Chemical EngineeringNingbo University, Ningbo P. R. China 315211
| | - Kuan Wang
- College of Chemistry and Chemistry EngineeringShanxi Key Laboratory of Chemistry Additives for IndustryShanxi University of Science & Technology,Xi'an P. R. China 710021
| |
Collapse
|
4
|
Chagas C, Alisaraie L. Metabolites of Vinca Alkaloid Vinblastine: Tubulin Binding and Activation of Nausea-Associated Receptors. ACS OMEGA 2019; 4:9784-9799. [PMID: 31460070 PMCID: PMC6648052 DOI: 10.1021/acsomega.9b00652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/22/2019] [Indexed: 05/16/2023]
Abstract
Vinblastine (VLB) is an antimitotic drug that binds to the vinca site of tubulin. The molecule possesses a high molecular weight and a complex chemical structure with many possibilities of metabolization. Despite advances in drug discovery research in reducing drug toxicity, the cause and mechanism of VLB-induced adverse drug reactions (ADRs) remains poorly understood. VLB is metabolized to at least 35 known metabolites, which have been identified and collected in this present work. This study also explores how VLB metabolites affect nausea-associated receptors such as muscarinic, dopaminergic, and histaminic. The metabolites have stronger binding interactions than acetylcholine (ACh) for muscarinic M1, M4, and M5 receptors and demonstrate similar binding profiles to that of the natural substrate, ACh. The affinities of VLB metabolites to dopaminergic and histaminic receptors, their absorption, distribution, metabolism, excretion, toxicity properties, and the superiority of VLB to ACh for binding to M5R, indicate their potential to trigger activation of nausea-associated receptors during chemotherapy with VLB. It has been shown that metabolite 20-hydroxy-VLB (metabolite 10) demonstrates a stronger binding affinity to the vinca site of tubulin than VLB; however, they have similar modes of action. VLB and metabolite 10 have similar gastric solubility (FaSSGF), intestinal solubility (FeSSIF), and log P values. Metabolite 10 has a more acceptable pharmacokinetic profile than VLB, a better gastric and intestinal solubility. Furthermore, metabolite 10 was found to be less bound to plasma proteins than VLB. These are desired and essential features for effective drug bioavailability. Metabolite 10 is not a substrate of CYP2D6 and thus is less likely to cause drug-drug interactions and ADRs compared to its parent drug. The hydroxyl group added upon metabolism of VLB suggests that it can also be a reasonable starting compound for designing the next generation of antimitotic drugs to overcome P-glycoprotein-mediated multidrug resistance, which is often observed with vinca alkaloids.
Collapse
Affiliation(s)
- Caroline
Manto Chagas
- School
of Pharmacy, Memorial University of Newfoundland, 300 Prince Philip Dr., A1B 3V6 St. John’s, Newfoundland, Canada
| | - Laleh Alisaraie
- School
of Pharmacy, Memorial University of Newfoundland, 300 Prince Philip Dr., A1B 3V6 St. John’s, Newfoundland, Canada
- Department
of Chemistry, Memorial University of Newfoundland, A1B 3X7 St. John’s, Newfoundland, Canada
- E-mail:
| |
Collapse
|
5
|
Wei X, Yang J, Ma HX, Ding CF, Yu HF, Zhao YL, Liu YP, Khan A, Wang YF, Yang ZF, Huang WY, Wang XH, Luo XD. Antimicrobial indole alkaloids with adductive C9 aromatic unit from Gelsemium elegans. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Wei X, Dai Z, Yang J, Khan A, Yu HF, Zhao YL, Wang YF, Liu YP, Yang ZF, Huang WY, Wang XH, Zhao XD, Luo XD. Unprecedented sugar bridged bisindoles selective inhibiting glioma stem cells. Bioorg Med Chem 2018; 26:1776-1783. [DOI: 10.1016/j.bmc.2018.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 11/16/2022]
|
7
|
Critical review of reports on impurity and degradation product profiling in the last decade. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Development and in-house validation of a sensitive LC–MS/MS method for simultaneous quantification of gelsemine, koumine and humantenmine in porcine plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1076:54-60. [DOI: 10.1016/j.jchromb.2018.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/03/2018] [Accepted: 01/15/2018] [Indexed: 01/15/2023]
|
9
|
Kosjek T, Negreira N, Heath E, López de Alda M, Barceló D. Aerobic activated sludge transformation of vincristine and identification of the transformation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:892-904. [PMID: 28830049 DOI: 10.1016/j.scitotenv.2017.08.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
This study aims to identify (bio)transformation products of vincristine, a plant alkaloid chemotherapy drug. A batch biotransformation experiment was set-up using activated sludge at two concentration levels with and without the addition of a carbon source. Sample analysis was performed on an ultra-high performance liquid chromatograph coupled to a high-resolution hybrid quadrupole-Orbitrap tandem mass spectrometer. To identify molecular ions of vincristine transformation products and to propose molecular and chemical structures, we performed data-dependent acquisition experiments combining full-scan mass spectrometry data with product ion spectra. In addition, the use of non-commercial detection and prediction algorithms such as MZmine 2 and EAWAG-BBD Pathway Prediction System, was proven to be proficient for screening for transformation products in complex wastewater matrix total ion chromatograms. In this study eleven vincristine transformation products were detected, nine of which were tentatively identified.
Collapse
Affiliation(s)
- Tina Kosjek
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia.
| | - Noelia Negreira
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ester Heath
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia
| | - Miren López de Alda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|
10
|
Li Y, Zhao Y, Zhou X, Ni W, Dai Z, Yang D, Hao J, Luo L, Liu Y, Luo X, Zhao X. Cytotoxic Indole Alkaloid 3α-Acetonyltabersonine Induces Glioblastoma Apoptosis via Inhibition of DNA Damage Repair. Toxins (Basel) 2017; 9:toxins9050150. [PMID: 28452946 PMCID: PMC5450698 DOI: 10.3390/toxins9050150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/16/2017] [Accepted: 04/19/2017] [Indexed: 01/17/2023] Open
Abstract
Cytotoxic indole alkaloids from Melodinus suaveolens, which belongs to the toxic plant family Apocynaceae, demonstrated impressive antitumor activities in many tumor types, but less application in glioblastoma, which is the lethal brain tumor. In the present study, we reported the anti-glioblastoma activity of an indole alkaloid, 3α-acetonyltabersonine, which was isolated from Melodinus suaveolens. 3α-acetonyltabersonine was cytotoxic to glioblastoma cell lines (U87 and T98G) and stem cells at low concentrations. We verified 3α-acetonyltabersonine could suppress tumor cell proliferation and cause apoptosis in glioblastoma stem cells (GSCs). Moreover, detailed investigation of transcriptome study and Western blotting analysis indicated the mitogen activated protein kinase (MAPK) pathway was activated by phosphorylation upon 3α-acetonyltabersonine treatment. Additionally, we found 3α-acetonyltabersonine inhibited DNA damage repair procedures, the accumulated DNA damage stimulated activation of MAPK pathway and, finally, induced apoptosis. Further evidence was consistently obtained from vivo experiments on glioblastoma mouse model: treatment of 3α-acetonyltabersonine could exert pro-apoptotic function and prolong the life span of tumor-bearing mice. These results in vitro and in vivo suggested that 3α-acetonyltabersonine could be a potential candidate antitumor agent.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 21 Qingsong Road, Kunming 650203, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, 19 Qingsong Road, Kunming 650203, China.
- Graduate School, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
- Division of Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Kunming 650500, China.
| | - Yunli Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.
| | - Xia Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 21 Qingsong Road, Kunming 650203, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, 19 Qingsong Road, Kunming 650203, China.
- Graduate School, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Wei Ni
- Department of Neurosurgery, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Kunming 650000, China.
| | - Zhi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 21 Qingsong Road, Kunming 650203, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, 19 Qingsong Road, Kunming 650203, China.
- Graduate School, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Dong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 21 Qingsong Road, Kunming 650203, China.
| | - Junjun Hao
- State Key Lab of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 21 Qingsong Road, Kunming 650203, China.
| | - Lin Luo
- Department of Neurosurgery, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Kunming 650000, China.
| | - Yaping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.
| | - Xiaodong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.
| | - Xudong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 21 Qingsong Road, Kunming 650203, China.
- Kunming Primate Research Center, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming 650223, China.
| |
Collapse
|
11
|
Hong A, Lee HH, Heo CE, Cho Y, Kim S, Kang D, Kim HI. Distinct Fragmentation Pathways of Anticancer Drugs Induced by Charge-Carrying Cations in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:628-637. [PMID: 27981443 DOI: 10.1007/s13361-016-1559-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
With the growth of the pharmaceutical industry, structural elucidation of drugs and derivatives using tandem mass spectrometry (MS2) has become essential for drug development and pharmacokinetics studies because of its high sensitivity and low sample requirement. Thus, research seeking to understand fundamental relationships between fragmentation patterns and precursor ion structures in the gas phase has gained attention. In this study, we investigate the fragmentation of the widely used anticancer drugs, doxorubicin (DOX), vinblastine (VBL), and vinorelbine (VRL), complexed by a singly charged proton or alkali metal ion (Li+, Na+, K+) in the gas phase. The drug-cation complexes exhibit distinct fragmentation patterns in tandem mass spectra as a function of cation size. The trends in fragmentation patterns are explicable in terms of structures derived from ion mobility mass spectrometry (IM-MS) and theoretical calculations. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Areum Hong
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
- Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Hong Hee Lee
- Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Chae Eun Heo
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yunju Cho
- Green-Nano Materials Research Center, Daegu, 41566, Republic of Korea
| | - Sunghwan Kim
- Green-Nano Materials Research Center, Daegu, 41566, Republic of Korea
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dukjin Kang
- Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
12
|
Marinho FF, Simões AO, Barcellos T, Moura S. Brazilian Tabernaemontana genus: Indole alkaloids and phytochemical activities. Fitoterapia 2016; 114:127-137. [PMID: 27639415 DOI: 10.1016/j.fitote.2016.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 11/19/2022]
Abstract
The Tabernaemontana genus belongs to the family Apocynaceae comprising about 100 species spread throughout tropical and subtropical regions around the world including Brazil, which contains around 40 species spread all over its territory. Because of the territorial space and climate diversity, these species already identified in Brazil are the largest collection of Tabernaemontana, which are representative (about 30%) of worldwide distribution. The monoterpene indole alkaloids present as major secondary components in all parts of the plants of the genus Tabernaemontana, have attracted the attention of the scientific community for new alkaloids derivatives and bioactivities. This review covers relevant references about Tabernaemontana species found in Brazil, its geographical distribution, occurrence of monoterpene alkaloids and phytochemical activities. Additional information about the South American species activities are also reported in this review.
Collapse
Affiliation(s)
- Flávio F Marinho
- Laboratory of Biotechnology of Natural and Synthetic Products, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, Brazil
| | - André Olmos Simões
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Sidnei Moura
- Laboratory of Biotechnology of Natural and Synthetic Products, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, Brazil.
| |
Collapse
|
13
|
Ishikura M, Abe T, Choshi T, Hibino S. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat Prod Rep 2015; 32:1389-471. [DOI: 10.1039/c5np00032g] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarizes the isolation, structure determination, total syntheses and biological activities of simple indole alkaloids and those with a nonrearranged monoterpenoid unit, with literature coverage from 2012 to 2013.
Collapse
Affiliation(s)
- Minoru Ishikura
- School of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-Tobetsu
- Japan
| | - Takumi Abe
- School of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-Tobetsu
- Japan
| | - Tominari Choshi
- Graduate School of Pharmacy & Pharmaceutical Sciences
- Faculty of Pharmacy & Pharmaceutical Sciences
- Fukuyama University
- Fukuyama
- Japan
| | - Satoshi Hibino
- Graduate School of Pharmacy & Pharmaceutical Sciences
- Faculty of Pharmacy & Pharmaceutical Sciences
- Fukuyama University
- Fukuyama
- Japan
| |
Collapse
|
14
|
Liu YP, Zhao YL, Feng T, Cheng GG, Zhang BH, Li Y, Cai XH, Luo XD. Melosuavines A-H, cytotoxic bisindole alkaloid derivatives from Melodinus suaveolens. JOURNAL OF NATURAL PRODUCTS 2013; 76:2322-2329. [PMID: 24274642 DOI: 10.1021/np4007469] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Eight new bisindole alkaloids, melosuavines A-C (1-3), having an aspidosperma-scandine linkage, melosuavines D-F (4-6), possessing an aspidosperma-aspidosperma skeleton, and melosuavines G and H (7 and 8) of the aspidosperma-venalatonine type, tenuicausine (9), and melodinine J (10) were isolated from the twigs and leaves of Melodinus suaveolens. The structures of 1-8 were elucidated by extensive spectroscopic methods, and compounds 9 and 10 were identified by comparison with data in the literature. The relative configuration 9 was determined from the ROESY spectrum, and some NMR signals were reassigned. Compounds 1, 2, 4-6, 8, and 10 exhibited low micromolar cytotoxicity against one or more of five human cancer cell lines.
Collapse
Affiliation(s)
- Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
NMR and mass spectrometric characterization of vinblastine, vincristine and some new related impurities—Part II. J Pharm Biomed Anal 2013. [DOI: 10.1016/j.jpba.2012.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Kagawa N, Masuda Y, Morimoto T, Kakiuchi K. Stereochemistry of C7-allyl yohimbine explored by X-ray crystallography. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2012.09.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Dubrovay Z, Háda V, Béni Z, Szántay C. NMR and mass spectrometric characterization of vinblastine, vincristine and some new related impurities - part I. J Pharm Biomed Anal 2012; 84:293-308. [PMID: 22985529 DOI: 10.1016/j.jpba.2012.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/07/2012] [Accepted: 08/14/2012] [Indexed: 10/28/2022]
Abstract
In the course of exploring the possibilities of developing a new, improved process at Gedeon Richter for the production of the "bisindole" alkaloids vinblastine (VLB) and vincristine (VCR), some novel VLB/VCR-related trace impurities were detected by analytical HPLC. Following isolation by preparative HPLC, a combination of 1D and 2D ultra high-field NMR and high-resolution (HR) (LC-)MS/MS studies allowed the structural identification and complete spectral characterization of several hitherto unpublished VLB/VCR-analogue impurities. Since the impurities could not be isolated in entirely pure forms and were available only in minute, mass-limited quantities, accessing the spectral information needed for their ab initio structure determination was met with various practical difficulties. Successful structure determination therefore relied heavily on the availability and use of detailed and definitive spectral data for both VLB and VCR. In particular, the utilization of detailed (1)H, (13)C, and (15)N NMR assignments as well as (1)H-(1)H, (1)H-(13)C and (1)H-(15)N spin-spin connectivities pertaining to different solvents for VLB/VCR base and sulphate salt was required. Although NMR studies on VLB base and other bisindoles were reported earlier in the literature, an NMR characterization of VLB and VCR under the above-mentioned circumstances and using ultra-high field instrumentation is either scarcely available or entirely lacking, therefore the necessary data had to be obtained in-house. Likewise, a modern tandem HR-ESI-MS/MS(n) fragmentation study of VLB and VCR has not been published yet. In the present paper we therefore give a thorough NMR and MS characterization of VLB and VCR specifically with a view to filling this void and to provide sufficiently extensive and solid reference data for the structural investigation of the aforementioned VLB/VCR impurities. Besides being scientifically relevant in its own right, the disclosed data should be useful for anyone interested in VLB/VCR-related molecules at a structural level.
Collapse
Affiliation(s)
- Zsófia Dubrovay
- Chemical Works of Gedeon Richter Plc., API Research and Development - Spectroscopic Research, Budapest, Hungary
| | | | | | | |
Collapse
|