1
|
Lukacs M, Vitalis F, Bardos A, Tormási J, Bec KB, Grabska J, Gillay Z, Tömösközi-Farkas RA, Abrankó L, Albanese D, Malvano F, Huck CW, Kovacs Z. Comparison of Multiple NIR Instruments for the Quantitative Evaluation of Grape Seed and Other Polyphenolic Extracts with High Chemical Similarities. Foods 2024; 13:4164. [PMID: 39767106 PMCID: PMC11675291 DOI: 10.3390/foods13244164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Grape seed extract (GSE), one of the world's bestselling dietary supplements, is prone to frequent adulteration with chemically similar compounds. These frauds can go unnoticed within the supply chain due to the use of unspecific standard analytical methods for quality control. This research aims to develop a near-infrared spectroscopy (NIRS) method for the rapid and non-destructive quantitative evaluation of GSE powder in the presence of multiple additives. Samples were prepared by mixing GSE with pine bark extract (PBE) and green tea extract (GTE) on different levels between 0.5 and 13% in singular and dual combinations. Measurements were performed with a desktop and three different handheld devices for performance comparison. Following spectral pretreatment, partial least squares regression (PLSR) and support vector regression (SVR)-based quantitative models were built to predict extract concentrations and various chemical parameters. Cross- and external-validated models could reach a minimum R2p value of 0.99 and maximum RMSEP of 0.27% for the prediction of extract concentrations using benchtop data, while models based on handheld data could reach comparably good results, especially for GTE, caffeic acid and procyanidin content prediction. This research shows the potential applicability of NIRS coupled with chemometrics as an alternate, rapid and accurate quality evaluation tool for GSE-based supplement mixtures.
Collapse
Affiliation(s)
- Matyas Lukacs
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.L.); (F.V.); (A.B.); (Z.G.)
| | - Flora Vitalis
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.L.); (F.V.); (A.B.); (Z.G.)
| | - Adrienn Bardos
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.L.); (F.V.); (A.B.); (Z.G.)
| | - Judit Tormási
- Department of Food Chemistry and Analytics, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (J.T.); (R.A.T.-F.); (L.A.)
| | - Krzysztof B. Bec
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold Franzens University, Innrain 80/82, 6020 Innsbruck, Austria; (K.B.B.); (J.G.); (C.W.H.)
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold Franzens University, Innrain 80/82, 6020 Innsbruck, Austria; (K.B.B.); (J.G.); (C.W.H.)
| | - Zoltan Gillay
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.L.); (F.V.); (A.B.); (Z.G.)
| | - Rita A. Tömösközi-Farkas
- Department of Food Chemistry and Analytics, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (J.T.); (R.A.T.-F.); (L.A.)
| | - László Abrankó
- Department of Food Chemistry and Analytics, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (J.T.); (R.A.T.-F.); (L.A.)
| | - Donatella Albanese
- Department of Industrial Engineering, University of Salerno, 84084 Salerno, Italy; (D.A.); (F.M.)
| | - Francesca Malvano
- Department of Industrial Engineering, University of Salerno, 84084 Salerno, Italy; (D.A.); (F.M.)
| | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold Franzens University, Innrain 80/82, 6020 Innsbruck, Austria; (K.B.B.); (J.G.); (C.W.H.)
| | - Zoltan Kovacs
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.L.); (F.V.); (A.B.); (Z.G.)
| |
Collapse
|
2
|
Liu Y, Bei K, Zheng W, Yu G, Sun C. Multiple pesticide residues and risk assessment of Dendrobium officinale Kimura et Migo: a three-year investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107827-107840. [PMID: 37740810 DOI: 10.1007/s11356-023-29892-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
Dendrobium officinale Kimura et Migo (D. officinale) is a traditional Chinese medicine homologous to food, and its safety has attracted considerable attention. Pesticide residues are critical indicators for evaluating the safety of D. officinale. This study investigated the levels of 130 pesticides in 137 stem samples and 82 leaf samples from five main production areas of D. officinale in Zhejiang Province, along with the associated risk of dietary exposure for the population between 2019 and 2021. Forty-five pesticides were detected in 171 samples, of which pyraclostrobin had the highest detection frequency. Multiple residues were detected in 52.56% of the stem samples and 54.88% of the leaf samples, and one stem sample contained up to 18 pesticides. Here, the level of difenoconazole in three samples (two stem samples and one leaf sample) was higher than the maximum residue limit (MRL) in China. Considering the possible health risks related to pesticide residues, a risk assessment of human exposure to pesticides via the intake of D. officinale stems and leaves was evaluated, indicating negligible short-term, long-term, and cumulative risks to human health. However, considering the high detection rate of unregistered pesticides, the supplementation of pesticide registration information on D. officinale should be expedited, and MRLs should be established to ensure food and drug safety.
Collapse
Affiliation(s)
- Yuhong Liu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Ke Bei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Weiran Zheng
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Guoguang Yu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Caixia Sun
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Xu MR, Sun FC, Yang BC, Chen HJ, Lin CH, Cheng JH, Lee MS. Genetic Authentication of the Medicinal Plant Portulaca oleracea Using a Quick, Precise, and Sensitive Isothermal DNA Amplification Assay. Int J Mol Sci 2023; 24:10730. [PMID: 37445904 DOI: 10.3390/ijms241310730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Portulaca oleracea (PO) is a commonly known medicinal crop that is an important ingredient for traditional Chinese medicine (TCM) due to its use as a vegetable in the diet. PO has been recorded to be frequently adulterated by other related species in the market of herbal plants, distorting the PO plant identity. Thus, identification of the botanical origin of PO is a crucial step before pharmaceutical or functional food application. In this research, a quick assay named "loop-mediated isothermal amplification (LAMP)" was built for the specific and sensitive authentication of PO DNA. On the basis of the divergences in the internal transcribed spacer 2 (ITS2) sequence between PO and its adulterant species, the LAMP primers were designed and verified their specificity, sensitivity, and application for the PO DNA authentication. The detection limit of the LAMP assay for PO DNA identification specifically was 100 fg under isothermal conditions at 63 °C for 30 min. In addition, different heat-processed PO samples can be applied for use in PO authentication in the LAMP assay. These samples of PO were more susceptible to the effect of steaming in authentication by PCR than boiling and drying treatment. Furthermore, commercial PO samples pursued from herbal markets were used to display their applicability of the developed LAMP analysis for PO postharvest authentication, and the investigation found that approximately 68.4% of PO specimens in the marketplace of herbal remedies were adulterated. In summary, the specific, sensitive, and rapid LAMP assay for PO authentication was first successfully developed herein, and its practical application for the inspection of adulteration in PO samples from the herbal market was shown. This LAMP assay created in this study will be useful to authenticate the botanical origin of PO and its commercial products.
Collapse
Affiliation(s)
- Mo-Rong Xu
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Fang-Chun Sun
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515006, Taiwan
| | - Bo-Cheng Yang
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Hsi-Jien Chen
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Chia-Hsin Lin
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Meng-Shiou Lee
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
4
|
Chen R, Liu F, Zhang C, Wang W, Yang R, Zhao Y, Peng J, Kong W, Huang J. Trends in digital detection for the quality and safety of herbs using infrared and Raman spectroscopy. FRONTIERS IN PLANT SCIENCE 2023; 14:1128300. [PMID: 37025139 PMCID: PMC10072231 DOI: 10.3389/fpls.2023.1128300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Herbs have been used as natural remedies for disease treatment, prevention, and health care. Some herbs with functional properties are also used as food or food additives for culinary purposes. The quality and safety inspection of herbs are influenced by various factors, which need to be assessed in each operation across the whole process of herb production. Traditional analysis methods are time-consuming and laborious, without quick response, which limits industry development and digital detection. Considering the efficiency and accuracy, faster, cheaper, and more environment-friendly techniques are highly needed to complement or replace the conventional chemical analysis methods. Infrared (IR) and Raman spectroscopy techniques have been applied to the quality control and safety inspection of herbs during the last several decades. In this paper, we generalize the current application using IR and Raman spectroscopy techniques across the whole process, from raw materials to patent herbal products. The challenges and remarks were proposed in the end, which serve as references for improving herb detection based on IR and Raman spectroscopy techniques. Meanwhile, make a path to driving intelligence and automation of herb products factories.
Collapse
Affiliation(s)
- Rongqin Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Chu Zhang
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Wei Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Rui Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yiying Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jiyu Peng
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Wenwen Kong
- College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou, China
| | - Jing Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Zhang H, Chang Q, Wang X, Li J, Qiu G, Wu F, Zhu R, Su M. Rapid screening of 15 highly toxic pesticide residues in Angelica sinensis decoctions by thermal desorption electrospray ionization mass spectrometry. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2119942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Hongyan Zhang
- College of Chemistry and Environmental Science, Hebei University, Hebei, P.R. People’s Republic of China
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation/Lanzhou Institute for Food and Drug control, Gansu, P.R. People’s Republic of China
| | - Qiaoying Chang
- Chinese Academy of Inspection and Quarantine, Beijing, P.R. People’s Republic of China
| | - Xingzhi Wang
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation/Lanzhou Institute for Food and Drug control, Gansu, P.R. People’s Republic of China
| | - Jian Li
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation/Lanzhou Institute for Food and Drug control, Gansu, P.R. People’s Republic of China
| | - Guoyu Qiu
- Gansu Pharmaceutical Group Science and Technology Research Institute Co. Ltd, Gansu, P.R. People’s Republic of China
| | - Fuxiang Wu
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation/Lanzhou Institute for Food and Drug control, Gansu, P.R. People’s Republic of China
| | - Renyuan Zhu
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation/Lanzhou Institute for Food and Drug control, Gansu, P.R. People’s Republic of China
| | - Ming Su
- College of Chemistry and Environmental Science, Hebei University, Hebei, P.R. People’s Republic of China
| |
Collapse
|
6
|
Li F, Zhang J, Wang Y. Vibrational Spectroscopy Combined with Chemometrics in Authentication of Functional Foods. Crit Rev Anal Chem 2022; 54:333-354. [PMID: 35533108 DOI: 10.1080/10408347.2022.2073433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many foods have both edible and medical importance and are appreciated as functional foods, preventing diseases. However, due to unscrupulous vendors and imperfect market supervision mechanisms, curative foods are prone to adulteration or some other events that harm the interests of consumers. However, traditional analytical methods are unsuitable and expensive for a broad and complex application. Therefore, people urgently need a fast, efficient, and accurate detection method to protect self-interests. Recently, the study of target samples by vibration spectrum shows strong qualitative and quantitative ability. The model established by platform technology combined with the stoichiometric analysis method can obtain better parameters, which it has good robustness and can detect functional food efficiently, quickly and nondestructive. The review compared and prospect five different vibrational spectroscopic techniques (near-infrared, Fourier transform infrared, Raman, hyperspectral imaging spectroscopy and Terahertz spectroscopy). In order to better solve some of the actual situations faced by certification, we explore and through relevant research and investigation to appropriately highlight the applicability and importance of technology combined with chemometrics in functional food authentication. There are four categories of authentication discussed: functional food authenticated in source, processing method, fraud and ingredient ratio. This paper provides an innovative process for the authentication of functional food, which has a meaningful reference value for future review or scientific research of relevant departments.
Collapse
Affiliation(s)
- Fengjiao Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
7
|
Durazzo A, Sorkin BC, Lucarini M, Gusev PA, Kuszak AJ, Crawford C, Boyd C, Deuster PA, Saldanha LG, Gurley BJ, Pehrsson PR, Harnly JM, Turrini A, Andrews KW, Lindsey AT, Heinrich M, Dwyer JT. Analytical Challenges and Metrological Approaches to Ensuring Dietary Supplement Quality: International Perspectives. Front Pharmacol 2022; 12:714434. [PMID: 35087401 PMCID: PMC8787362 DOI: 10.3389/fphar.2021.714434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022] Open
Abstract
The increased utilization of metrology resources and expanded application of its' approaches in the development of internationally agreed upon measurements can lay the basis for regulatory harmonization, support reproducible research, and advance scientific understanding, especially of dietary supplements and herbal medicines. Yet, metrology is often underappreciated and underutilized in dealing with the many challenges presented by these chemically complex preparations. This article discusses the utility of applying rigorous analytical techniques and adopting metrological principles more widely in studying dietary supplement products and ingredients, particularly medicinal plants and other botanicals. An assessment of current and emerging dietary supplement characterization methods is provided, including targeted and non-targeted techniques, as well as data analysis and evaluation approaches, with a focus on chemometrics, toxicity, dosage form performance, and data management. Quality assessment, statistical methods, and optimized methods for data management are also discussed. Case studies provide examples of applying metrological principles in thorough analytical characterization of supplement composition to clarify their health effects. A new frontier for metrology in dietary supplement science is described, including opportunities to improve methods for analysis and data management, development of relevant standards and good practices, and communication of these developments to researchers and analysts, as well as to regulatory and policy decision makers in the public and private sectors. The promotion of closer interactions between analytical, clinical, and pharmaceutical scientists who are involved in research and product development with metrologists who develop standards and methodological guidelines is critical to advance research on dietary supplement characterization and health effects.
Collapse
Affiliation(s)
| | - Barbara C Sorkin
- Office of Dietary Supplements, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, United States
| | | | - Pavel A Gusev
- Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Bethesda, MD, United States
| | - Adam J Kuszak
- Office of Dietary Supplements, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, United States
| | - Cindy Crawford
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Courtney Boyd
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Leila G Saldanha
- Office of Dietary Supplements, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, United States
| | - Bill J Gurley
- National Center for Natural Products Research, University of Mississippi, Bethesda, MD, United States
| | - Pamela R Pehrsson
- Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Bethesda, MD, United States
| | - James M Harnly
- Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Bethesda, MD, United States
| | - Aida Turrini
- CREA - Research Centre for Food and Nutrition, Rome, Italy
| | - Karen W Andrews
- Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Bethesda, MD, United States
| | - Andrea T Lindsey
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Michael Heinrich
- UCL School of Pharmacy, Pharmacognosy and Phytotherapy, London, United Kingdom
| | - Johanna T Dwyer
- Office of Dietary Supplements, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, United States
| |
Collapse
|
8
|
Paczkowska-Walendowska M, Szymańska E, Winnicka K, Szwajgier D, Baranowska-Wójcik E, Ruchała MA, Simon M, Cielecka-Piontek J. Cyclodextrin as Functional Carrier in Development of Mucoadhesive Tablets Containing Polygoni cuspidati Extract with Potential for Dental Applications. Pharmaceutics 2021; 13:pharmaceutics13111916. [PMID: 34834331 PMCID: PMC8619530 DOI: 10.3390/pharmaceutics13111916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Polygoni cuspidati root is a resveratrol-rich source with anti-inflammatory, angiogenic and neuroprotective effects. The raw material was standardized for the content of resveratrol, for which there is a special justification for administration within the oral mucosa. To improve the solubility of resveratrol and to assure its high content in plant material, an ultrasound-assisted extraction method was applied. The addition of cyclodextrin was found to increase the extraction efficiency of resveratrol (from 13 to 297 µg per 1 g of plant material in case of 50% ethanol extracts) and enhanced its antioxidant activity as compared to pure Polygoni cuspidati extract/resveratrol. Cyclodextrin plays the role of a functional extract regarding technological properties (increasing the extraction of resveratrol from the extract, improving mucoadhesive properties). Therefore, the aim of this study was to develop mucoadhesive tablets containing combinations of the Polygoni cuspidati extract with a cyclodextrin carrier for buccal delivery. The tests sequentially included extract preparation and characterization of its physical and biological properties and then formulation studies with a broad description of the prototype properties. The test results indicate that cyclodextrin increases the efficiency of resveratrol extraction from Polygoni cuspidati rhizome, which is a rich source of resveratrol, and its extract enclosed in a mucoadhesive tablet guarantees prolonged action at the site of administration.
Collapse
Affiliation(s)
| | - Emilia Szymańska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (E.S.); (K.W.)
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (E.S.); (K.W.)
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Marek A. Ruchała
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
| | - Marek Simon
- Department of Pathophysiology, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland;
| |
Collapse
|
9
|
Gaião Calixto M, Alves Ramos H, Veríssimo LS, Dantas Alves V, D Medeiros AC, Alencar Fernandes FH, Veras G. Trends and Application of Chemometric Pattern Recognition Techniques in Medicinal Plants Analysis. Crit Rev Anal Chem 2021; 53:326-338. [PMID: 34314279 DOI: 10.1080/10408347.2021.1953370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Medicinal plants have been used and studied for ages, from very old registers to modern ethnopharmacology, which encompasses analytical chemistry, foods, and pharmacy. Based on international norms and governmental organizations of health, phytomedicine-for example, herbal drugs-needs to guarantee the quality control of products and identify contaminants, biomarkers, and chemical profiles, among other issues. In this sense, is necessary to develop advanced analytical methods that show interesting possibilities and obtain a great amount of data. In order to treat the data, a set of mathematical and statistical procedures named chemometrics is necessary. In terms of herbal drugs, chemometric tools may be used to identify the following in plants: parts, development stages, processing, geographic origin, authentication, and chemical markers. This review describes applications of chemometric pattern recognition tools to analyze herbal drugs in different conditions associated with analytical methods in the last six years (2015-2020).
Collapse
Affiliation(s)
- Mariana Gaião Calixto
- Laboratório de Química Analítica e Quimiometria, Universidade Estadual da Paraíba, Campina Grande, Brasil
| | - Hilthon Alves Ramos
- Laboratório de Química Analítica e Quimiometria, Universidade Estadual da Paraíba, Campina Grande, Brasil
| | - Lucas Silva Veríssimo
- Laboratório de Química Analítica e Quimiometria, Universidade Estadual da Paraíba, Campina Grande, Brasil
| | - Vitor Dantas Alves
- Laboratório de Química Analítica e Quimiometria, Universidade Estadual da Paraíba, Campina Grande, Brasil
| | - Ana Cláudia D Medeiros
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Universidade Estadual da Paraíba, Campina Grande, Brasil
| | - Felipe Hugo Alencar Fernandes
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Universidade Estadual da Paraíba, Campina Grande, Brasil.,Centro Universitário UNIFACISA, Campina Grande, Brasil
| | - Germano Veras
- Laboratório de Química Analítica e Quimiometria, Universidade Estadual da Paraíba, Campina Grande, Brasil
| |
Collapse
|
10
|
Zhang W, Wang M, Song H, Gao C, Wang D, Hua H, Pan Y, Liu X. CYP3A4 inducer aggravates big flower Evodiae Fructus-induced hepatotoxicity whereas limonin attenuates its hepatotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113277. [PMID: 32810616 DOI: 10.1016/j.jep.2020.113277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Evodiae Fructus (EF), the traditional Chinese medicine, has been typically used to treat headache, abdominal pain, hernias, and menorrhagia for thousands of years. It is a mild toxicity herb-medicine listed in Sheng Nong's Herbal Classic. Recently, EF was reported to have toxicity or no toxicity in some investigations. Toxicity and approaches to reducing toxicity of EF are of great interest. Limonin (LIM), a major triterpenoid component of EF, also had various pharmacological activities such as anti-inflammatory, anticancer, and antioxidant effects. However, little attention was paid to the role of LIM in EF-induced hepatotoxicity. AIM OF STUDY The study aimed to address the problem of controversial hepatotoxicity of EF, evaluate the role of CYP3A4 inducer/inhibitor in EF-induced hepatotoxicity and disclose the effect of LIM in EF-induced hepatotoxicity. MATERIALS AND METHODS The chemical compositions and hepatotoxicity of small flower EF (SEF), medium flower EF (MEF), big flower EF (BEF) and the "organ knock-out" samples (the shell and seed part of BEF) were investigated. Simultaneously, C57BL-6 mice were randomly divided into four groups, which were given orally administered BEF, BEF in combination with dexamethasone (DEX), BEF in combination with ketoconazole (KTC), and BEF in combination with LIM, respectively. RESULTS In this study, more alkaloids and less LIM were detected in BEF compared with the compounds in SEF and MEF. Furthermore, we found that BEF group induced hepatotoxicity whereas no hepatotoxicity was observed in SEF and MEF groups. In addition, no LIM was detected in the shell part of BEF and five alkaloids were not detected in the seed part of BEF. Correspondingly, the shell part of BEF group induced hepatotoxicity whereas no hepatotoxicity was observed in the seed part of BEF group. It was also found that the BEF-induced hepatotoxicity was remarkably exacerbated when the mice were pretreated with DEX whereas the BEF-induced hepatotoxicity could be reversed by pretreatment with KTC or LIM. CONCLUSIONS Based on the results in this study, the misuse of BEF but not SEF and MEF could produce hepatotoxicity. The hepatotoxicity difference of different categories of EF might be associated with the relative contents of alkaloids and LIM. In addition, the results demonstrated that CYP3A4 inducer aggravated BEF-induced hepatotoxicity and LIM attenuated its hepatotoxicity.
Collapse
Affiliation(s)
- Wei Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Mengjiao Wang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Huijie Song
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Chengfeng Gao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Huiming Hua
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Yingni Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| | - Xiaoqiu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
11
|
Amirvaresi A, Nikounezhad N, Amirahmadi M, Daraei B, Parastar H. Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy based on chemometrics for saffron authentication and adulteration detection. Food Chem 2020; 344:128647. [PMID: 33229154 DOI: 10.1016/j.foodchem.2020.128647] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
In this work, the potential of near-infrared (NIR) and mid-infrared (MIR) spectroscopy along with chemometrics was investigated for authentication and adulteration detection of Iranian saffron samples. First, authentication of one-hundred saffron samples was examined by principal component analysis (PCA). The results showed the NIR spectroscopy can better predict the origin of samples than the MIR. Next, partial least squares-discriminant analysis (PLS-DA) was developed to detect four common plant-derived adulterants (i.e., saffron style, calendula, safflower, and rubia). In all cases, PLS-DA classification figures of merit in terms of sensitivity, specificity, error rate and accuracy were satisfactory for both NIR and MIR datasets. The built models were then successfully validated using test set and also commercial samples. Finally, partial least squares regression (PLSR) was used to estimate the amount of adulteration. In this case, only NIR showed a good performance with regression coefficients (R2) in range of 0.95-0.99.
Collapse
Affiliation(s)
- Arian Amirvaresi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Nastaran Nikounezhad
- Food and Drug Laboratory Research Center, Food and Drug Organization, Tehran, Iran
| | - Maryam Amirahmadi
- Food and Drug Laboratory Research Center, Food and Drug Organization, Tehran, Iran
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hadi Parastar
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
12
|
Chemometrics: a complementary tool to guide the isolation of pharmacologically active natural products. Drug Discov Today 2019; 25:27-37. [PMID: 31600581 DOI: 10.1016/j.drudis.2019.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022]
Abstract
Chemometrics offers an important complementary tool to enhance the searching and isolation of bioactive natural products from natural sources.
Collapse
|
13
|
Deconinck E, Vanhamme M, Bothy JL, Courselle P. A strategy based on fingerprinting and chemometrics for the detection of regulated plants in plant food supplements from the Belgian market: Two case studies. J Pharm Biomed Anal 2019; 166:189-196. [PMID: 30658317 DOI: 10.1016/j.jpba.2019.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/13/2023]
Abstract
The sale and consumption of plant food supplements is increasing, especially in the western world. A lot of these supplements can be bought through internet, where a lot of illegal trade is going on. Every year seized dietary supplements are send to laboratories in order to screen for the presence of chemical adulterants or illegally added active pharmaceutical ingredients, though also herbal adulteration occurs and is given less attention. In this paper a two-step approach is presented based on fingerprints recorded by both infrared spectroscopy as liquid chromatography with UV-detection for the screening of five regulated plants used in respectively dietary supplements for slimming and potency enhancement. Both types of fingerprints are combined with chemometric techniques in order to obtain classification models. A first classification model is calculated based on the infrared data and gives a first idea about the plant suspected to be present. This suspicion is then confirmed based on binary classification models calculated with the chromatographic data obtained for the suspected plant. In general, good classification models were obtained for each of the targeted plants. The approach was applied in a small market study comprising 35 dietary supplements for slimming and 34 for male potency enhancement. In total 21 samples were found to contain one of the five targeted plants.
Collapse
Affiliation(s)
- E Deconinck
- Scientific Direction Chemical and Physical Health Risks, Section Medicines & Health Products, Sciensano, J. Wytsmanstraat 14, B-1050, Brussels, Belgium.
| | - M Vanhamme
- Scientific Direction Chemical and Physical Health Risks, Section Medicines & Health Products, Sciensano, J. Wytsmanstraat 14, B-1050, Brussels, Belgium
| | - J L Bothy
- Scientific Direction Chemical and Physical Health Risks, Section Medicines & Health Products, Sciensano, J. Wytsmanstraat 14, B-1050, Brussels, Belgium
| | - P Courselle
- Scientific Direction Chemical and Physical Health Risks, Section Medicines & Health Products, Sciensano, J. Wytsmanstraat 14, B-1050, Brussels, Belgium
| |
Collapse
|
14
|
Fibigr J, Šatínský D, Solich P. Current trends in the analysis and quality control of food supplements based on plant extracts. Anal Chim Acta 2018; 1036:1-15. [DOI: 10.1016/j.aca.2018.08.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/31/2018] [Accepted: 08/04/2018] [Indexed: 02/06/2023]
|
15
|
Xiao JJ, Duan JS, Xu X, Li SN, Wang F, Fang QK, Liao M, Cao HQ. Behavior of pesticides and their metabolites in traditional Chinese medicine Paeoniae Radix Alba during processing and associated health risk. J Pharm Biomed Anal 2018; 161:20-27. [PMID: 30142493 DOI: 10.1016/j.jpba.2018.08.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/22/2018] [Accepted: 08/13/2018] [Indexed: 01/27/2023]
Abstract
In Traditional Chinese Medicine (TCM), crude herbs are processed to obtain the medicinal parts of the plant, from which extracts are prepared for people to take as medicine. However, there is no report on the pesticide residual behavior in Chinese medicines during processing at present, and thus, a systematic study of the effects of different processing factors (PF) on pesticide removal in Chinese medicines and the associated risk of dietary exposure is urgently needed. This study main investigated the dissipation and metabolism of pesticides in Chinese medicine Paeoniae Radix Alba during processing, and the calculated pesticide PFs were also used to assess the risk of dietary exposure. For analyze samples, a simple and high-throughput multiresidue pesticide analysis method was developed and validated for pesticides and their metabolites in P. Radix. based on QuEChERS procedure combined with HPLC-MS/MS. Recoveries at three concentration levels were within 61.37%-117.82% with an associated precision RSD < 15% indicating satisfactory accuracy. TCM processing could be useful for the partial removal of several pesticide residues, with removal rate reaching 98%. The polarity is the dominant variable, which with a high contribution was the effectiveness of the treatment and the concentration factors for pesticides. The hazard quotients of all pesticides were much lower than the safety level, indicating low risk of dietary exposure. Results are of great theoretical and practical value for the scientific evaluation of the safety of Chinese medicines, improvement of the quality and safety level of Chinese medicine.
Collapse
Affiliation(s)
- Jin-Jing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Provincial Key Laboratory for Agri-Food Safety, Anhui Province 230036, China
| | - Jin-Sheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Ministry of Agriculture, Hefei 230031, China
| | - Xing Xu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Provincial Key Laboratory for Agri-Food Safety, Anhui Province 230036, China
| | - Sheng-Nan Li
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Fan Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Qing-Kui Fang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Provincial Key Laboratory for Agri-Food Safety, Anhui Province 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Provincial Key Laboratory for Agri-Food Safety, Anhui Province 230036, China
| | - Hai-Qun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Provincial Key Laboratory for Agri-Food Safety, Anhui Province 230036, China.
| |
Collapse
|
16
|
Liu A, Li G, Fu Z, Guan Y, Lin L. Non-linearity correction in NIR absorption spectra by grouping modeling according to the content of analyte. Sci Rep 2018; 8:8564. [PMID: 29867119 PMCID: PMC5986774 DOI: 10.1038/s41598-018-26802-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 05/15/2018] [Indexed: 02/02/2023] Open
Abstract
To correct the non-linearity caused by light scattering in quantitative analysis with near infrared absorption spectra, a new modeling analysis method was proposed: grouping modeling according to the content of analyte. In this study, we tested the proposed method for non-invasive detection of human hemoglobin (Hb) based on dynamic spectrum (DS). We compared the prediction performance of the proposed method with non-grouping modeling method. Experimental results showed that the root mean square error of the prediction set (RMSEP) by the proposed method was reduced by 9.96% and relative standard deviation of the prediction set (RSDP) was reduced by 4.73%. The results demonstrated that the proposed method could reduce the effects of non-linearity on the composition analysis by spectroscopy. This research provides a new method for correcting the non-linearity stemming from light scattering. And the proposed method will accelerate the pace of non-invasive detection of blood components into clinical application.
Collapse
Affiliation(s)
- Ai Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, 300072, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zhigang Fu
- Med Examinat Ctr, 254 Hosp Peoples Liberat Army, Tianjin, 300142, China
| | - Yang Guan
- Med Examinat Ctr, 254 Hosp Peoples Liberat Army, Tianjin, 300142, China
| | - Ling Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Laboratory Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|