1
|
Liu A, Liang T, Wu W, Weng J, Wu H, Zhou F, Guo J. Protein concentration and analyzing charge variants in a co-formulation comprising three monoclonal antibodies: A cation-exchange chromatography approach. Int J Pharm 2025; 670:125138. [PMID: 39755343 DOI: 10.1016/j.ijpharm.2024.125138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
In the realm of therapeutic antibodies, co-formulations comprising two or more monoclonal antibodies (mAbs) have emerged as a promising strategy, offering enhanced treatment efficacy, improved efficiency, and prolonged intellectual property protection. These advantages have sparked significant interest among both patients and pharmaceutical companies. However, the quantification and analysis of individual mAbs within such co-formulations pose a substantial challenge due to their similar physicochemical properties. To address this challenge, we introduce a pH gradient cation exchange chromatography (CEX) method designed to effectively separate three mAbs that share significant similarities in molecular weight, structure, and isoelectric points (pIs) etc. This versatile approach not only facilitates the accurate quantification of each mAb's concentration and their respective ratios within the co-formulation, but also allows for the comprehensive characterization of all charge variants present. In the case of a co-formulation containing three antibodies, the developed CEX method demonstrated superior performance compared to other techniques. The method's robustness was further underscored by its qualification parameters, including acceptable precision (RSD ≤ 3 %), accuracy (95 %-115 % recovery), and linearity (R2 > 0.99) across a range of 10 to 30 μg load for each mAb. Moreover, the method has been successfully applied in stability studies to quantitatively analyze individual mAb concentrations within co-formulations, marking a significant advancement in the field. Through this work, we contribute a crucial analytical insight into mAb co-formulations, especially those comprising three or more molecules, underscoring its considerable potential to propel the field of biotherapeutic co-formulations forward.
Collapse
Affiliation(s)
- Anyuan Liu
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China
| | - Tiantian Liang
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China
| | - Weiliang Wu
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China
| | - Jingwen Weng
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China
| | - Hongbing Wu
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China
| | - Fangyuan Zhou
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China.
| | - Jeremy Guo
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China.
| |
Collapse
|
2
|
Song JG, Baral KC, Kim GL, Park JW, Seo SH, Kim DH, Jung DH, Ifekpolugo NL, Han HK. Quantitative analysis of therapeutic proteins in biological fluids: recent advancement in analytical techniques. Drug Deliv 2023; 30:2183816. [PMID: 36880122 PMCID: PMC10003146 DOI: 10.1080/10717544.2023.2183816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Pharmaceutical application of therapeutic proteins has been continuously expanded for the treatment of various diseases. Efficient and reliable bioanalytical methods are essential to expedite the identification and successful clinical development of therapeutic proteins. In particular, selective quantitative assays in a high-throughput format are critical for the pharmacokinetic and pharmacodynamic evaluation of protein drugs and to meet the regulatory requirements for new drug approval. However, the inherent complexity of proteins and many interfering substances presented in biological matrices have a great impact on the specificity, sensitivity, accuracy, and robustness of analytical assays, thereby hindering the quantification of proteins. To overcome these issues, various protein assays and sample preparation methods are currently available in a medium- or high-throughput format. While there is no standard or universal approach suitable for all circumstances, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay often becomes a method of choice for the identification and quantitative analysis of therapeutic proteins in complex biological samples, owing to its high sensitivity, specificity, and throughput. Accordingly, its application as an essential analytical tool is continuously expanded in pharmaceutical R&D processes. Proper sample preparation is also important since clean samples can minimize the interference from co-existing substances and improve the specificity and sensitivity of LC-MS/MS assays. A combination of different methods can be utilized to improve bioanalytical performance and ensure more accurate quantification. This review provides an overview of various protein assays and sample preparation methods, with particular emphasis on quantitative protein analysis by LC-MS/MS.
Collapse
Affiliation(s)
- Jae Geun Song
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Kshitis Chandra Baral
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Gyu-Lin Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Ji-Won Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Soo-Hwa Seo
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Da-Hyun Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Dong Hoon Jung
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Nonye Linda Ifekpolugo
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Hyo-Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
3
|
Blümel M, Liu J, de Jong I, Weiser S, Fast J, Litowski J, Shuman M, Mehta SB, Amery L, Tan DCT, Jia F, Shekhawat D, Dagallier C, Emamzadeh M, Medina A, Santos C, Gasser F, Urban C. Current Industry Best Practice on in-use Stability and Compatibility Studies for Biological Products. J Pharm Sci 2023; 112:2332-2346. [PMID: 37160227 DOI: 10.1016/j.xphs.2023.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023]
Abstract
Evaluating the in-use stability of a biological product including its compatibility with administration components allows to define handling instructions and potential hold times that retain product quality during dose preparation and administration. The intended drug product usage may involve the dilution of drug formulation into admixtures for infusion and exposure to new interfaces of administration components like intravenous (iv) bags, syringes, and tubing. In-use studies assess the potential impact on product quality by simulating drug handling throughout the defined in-use period. Considering the wide range of in-use conditions and administration components available globally, only limited guidance is available from regulators on expected in-use stability data. A working group reviewed and consolidated industry approaches to assess physicochemical stability of traditional protein-based biological products during clinical development and for commercial use. The insights compiled in this review article can be leveraged across the industry and encompass topics such as representative drug product material and administration components, testing conditions, quality attributes evaluated and respective acceptance criteria, applied quality standards, and regulatory requirements. These practices may help companies in the study design, and they may inform discussions with global regulators.
Collapse
Affiliation(s)
- Markus Blümel
- Novartis Pharma AG, Biologics Analytical Development, Lichtstrasse 35, CH-4056 Basel, Switzerland.
| | - Jing Liu
- Seagen Inc., Pharmaceutical Sciences, 21717 30th Drive S.E., Building 3. Bothell, WA, 98021, USA.
| | - Isabella de Jong
- Genentech (A Member of the Roche Group), Pharmaceutical Development, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sarah Weiser
- Pfizer; Biotherapeutics Pharmaceutical Sciences, 1 Burtt Road, Andover, MA 01810, USA
| | - Jonas Fast
- F. Hoffmann-La Roche Ltd., Pharmaceutical Development & Supplies, PTD Biologics Europe, Grenzacherstrasse 124, CH, 4070 Basel, Switzerland
| | - Jennifer Litowski
- Amgen Inc., Process Development, 360 Binney St., Cambridge, MA, 02141, USA
| | - Melissa Shuman
- GSK, Strategic External Development, Sterile Drug Product Operations, 1250 S. Collegeville Road Collegeville, PA, 19426, USA
| | - Shyam B Mehta
- Teva Branded Pharmaceutical Products, Drug Product Development and Operations, 145 Brandywine Pkwy, West Chester, PA 19380, USA
| | - Leanne Amery
- AstraZeneca, Dosage Form Design and Development, Aaron Klug Building, Granta Park, Cambridge, Cambridgeshire, CB21 6GH, UK
| | | | - Feng Jia
- Biogen, Biologics Drug Product, 225 Binney Street, Cambridge, MA, 02142, USA
| | - Dushyant Shekhawat
- Eli Lilly and Company, Bioproduct Research and Development, Indianapolis, IN, 46285, USA
| | - Camille Dagallier
- Sanofi, Biologics Drug Product Development, 1 impasse des ateliers, 94403 Vitry-Sur-Seine, France
| | - Mina Emamzadeh
- AstraZeneca, Dosage Form Design and Development, Aaron Klug Building, Granta Park, Cambridge, Cambridgeshire, CB21 6GH, UK
| | - Annette Medina
- AstraZeneca, Dosage Form Design and Development, One Medimmune Way, Gaithersburg, MD, 20878, USA
| | - Camilla Santos
- Amgen Inc., Product Quality, 40 Technology Way, West Greenwich, RI, 02817, USA
| | - Florian Gasser
- Novartis Pharma AG, Biologics Analytical Development, Biochemiestrasse 10, 6336 Langkampfen, Austria
| | - Christian Urban
- Sanofi, Biologics Drug Product Development, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Lappöhn CA, Maerz L, Stei R, Weber LG, Wolff MW. Optimization and validation of analytical affinity chromatography for the in-process monitoring and quantification of peptides containing a C-tag. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123899. [PMID: 37783047 DOI: 10.1016/j.jchromb.2023.123899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Antimicrobial peptides and proteins (AMPs) are promising alternatives to conventional antibiotics for the treatment of infections caused by multidrug-resistant bacteria. The production of recombinant AMPs is facilitated by platform technologies such as the C-tag, a sequence of four C-terminal amino acids that allows immunoaffinity capture and purification. However, the detection and quantification of such products throughout the manufacturing process is a significant challenge. We therefore used a design of experiments approach to optimize a novel high-throughput analytical immunoaffinity chromatography method for the accurate quantification of AMPs containing a C-tag, resulting in minimal analyte carryover (98.8 ± 0.1 % product elution). We then validated the method in accordance with International Conference on Harmonisation guideline Q2(R2). Validation confirmed that the method achieves high specificity, linearity, accuracy, and precision. We implemented in-process control and quantification throughout the manufacturing process, from cell lysis to the final purified product. We found that the lysate and acidic samples (pH < 2) can lead to deviations. However, following sample pretreatment, C-tag quantification reduced the error to ≤ 4 %, which is potentially superior to current non-specific quantification methods such as UV absorbance and colorimetry. Implementing this method for in-process control and quantification throughout the manufacturing process achieves the reliable assessment of product quantity and quality. This method also offers improvements over the product-specific enzyme-linked immunosorbent assay currently used for C-tagged products because it has a higher precision, accuracy and throughput, with a measurement time of 2.5 min per sample. Our analytical affinity chromatography method is therefore a valuable tool for the quantification of AMPs as part of a novel platform technology approach for C-tagged products.
Collapse
Affiliation(s)
- Carolin A Lappöhn
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Lea Maerz
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Robin Stei
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Linus G Weber
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
5
|
Pérez-Robles R, Salmerón-García A, Clemente-Bautista S, Jiménez-Lozano I, Cabañas-Poy MJ, Cabeza J, Navas N. Method for identification and quantification of intact teduglutide peptide using (RP)UHPLC-UV-(HESI/ORBITRAP)MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4359-4369. [PMID: 36263764 DOI: 10.1039/d2ay01254e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Teduglutide (Revestive®, 10 mg mL-1) is a recombinant human glucagon-like peptide 2 analogue, used in the treatment of short bowel syndrome, a serious and highly disabling condition which results from either too small a length of intestine or loss of critical intestinal function. The determination of therapeutic compounds of protein-nature is always challenging due to their complex structure. In this work, we present a fast, straightforward reversed phase (RP)UHPLC-UV-(HESI/ORBITRAP)MS method for the identification and quantification of the intact teduglutide peptide. The method has been developed and validated in accordance with the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines; therefore, linearity, limits of detection and quantification, accuracy (precision and trueness), robustness, system suitability and specificity using the signal from the UV and MS, have been evaluated. The validation performance parameters obtained from the UV and MS signals were compared throughout the work, to select the most suitable. To study the specificity of the method and the impact of medicine mishandling under hospital conditions, force degradation studies were performed, i.e. thermal (40 °C and 60 °C), shaking (mechanical) and light (accelerated exposition) effects. Identification by the exact mass of teduglutide was achieved and it was confirmed that the peptide does not undergo any post-translational modifications (PTMs). To the best of our knowledge, the present work reports the first method developed for the simultaneous identification, structural characterization, and quantification of the therapeutic teduglutide peptide. Finally, the proposed method is able to indicate stability when quantifying the intact teduglutide since detects and characterises the exact mass of the degradation/modification products.
Collapse
Affiliation(s)
- Raquel Pérez-Robles
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Analytical Chemistry, Science Faculty, University of Granada, Granada, Spain
- Fundación para la Investigación Biosanitaria de Andalucía Oriental-Alejandro Otero, Granada, Spain
| | - Antonio Salmerón-García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Clinical Pharmacy, San Cecilio University Hospital, Granada, Spain
| | | | - Inés Jiménez-Lozano
- Maternal and Child Pharmacy Service, Vall d'Hebron Hospital, Pharmacy, Barcelona, Spain
| | | | - Jose Cabeza
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Clinical Pharmacy, San Cecilio University Hospital, Granada, Spain
| | - Natalia Navas
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Analytical Chemistry, Science Faculty, University of Granada, Granada, Spain
| |
Collapse
|
6
|
Ratih R, Asmari M, Abdel-Megied AM, Elbarbry F, El Deeb S. Biosimilars: Review of regulatory, manufacturing, analytical aspects and beyond. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Makki AA, Massot V, Byrne HJ, Respaud R, Bertrand D, Mohammed E, Chourpa I, Bonnier F. Understanding the discrimination and quantification of monoclonal antibodies preparations using Raman spectroscopy. J Pharm Biomed Anal 2020; 194:113734. [PMID: 33243491 DOI: 10.1016/j.jpba.2020.113734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022]
Abstract
The use of Raman spectroscopy for analytical quality control of anticancer drug preparations in clinical pharmaceutical dispensing units is increasing in popularity, notably supported by commercially available, purpose designed instruments. Although not legislatively compulsory, analytical methods are frequently used post-preparation to verify the accuracy of a preparation in terms of identity and quantity of the drug in solution. However, while the rapid, cost effective and label free analysis achieved with Raman spectroscopy is appealing, it is important to understand the molecular origin of the spectral contributions collected from the solution of actives and excipients, to evaluate the strength and limitation for the technique, which can be used to identify and quantify either the prescribed commercial formulation, and/or the active drug itself, in personalised solutions. In the current study, four commercial formulations, Erbitux®, Truxima®, Ontruzant® and Avastin® of monoclonal antibodies (mAbs), corresponding respectively to cetuximab, rituximab, trastuzumab and bevacizumab have been used to highlight the key role of excipients in discrimination and quantification of the formulations. It is demonstrated that protein based anticancer drugs such as mAbs have a relatively weak Raman response, while excipients such as glycine, trehalose or histidine contribute significantly to the spectra. Multivariate analysis (partial least square regression and partial least square discriminant analysis) further demonstrates that the signatures of the mAbs themselves are not prominent in mathematical models and that those of the excipients are solely responsible for the differentiation of formulation and accurate determination of concentrations. While Raman spectroscopy can successfully validate the conformity of mAbs intravenous infusion solutions, the basis for the analysis should be considered, and special caution should be given to excipient compositions in commercial formulations to ensure reliability and reproducibility of the analysis.
Collapse
Affiliation(s)
- Alaa A Makki
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France; Faculty of Pharmacy, University of Gezira, P.O. Box 20, 21111 Wad Madani, Sudan
| | - Victor Massot
- Unité de Biopharmacie Clinique Oncologique, Pharmacie, CHU de Tours, France
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Kevin Street, Dublin 8, Ireland
| | - Renaud Respaud
- Université de Tours, UMR 1100, CHRU de Tours, Service de Pharmacie, F-37032 Tours, France
| | | | - Elhadi Mohammed
- Faculty of Pharmacy, University of Gezira, P.O. Box 20, 21111 Wad Madani, Sudan
| | - Igor Chourpa
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France
| | - Franck Bonnier
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France.
| |
Collapse
|
8
|
A hydrophobic interaction chromatography method suitable for quantitating individual monoclonal antibodies contained in co-formulated drug products. J Pharm Biomed Anal 2020; 193:113703. [PMID: 33147536 DOI: 10.1016/j.jpba.2020.113703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022]
Abstract
A co-formulated monoclonal antibody (mAb) product containing two or more antibodies offers several therapeutic advantages. However, quantitating the individual antibodies in a co-formulated product is challenging due to the similar biochemical and biophysical properties of mAbs. To identify a method suitable to support the development of a co-formulated drug product with three mAbs, a hydrophobic interaction chromatography method was developed, utilizing a Dionex ProPac HIC-10 column, 100 mM phosphate buffer (pH 7.0), and an ammonium sulfate gradient. Compared to other methods that were evaluated, the HIC method showed the best separation, as well as accurate quantitation of the three mAbs in the co-formulated drug product. The calibration curves were linear over column loads of 225 μg to 900 μg (R2 > 0.99) and the accuracy was between 91% and 106%. Intra-day and inter-day precisions (RSD) were less than or equal to 0.6 % and 1.7%, respectively. The method was used to quantitate individual mAb concentrations in the co-formulated drug product and to monitor any changes in concentration during stability studies.
Collapse
|
9
|
Coupling Multi-Angle Light Scattering to Reverse-Phase Ultra-High-Pressure Chromatography (RP-UPLC-MALS) for the characterization monoclonal antibodies. Sci Rep 2019; 9:14965. [PMID: 31628369 PMCID: PMC6800455 DOI: 10.1038/s41598-019-51233-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/26/2019] [Indexed: 11/18/2022] Open
Abstract
Multi-angle light scattering coupled with size-exclusion chromatography (SEC-MALS) is a standard approach for protein characterization. Recently MALS detection has been coupled with ion-exchange chromatography (IEX) which demonstrated the feasibility and high value of MALS in combination with non-sized-based fractionation methods. In this study we coupled reverse-phase ultra-high pressure liquid chromatography (RP-UPLC) with a low-dispersion MALS detector for the characterization of intact monoclonal antibody (mAbs) and their fragments. We confirmed a constant refractive index increment value for mAbs in RP gradients, in good agreement with the values in literature for other classes of proteins. We showed that the impurities eluting from a RP column can often be related to aggregated species and we confirmed that in most cases those oligomers are present also in SEC-MALS. Yet, in few cases small aggregates fractions in RP-UPLC are an artifact. In fact, proteins presenting thermal and physical stability not suitable for the harsh condition applied during the RP separation of mAbs (i.e. organic solvents at high temperature) can aggregate. Further, we applied RP-UPLC-MALS during a long term stability studies. The different principle of separation used in RP-UPLC- MALS provides an additional critical level of protein characterization compared to SEC-MALS and IEX-MALS.
Collapse
|
10
|
Enhanced anti-tumor immunotherapy by dissolving microneedle patch loaded ovalbumin. PLoS One 2019; 14:e0220382. [PMID: 31386690 PMCID: PMC6684091 DOI: 10.1371/journal.pone.0220382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 07/15/2019] [Indexed: 01/04/2023] Open
Abstract
The skin is a very suitable organ for the induction of immune responses to vaccine antigens. Antigen delivery systems to the skin by needle and syringe directly deposit the antigen into the epidermal-dermal compartment, one of the most immunocompetent sites due to the presence of professional antigen-presenting cells aimed at the induction of antigen-specific T cells. In this study, we analyzed the amount of ovalbumin as an antigen delivered to the skin by a microneedle. When ovalbumin protein as an antigen was delivered to the skin of mice using a dissolving microneedle, it induced an immune response through the enhanced proliferation and cytokines production by the splenocytes and lymph nodes. Also, it effectively increased the ovalbumin-specific CD8+ T cell and CD4+ T cell population and induced an ovalbumin-specific CTL response against the graft of ovalbumin-expressing EG7 tumor cells in the immunized mice. Also, we identified the inhibition of tumor growth and prevention of tumor formation in the context of the therapeutic and prophylactic vaccine, respectively through EG-7 tumor mouse model. Finally, these data show the potential of patches as attractive antigen delivery vehicles.
Collapse
|
11
|
Comparative Analysis of Protein Quantification Methods for the Rapid Determination of Protein Loading in Liposomal Formulations. Pharmaceutics 2019; 11:pharmaceutics11010039. [PMID: 30669330 PMCID: PMC6358724 DOI: 10.3390/pharmaceutics11010039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 11/17/2022] Open
Abstract
Advances in manufacturing processes provide the ability for the high throughput production of liposomes containing a range of moieties, from small molecules to large biologicals (including proteins and nucleic acids for prophylactic and therapeutic applications). Whilst rapid quantification methods for small molecules are generally well established, the ability to rapidly quantify liposomal entrapment of proteins is limited. Indeed, most standard protein quantification techniques (including the BCA assay and Reverse phase-high performance liquid chromatography (RP-HPLC)) measure protein encapsulation indirectly, by measuring the amount of non-incorporated drug, and subtracting from the initial amount of protein added. However, this can give inaccurate and misrepresentative results. To address this, we have developed a range of methods to directly quantify protein entrapment within liposomes. The encapsulation efficiency within neutral, anionic and cationic liposome formulations was determined by three techniques; BCA assay, RP-HPLC and HPLC coupled to an evaporative light scattering detector, (HPLC-ELSD). All three methods are reliable for the quantification of protein, with linear responses and correlation coefficients of 0.99, and LOQ for all three methods being less than 10 µg/mL. Here within, we provide three methods for the rapid and robust quantification of protein loading within liposomal (and other bilayer) vesicle systems.
Collapse
|
12
|
Martínez-Ortega A, Herrera A, Salmerón-García A, Cabeza J, Cuadros-Rodríguez L, Navas N. Validated reverse phase HPLC diode array method for the quantification of intact bevacizumab, infliximab and trastuzumab for long-term stability study. Int J Biol Macromol 2018; 116:993-1003. [DOI: 10.1016/j.ijbiomac.2018.05.142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
|
13
|
Interlaced Size Exclusion Chromatography for faster protein analysis. Eur J Pharm Biopharm 2018; 126:101-103. [DOI: 10.1016/j.ejpb.2017.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 11/17/2022]
|
14
|
Sousa F, Gonçalves VM, Sarmento B. Development and validation of a rapid reversed-phase HPLC method for the quantification of monoclonal antibody bevacizumab from polyester-based nanoparticles. J Pharm Biomed Anal 2017; 142:171-177. [DOI: 10.1016/j.jpba.2017.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 01/12/2023]
|
15
|
Madadkar P, Umatheva U, Hale G, Durocher Y, Ghosh R. Ultrafast Separation and Analysis of Monoclonal Antibody Aggregates Using Membrane Chromatography. Anal Chem 2017; 89:4716-4720. [PMID: 28345870 DOI: 10.1021/acs.analchem.7b00580] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pedram Madadkar
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Umatheny Umatheva
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Geoff Hale
- Freelance Scientist, Oxford OX3 0SJ, United Kingdom
| | - Yves Durocher
- National Research Council of Canada, Montreal, Quebec H4P 2R2, Canada
| | - Raja Ghosh
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
16
|
Development and Validation of a Method for Quantifying HER1 Extracellular Domain in Culture Supernatant by RP-HPLC. Chromatographia 2016. [DOI: 10.1007/s10337-016-3032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Martínez-Ortega A, Herrera A, Salmerón-García A, Cabeza J, Cuadros-Rodríguez L, Navas N. Study and ICH validation of a reverse-phase liquid chromatographic method for the quantification of the intact monoclonal antibody cetuximab. J Pharm Anal 2015; 6:117-124. [PMID: 29403971 PMCID: PMC5762446 DOI: 10.1016/j.jpha.2015.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/31/2023] Open
Abstract
Cetuximab (CTX) is a potent chimeric mouse/human monoclonal antibody (mAb) approved worldwide for treatment of metastatic colorectal cancer. Among the various biological and physical analyses performed for full study on this biopharmaceutic, the determination of the concentration preparations throughout manufacturing and subsequent handling in hospital is particularly relevant. In the present work, the study and validation of a method for quantifying intact CTX by reverse-phase high-performance liquid chromatography with diode array detection ((RP)HPLC/DAD) is presented. With that end, we checked the performance of a chromatographic method for quantifying CTX and conducted a study to validate the method as stability-indicating in accordance with the International Conference on Harmonization guidelines (ICH) for biotechnological drugs; therefore, we evaluated linearity, accuracy, precision, detection and quantification limits, robustness and system suitability. The specificity of the method and the robustness of the mAb formulation against external stress factors were estimated by comprehensive chromatographic analysis by subjecting CTX to several informative stress conditions. As demonstrated, the method is rapid, accurate, and reproducible for CTX quantification. It was also successfully used to quantify CTX in a long-term stability study performed under hospital conditions.
Collapse
Affiliation(s)
- Antonio Martínez-Ortega
- Department of Analytical Chemistry, University of Granada, Faculty of Science, Campus Fuentenueva s/n, E-18071 Granada, Spain
| | - Agustín Herrera
- Department of Analytical Chemistry, University of Granada, Faculty of Science, Campus Fuentenueva s/n, E-18071 Granada, Spain
| | - Antonio Salmerón-García
- UGC Intercentro Interniveles Farmacia Granada, San Cecilio Hospital, Biomedical Research Institute ibs. GRANADA. Hospitales Universitarios de Granada, University of Granada, E-18012 Granada, Spain
| | - José Cabeza
- UGC Intercentro Interniveles Farmacia Granada, San Cecilio Hospital, Biomedical Research Institute ibs. GRANADA. Hospitales Universitarios de Granada, University of Granada, E-18012 Granada, Spain
| | - Luis Cuadros-Rodríguez
- Department of Analytical Chemistry, Science Faculty, Biomedical Research Institute ibis. GRANADA, University of Granada, Campus Fuentenueva s/n, E-18071 Granada, Spain
| | - Natalia Navas
- Department of Analytical Chemistry, Science Faculty, Biomedical Research Institute ibis. GRANADA, University of Granada, Campus Fuentenueva s/n, E-18071 Granada, Spain
| |
Collapse
|
18
|
The influence of organic sample solvents on the separation efficiency of basic compounds under strong cation exchange mode. Anal Chim Acta 2015; 872:77-83. [DOI: 10.1016/j.aca.2014.12.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/23/2014] [Accepted: 12/11/2014] [Indexed: 11/22/2022]
|
19
|
Fekete S, Beck A, Veuthey JL, Guillarme D. Ion-exchange chromatography for the characterization of biopharmaceuticals. J Pharm Biomed Anal 2015; 113:43-55. [PMID: 25800161 DOI: 10.1016/j.jpba.2015.02.037] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/28/2022]
Abstract
Ion-exchange chromatography (IEX) is a historical technique widely used for the detailed characterization of therapeutic proteins and can be considered as a reference and powerful technique for the qualitative and quantitative evaluation of charge heterogeneity. The goal of this review is to provide an overview of theoretical and practical aspects of modern IEX applied for the characterization of therapeutic proteins including monoclonal antibodies (Mabs) and antibody drug conjugates (ADCs). The section on method development describes how to select a suitable stationary phase chemistry and dimensions, the mobile phase conditions (pH, nature and concentration of salt), as well as the temperature and flow rate, considering proteins isoelectric point (pI). In addition, both salt-gradient and pH-gradient approaches were critically reviewed and benefits as well as limitations of these two strategies were provided. Finally, several applications, mostly from pharmaceutical industries, illustrate the potential of IEX for the characterization of charge variants of various types of biopharmaceutical products.
Collapse
Affiliation(s)
- Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland.
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France(1)
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland
| |
Collapse
|
20
|
Fekete S, Beck A, Veuthey JL, Guillarme D. Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J Pharm Biomed Anal 2014; 101:161-73. [DOI: 10.1016/j.jpba.2014.04.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 12/27/2022]
|
21
|
Development of an Analytical Method for the Rapid Quantitation of Peptides Used in Microbicide Formulations. Chromatographia 2014; 77:1713-1720. [PMID: 25477555 PMCID: PMC4244548 DOI: 10.1007/s10337-014-2777-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/25/2014] [Indexed: 01/21/2023]
Abstract
Recently, a growing number of macromolecules such as peptides and proteins have been formulated into various microbicide formulations for the prevention of sexually transmitted infections. However, a fast and reliable high-throughput method for quantitating peptide/protein in polymer-based microbicide formulations is still lacking. As a result, we developed and validated a reversed-phase high-performance liquid chromatography method for the quantitation of gp120 fragment and LL-37 simultaneously in various microbicide gel formulations. This method was capable of detecting a limit of linearity (regression coefficient of 0.999) for gp120 fragment and LL-37 within a range of 0.625-80 and 1.25-80 µg mL-1, respectively. The lower limit of quantification for gp120 fragment and LL-37 was 1.14 and 0.31 µg mL-1, respectively. Method validation demonstrated acceptable intra- and inter-day RSD % (<5 %) and accuracy (95.67-100.5 %). Formulating both peptides into polymeric pharmaceutical gel formulations showed high extraction efficiency (in the range of 95.90 ± 3.03 to 111.45 ± 2.51 %). Using this method, we were able to separate and identify the forced degraded products from both peptides simultaneously without affecting the quantitation of both peptides in the polymeric dosage forms. Furthermore, this method was able to detect and separate degradants that were unable to be revealed using gel eletrophoresis.
Collapse
|
22
|
Deeb SE, Wätzig H, El-Hady DA, Albishri HM, de Griend CSV, Scriba GKE. Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis. Electrophoresis 2014; 35:170-89. [PMID: 24395663 DOI: 10.1002/elps.201300411] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 12/31/2022]
Abstract
Since the introduction about 30 years ago, CE techniques have gained a significant impact in pharmaceutical analysis. The present review covers recent advances and applications of CE for the analysis of pharmaceuticals. Both small molecules and biomolecules such as proteins are considered. The applications range from the determination of drug-related substances to the analysis of counterions and the determination of physicochemical parameters. Furthermore, general considerations of CE methods in pharmaceutical analysis are described.
Collapse
Affiliation(s)
- Sami El Deeb
- Drug Analysis and Research Center, Department of Pharmaceutical Chemistry, Al-Azhar University - Gaza, Gaza, Palestine; Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Investigating effects of sample pretreatment on protein stability using size-exclusion chromatography and high-resolution continuum source atomic absorption spectrometry. J Sep Sci 2014; 37:2583-90. [DOI: 10.1002/jssc.201400189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/13/2014] [Accepted: 06/15/2014] [Indexed: 12/26/2022]
|
24
|
Navas N, Herrera A, Martínez-Ortega A, Salmerón-García A, Cabeza J, Cuadros-Rodríguez L. Quantification of an intact monoclonal antibody, rituximab, by (RP)HPLC/DAD in compliance with ICH guidelines. Anal Bioanal Chem 2014; 405:9351-63. [PMID: 24121431 DOI: 10.1007/s00216-013-7368-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 11/26/2022]
Abstract
We studied the quantification of an intact therapeutic monoclonal antibody (mAb), rituximab (RTX), using (reversephase) high-performance liquid chromatography with diode array detection ((RP)HPLC/DAD). To this end, we developed a chromatographic method and validated it as stabilityindicating in accordance with the International Conference on Harmonization guidelines (ICH). A 300-Å C8 column (250 mm×4.6 mm, 5 μm) was used to perform the analysis, and the temperature was maintained at 70 °C. Although only one mAb was analyzed, it was necessary to apply a gradient to elute it with a complex organic mixture. Chromatograms were registered at several wavelengths, with λ =214 nm employed for quantification purposes. The method was developed to quantify marketed RTX under typical hospital administration conditions. Further dilution was avoided in order to prevent additional mAb modification, and in this way the method was shown to be linear from 60 to 5000 mg/L. The precision of the method (repeatability and intermediate precision, estimated as the relative standard deviation, RSD %), was less than 1.0 %. Accuracy, specificity, robustness, and system suitability were also evaluated as specified in the ICH guidelines.We conducted a comprehensive chromatographic analysis by submitting RTX to several informative stress conditions. These forced degradation studies were conducted for two reasons: to estimate the specificity of the method, and to evaluate the robustness of the mAb formulation against external stress factors when handling it in preparation for administration. Thus, we investigated the effects of acid, base, oxidation, ionic strength, temperature, and UV light. Although a slight modification to the intact mAb could not be distinguished chromatographically in the stress studies we conducted, the procedure proposed here to evaluate peak purity enabled us to detect it with a satisfactory level of confidence. The proposed method could therefore be considered stability-indicating for quantyfying the intact mAb since it is qualified to detect its degradation/modification. Finally, the method was used to evaluate RTX in a long-term stability study performed under hospital conditions of use.
Collapse
|
25
|
Hahne T, Palaniyandi M, Kato T, Fleischmann P, Wätzig H, Park EY. Characterization of human papillomavirus 6b L1 virus-like particles isolated from silkworms using capillary zone electrophoresis. J Biosci Bioeng 2014; 118:311-4. [PMID: 24694399 DOI: 10.1016/j.jbiosc.2014.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
Human papillomavirus 6b L1 virus-like particles (VLPs) were successfully expressed using Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid expression system and rapidly purified using size exclusion chromatography after ultracentrifugation procedure and characterized by capillary zone electrophoresis (CZE). The average capillary electrophoresis migration time was 11 min with the relative standard deviation (RSD) of 0.3% of human papillomavirus 6b L1 VLPs. After this threefold fractionation, the CZE samples were still further investigated by dynamic light scattering and immuno blotting. The versatile technique, CZE not only proved to be a valuable tool for VLP characterization, but was also found to be reliable and precise. Thus CZE will also be an important option for the quality control of VLPs in pharmaceutical research level.
Collapse
Affiliation(s)
- Thomas Hahne
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany
| | - Muthukutty Palaniyandi
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Tatsuya Kato
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Peter Fleischmann
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstr. 20, 38106 Braunschweig, Germany
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany
| | - Enoch Y Park
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
26
|
Development and Validation of an Affinity Chromatography-Protein G Method for IgG Quantification. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:487101. [PMID: 27379284 PMCID: PMC4897240 DOI: 10.1155/2014/487101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/30/2014] [Indexed: 11/17/2022]
Abstract
Nimotuzumab, an IgG that recognizes the epidermal growth factor receptor (EGF-R) overexpressed in some tumors, is used in the treatment of advanced head and neck cancer. For the quantification of this protein in cell culture supernatants, protein G-HPLC affinity chromatography is used due to its high affinity and specificity for antibodies of this class. The technique relies on the comparison of the area under the curve of the elution peak of the samples to be evaluated versus to a calibration curve of well-known concentrations and was validated by assessment of its robustness, specificity, repeatability, intermediate precision, accuracy, linearity, limit of detection, limit of quantification, and range. According to results of the study all validation parameters fulfilled the preestablished acceptance criteria and demonstrated the feasibility of the assay for the analysis of samples of cell culture supernatant as well as drug product.
Collapse
|
27
|
Fekete S, Dong MW, Zhang T, Guillarme D. High resolution reversed phase analysis of recombinant monoclonal antibodies by ultra-high pressure liquid chromatography column coupling. J Pharm Biomed Anal 2013; 83:273-8. [DOI: 10.1016/j.jpba.2013.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 10/26/2022]
|
28
|
Deeb SE, Wätzig H, El-Hady DA. Capillary electrophoresis to investigate biopharmaceuticals and pharmaceutically-relevant binding properties. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Fekete S, Ganzler K, Guillarme D. Critical evaluation of fast size exclusion chromatographic separations of protein aggregates, applying sub-2μm particles. J Pharm Biomed Anal 2013; 78-79:141-9. [DOI: 10.1016/j.jpba.2013.02.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/09/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
|
30
|
Wang R, Wang X, Paulino J, Alquier L. Evaluation of charged aerosol detector for purity assessment of protein. J Chromatogr A 2013; 1283:116-21. [DOI: 10.1016/j.chroma.2013.01.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 02/08/2023]
|
31
|
Cianciulli C, Hahne T, Wätzig H. Capillary gel electrophoresis for precise protein quantitation. Electrophoresis 2012; 33:3276-80. [DOI: 10.1002/elps.201200177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/31/2012] [Accepted: 07/09/2012] [Indexed: 11/10/2022]
|