1
|
Bhat A, Alsadhan N, Alsadhan N, Alnowaiser D, Gattoo I, Hussain M, Alotbi R, Alruwaili S, AlGoraini Y. Procalcitonin and C-reactive protein as early diagnostic markers of sepsis or septic shock in children who presented with fever to the pediatric emergency department at a tertiary hospital, in Riyadh, Saudi Arabia. Int J Emerg Med 2025; 18:87. [PMID: 40301742 PMCID: PMC12039137 DOI: 10.1186/s12245-025-00888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Sepsis is a leading cause of morbidity and mortality in children, requiring early recognition for timely intervention. Traditional biomarkers like C-reactive protein (CRP) are widely used but have limitations in specificity and early detection. Procalcitonin (PCT) has emerged as a promising alternative for differentiating bacterial infections from viral illnesses. This study aims to evaluate the diagnostic performance of PCT and CRP in identifying sepsis among febrile pediatric patients presenting to the emergency department (ED). METHODS We conducted a retrospective, observational study at a tertiary hospital from January 2022 to January 2024. A total of 208 children aged 1 month to 14 years with fever (≥ 38 °C) were included. Patients were categorized into sepsis (n = 84) and non-sepsis (n = 124) groups based on clinical assessment and blood culture results. Biomarker levels, patient demographics, clinical outcomes, and disposition were analyzed. RESULTS Elevated PCT and CRP levels were significantly associated with sepsis. PCT demonstrated earlier elevation compared to CRP, correlating with higher rates of PICU admission (34.7% vs. 11.1%, p < 0.001). Blood culture positivity was a strong predictor of severe sepsis (OR: 9.369, p < 0.0003). Logistic regression identified high-grade fever, chronic disease, and viral co-infections as additional risk factors. CONCLUSION PCT is a superior early biomarker for detecting invasive bacterial infections compared to CRP. Incorporating PCT in sepsis protocols can improve early diagnosis, guiding prompt and appropriate management in pediatric ED settings.
Collapse
Affiliation(s)
- Altaf Bhat
- Pediatric Emergency Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Nehal Alsadhan
- Pediatric Emergency Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Norah Alsadhan
- Emergency Department, Prince Mohammed Bin Abdulziz Hospital, Riyadh, Saudi Arabia, Saudi Arabia
| | - Dimah Alnowaiser
- Pediatric Emergency Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Imran Gattoo
- Pediatric Emergency Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohammed Hussain
- Pediatric Emergency Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Rafa Alotbi
- Pediatric Emergency Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Sattam Alruwaili
- Pediatric Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Yara AlGoraini
- Pediatric Emergency Department, King Fahad Medical City, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Doktor F, Figueira RL, Fortuna V, Biouss G, Stasiewicz K, Obed M, Khalaj K, Antounians L, Zani A. Amniotic fluid stem cell extracellular vesicles promote lung development via TGF-beta modulation in a fetal rat model of oligohydramnios. J Control Release 2025; 377:427-441. [PMID: 39577465 DOI: 10.1016/j.jconrel.2024.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/17/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Oligohydramnios (decreased amniotic fluid volume for gestational age) is a severe condition associated with high morbidity and mortality mainly due to fetal pulmonary hypoplasia. Currently, there are limited treatment options to promote fetal lung development. Administration of stem cells and their derivates have shown promising regenerative properties for several fetal and neonatal diseases related to arrested lung development. Herein, we first characterized pulmonary hypoplasia secondary to oligohydramnios in a surgical rat model. Experimental induction of oligohydramnios led to impaired lung growth, branching morphogenesis (fewer airspaces with decreased Fgf10, Nrp1, Ctnnb1 expression), proximal/distal progenitor cell patterning (decreased Sox2 and Sox9 expression), and TGF-β signaling. We then tested antenatal administration of extracellular vesicles derived from amniotic fluid stem cells (AFSC-EVs). In oligohydramnios lungs, AFSC-EV administration improved lung branching morphogenesis and airway progenitor cell patterning at least in part through the release of miR-93-5p. Our experiments suggest that AFSC-EV miR-93-5p blocked SMAD 7, resulting in upregulation of pSMAD2/3 and restoration of TGF-β signaling. Conversely, oligohydramnios lungs treated with antagomir 93-5p transfected AFSC-EVs had decreased branching morphogenesis and TGF-β signaling. This is the first study reporting that antenatal administration of stem cell derivatives could be a potential therapy to rescue lung development in fetuses with oligohydramnios.
Collapse
Affiliation(s)
- Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada; Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Victoria Fortuna
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - George Biouss
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Kaya Stasiewicz
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Mikal Obed
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada; Department of Surgery, University of Toronto, Toronto M5T 1P5, Canada.
| |
Collapse
|
3
|
Antounians L, Figueira RL, Kukreja B, Litvack ML, Zani-Ruttenstock E, Khalaj K, Montalva L, Doktor F, Obed M, Blundell M, Wu T, Chan C, Wagner R, Lacher M, Wilson MD, Post M, Kalish BT, Zani A. Fetal hypoplastic lungs have multilineage inflammation that is reversed by amniotic fluid stem cell extracellular vesicle treatment. SCIENCE ADVANCES 2024; 10:eadn5405. [PMID: 39058789 PMCID: PMC11277482 DOI: 10.1126/sciadv.adn5405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Antenatal administration of extracellular vesicles from amniotic fluid stem cells (AFSC-EVs) reverses features of pulmonary hypoplasia in models of congenital diaphragmatic hernia (CDH). However, it remains unknown which lung cellular compartments and biological pathways are affected by AFSC-EV therapy. Herein, we conducted single-nucleus RNA sequencing (snRNA-seq) on rat fetal CDH lungs treated with vehicle or AFSC-EVs. We identified that intra-amniotically injected AFSC-EVs reach the fetal lung in rats with CDH, where they promote lung branching morphogenesis and epithelial cell differentiation. Moreover, snRNA-seq revealed that rat fetal CDH lungs have a multilineage inflammatory signature with macrophage enrichment, which is reversed by AFSC-EV treatment. Macrophage enrichment in CDH fetal rat lungs was confirmed by immunofluorescence, flow cytometry, and inhibition studies with GW2580. Moreover, we validated macrophage enrichment in human fetal CDH lung autopsy samples. Together, this study advances knowledge on the pathogenesis of pulmonary hypoplasia and further evidence on the value of an EV-based therapy for CDH fetuses.
Collapse
Affiliation(s)
- Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Bharti Kukreja
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Michael L. Litvack
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Elke Zani-Ruttenstock
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Louise Montalva
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Mikal Obed
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Matisse Blundell
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Taiyi Wu
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Cadia Chan
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Richard Wagner
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Michael D. Wilson
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5T 1P5, Canada
| | - Brian T. Kalish
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
- Division of Neonatology, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
- Department of Surgery, University of Toronto, Toronto M5T 1P5, Canada
| |
Collapse
|
4
|
Prusinkiewicz MA, Park C, Cheung C, Li YJ, Poon B, Skarsgard ED, Lavoie PM, Lee AF, Mudri M. Decreased β-catenin Protein in Lungs From Human Congenital Diaphragmatic Hernia Archival Pathology Specimens: A Case-control Study. J Pediatr Surg 2024; 59:832-838. [PMID: 38418278 DOI: 10.1016/j.jpedsurg.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Lung hypoplasia contributes to congenital diaphragmatic hernia (CDH) associated morbidity and mortality. Changes in lung wingless-type MMTV integration site family member (Wnt)-signalling and its downstream effector beta-catenin (CTNNB1), which acts as a transcription coactivator, exist in animal CDH models but are not well characterized in humans. We aim to identify changes to Wnt-signalling gene expression in human CDH lungs and hypothesize that pathway expression will be lower than controls. METHODS We identified 51 CDH cases and 10 non-CDH controls with archival formalin-fixed paraffin-embedded (FFPE) autopsy lung tissue from 2012 to 2022. 11 liveborn CDH cases and an additional two anterior diaphragmatic hernias were excluded from the study, leaving 38 CDH cases. Messenger ribonucleic acid (mRNA) expression of Wnt-signalling effectors WNT2B and CTNNB1 was determined for 19 CDH cases and 9 controls. A subset of CDH cases and controls lung sections were immunostained for β-catenin. Clinical variables were obtained from autopsy reports. RESULTS Median gestational age was 21 weeks. 81% (n = 31) of hernias were left-sided. 47% (n = 18) were posterolateral. Liver position was up in 81% (n = 31) of cases. Defect size was Type C or D in 58% (n = 22) of cases based on autopsy photos, and indeterminable in 42% (n = 16) of cases. WNT2B and CTNNB1 mRNA expression did not differ between CDH and non-CDH lungs. CDH lungs had fewer interstitial cells expressing β-catenin protein than non-CDH lungs (13.2% vs 42.4%; p = 0.006). CONCLUSION There appear to be differences in the abundance and/or localization of β-catenin proteins between CDH and non-CDH lungs. LEVEL OF EVIDENCE Level III. TYPE OF STUDY Case-Control Study.
Collapse
Affiliation(s)
- Martin A Prusinkiewicz
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chanhyeok Park
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Claire Cheung
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ying Jie Li
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bethany Poon
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erik D Skarsgard
- Division of Pediatric Surgery, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pascal M Lavoie
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna F Lee
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, BC Children's Hospital, Vancouver, British Columbia, Canada.
| | - Martina Mudri
- Division of Pediatric Surgery, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Division of Pediatric Surgery, Vancouver Island Health Authority, Victoria, British Columbia, Canada.
| |
Collapse
|
5
|
Li JL, Han YB, Yang GY, Tian M, Shi CS, Tian D. Inflammation in Hernia and the epigenetic control. Semin Cell Dev Biol 2024; 154:334-339. [PMID: 37080853 DOI: 10.1016/j.semcdb.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/13/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023]
Abstract
Inflammation is much more intrinsic to hernia then is what is generally appreciated. The occurrence of hernias is associated with swelling, stress and inflammation. Surgery remains an important intervention to treat hernias and for many years, post-surgical levels of inflammatory cytokines have been evaluated to compare the different strategies for their comparative advantages. All surgical procedures elicit some sort of inflammatory response and moreover the meshes used for hernia repair are also associated with elevated inflammatory response, although some favor predominantly a pro-inflammatory response while the other meshes favor anti-inflammatory response. An estimated more than 90% of hernia repairs involve some meshes with polypropylene considered as the gold standard. Efforts are underway to modulate polypropylene meshes associated inflammation through use of alternative materials as well as modifications to polypropylene meshes themselves. In the last one decade, miRNAs have entered hernia research and the data on a role of miRNAs in different hernias is slowly emerging, providing the first evidence of epigenetics in hernia. Some reports are connecting miRNAs with inflammation in hernia. All these aspects, such as, surgery-related to mesh-related inflammation as well as miRNA-related inflammation, are discussed in this article to present an up-to-date information on the topic.
Collapse
Affiliation(s)
- Jin-Long Li
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ying-Bo Han
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Gui-Yun Yang
- Department of Operating Room, The Second Hospital of Jilin University, Changchun, China
| | - Miao Tian
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Chang-Sai Shi
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Tian
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Sun Y, Wang Y, Wang L, Zou M, Peng X. STAT5-mediated transcription of miR-33-5p in Mycoplasma gallisepticum-infected DF-1 cells. Avian Pathol 2024; 53:68-79. [PMID: 37855868 DOI: 10.1080/03079457.2023.2272617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
RESEARCH HIGHLIGHTS MG-HS regulates the expression of transcription factor STAT5.Transcription factor STAT5 can target miR-33-5p promoter element.MG-influenced STAT5 regulates miR-33-5p and its target gene expression.
Collapse
Affiliation(s)
- Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lulu Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
7
|
The metabolic and lipidomic profiling of the effects of tracheal occlusion in a rabbit model of congenital diaphragmatic hernia. J Pediatr Surg 2023; 58:971-980. [PMID: 36801071 DOI: 10.1016/j.jpedsurg.2023.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
PURPOSE Fetal tracheal occlusion (TO) reverses the pulmonary hypoplasia associated with congenital diaphragmatic hernia (CDH), but its mechanism of action remains poorly understood. 'Omic' readouts capture metabolic and lipid processing function, which aid in understanding CDH and TO metabolic mechanisms. METHODS CDH was created in fetal rabbits at 23 days, TO at 28 days and lung collection at 31 days (Term ∼32 days). Lung-body weight ratio (LBWR) and mean terminal bronchiole density (MTBD) were determined. In a cohort, left and right lungs were collected, weighed, and samples homogenized, and extracts collected for non-targeted metabolomic and lipidomic profiling via LC-MS and LC-MS/MS, respectively. RESULTS LBWR was significantly lower in CDH while CDH + TO was similar to controls (p = 0.003). MTBD was significantly higher in CDH fetuses and restored to control and sham levels in CDH + TO (p < 0.001). CDH and CDH + TO resulted in significant differences in metabolome and lipidome profiles compared to sham controls. A significant number of altered metabolites and lipids between the controls and CDH groups and the CDH and CDH + TO fetuses were identified. Significant changes in the ubiquinone and other terpenoid-quinone biosynthesis pathway and the tyrosine metabolism pathway were observed in CDH + TO. CONCLUSION CDH + TO reverses pulmonary hypoplasia in the CDH rabbit, in association with a specific metabolic and lipid signature. A synergistic untargeted 'omics' approach provides a global signature for CDH and CDH + TO, highlighting cellular mechanisms among lipids and other metabolites, enabling comprehensive network analysis to identify critical metabolic drivers in disease pathology and recovery. TYPE OF STUDY Basic Science, Prospective. LEVEL OF EVIDENCE II.
Collapse
|
8
|
Miyake Y, Tse WH, Wang JQ, Leon ND, Mourin M, Patel D, Aptekmann AO, Yamataka A, Keijzer R. The effect of tracheal occlusion in congenital diaphragmatic hernia in the nitrofen rat lung explant model. Pediatr Surg Int 2022; 39:61. [PMID: 36564649 DOI: 10.1007/s00383-022-05340-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Here, we establish a tracheal occlusion (TO) model with rat lung explants in nitrofen-induced pulmonary hypoplasia in the congenital diaphragmatic hernia (CDH). METHODS We extracted lungs from rats on an embryonic day 18. We mimicked TO in the lung explants by tying the trachea. We assessed lung weight, morphometry, and abundance of Ki-67, Active caspase-3, and Prosurfactant Protein C (proSP-C) with immunofluorescence. RESULTS Lung weight was higher in TO + than TO - on day 1. Abundance of Ki-67 was higher in TO + than TO - (0.15 vs. 0.32, p = 0.009 for day 1, 0.07 vs. 0.17, p = 0.004 for day 2, 0.07 vs. 0.12, p = 0.044 for day 3), and Active caspase-3 was higher in TO + than TO - on day 2 and day 3 (0.04 vs. 0.03 p = 0.669 for day 1, 0.03 vs. 0.13 p < 0.001 for day 2, 0.04 vs. 0.17 p = 0.008 for day3). However, proSP-C protein abundance was lower in TO + than TO - (67.9 vs. 59.1 p = 0.033 for day 1, 73.5 vs. 51.6 p = 0.038 for day 2, 83.1 vs. 56.4 p = 0.009 for day 3). CONCLUSIONS The TO model in lung explants mimics the outcomes of current surgical models of TO and further studies can reveal the cellular and molecular effects of TO in CDH lungs.
Collapse
Affiliation(s)
- Yuichiro Miyake
- Department of Surgery, Division of Pediatric Surgery and Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada.,Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Wai Hei Tse
- Department of Surgery, Division of Pediatric Surgery and Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Jia Qi Wang
- Department of Surgery, Division of Pediatric Surgery and Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Nolan De Leon
- Department of Surgery, Division of Pediatric Surgery and Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Muntahi Mourin
- Department of Surgery, Division of Pediatric Surgery and Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Daywin Patel
- Department of Surgery, Division of Pediatric Surgery and Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Arzu Ozturk Aptekmann
- Department of Surgery, Division of Pediatric Surgery and Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Atsuyuki Yamataka
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Richard Keijzer
- Department of Surgery, Division of Pediatric Surgery and Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada.
| |
Collapse
|
9
|
Sun Y, Wang Y, Zou M, Wang T, Wang L, Peng X. Lnc90386 Sponges miR-33-5p to Mediate Mycoplasma gallisepticum-Induced Inflammation and Apoptosis in Chickens via the JNK Pathway. Front Immunol 2022; 13:887602. [PMID: 35833119 PMCID: PMC9271562 DOI: 10.3389/fimmu.2022.887602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
Mycoplasma gallisepticum (MG) is one of the most important pathogens, that causes chronic respiratory disease (CRD) in chickens. Long non-coding RNAs (lncRNAs) are emerging as new regulators for many diseases and some lncRNAs can function as competing endogenous RNAs (ceRNAs) to regulate mRNAs by competitively binding to miRNAs. Here, we found that miR-33-5p was significantly up-regulated both in MG-infected chicken embryonic lungs and chicken embryo fibroblast cells (DF-1), and Lnc90386 negatively correlated with miR-33-5p. miR-33-5p, as a new regulator for MG infection, repressed apoptosis, inflammatory factors in DF-1 cells by targeting JNK1. Further analyses showed that Lnc90386 sponged miR-33-5p to weaken its inhibitory effect on JNK1, forming the ceRNA regulatory network. Furthermore, knockdown of Lnc90386 significantly inhibited apoptosis and inflammatory factors, and promoted DF-1 cells proliferation. However, co-treatment with miR-33-5p inhibitor and Lnc90386 siRNA showed that knockdown of Lnc90386 could partially eliminate the inhibiting effect of miR-33-5p inhibitor on inflammation, cell apoptosis and proliferation. In conclusion, Lnc90386 sponges miR-33-5p to defend against MG infection by inhibiting the JNK signaling pathway.
Collapse
|
10
|
Figueira RL, Antounians L, Zani-Ruttenstock E, Khalaj K, Zani A. Fetal lung regeneration using stem cell-derived extracellular vesicles: A new frontier for pulmonary hypoplasia secondary to congenital diaphragmatic hernia. Prenat Diagn 2022; 42:364-372. [PMID: 35191057 DOI: 10.1002/pd.6117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/12/2022]
Abstract
The poor outcomes of babies with congenital diaphragmatic hernia (CDH) are directly related to pulmonary hypoplasia, a cosndition characterized by impaired lung development. Although the pathogenesis of pulmonary hypoplasia is not fully elucidated, there is now evidence that CDH patients have missing or dysregulated microRNAs (miRNAs) that regulate lung development. A prenatal therapy that supplements these missing/dysregulated miRNAs could be a strategy to rescue normal lung development. Extracellular vesicles (EVs), also known as exosomes when of small dimensions, are lipid-bound nanoparticles that can transfer their heterogeneous cargo (proteins, lipids, small RNAs) to target cells to induce biological responses. Herein, we review all studies that show evidence for stem cell-derived EVs as a regenerative therapy to rescue normal development in CDH fetal lungs. Particularly, we report studies showing that administration of EVs derived from amniotic fluid stem cells (AFSC-EVs) to models of pulmonary hypoplasia promotes fetal lung growth and maturation via transfer of miRNAs that are known to regulate lung developmental processes. We also describe that stem cell-derived EVs exert effects on vascular remodeling, thus possibly preventing postnatal pulmonary hypertension. Finally, we discuss future perspectives and challenges to translate this promising stem cell EV-based therapy to clinical practice. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Elke Zani-Ruttenstock
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.,Department of Surgery, University of Toronto, Toronto, M5T 1P5, Canada
| |
Collapse
|
11
|
Olutoye Ii OO, Short WD, Gilley J, Hammond Ii JD, Belfort MA, Lee TC, King A, Espinoza J, Joyeux L, Lingappan K, Gleghorn JP, Keswani SG. The Cellular and Molecular Effects of Fetoscopic Endoluminal Tracheal Occlusion in Congenital Diaphragmatic Hernia. Front Pediatr 2022; 10:925106. [PMID: 35865706 PMCID: PMC9294219 DOI: 10.3389/fped.2022.925106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a complex disease associated with pulmonary hypoplasia and pulmonary hypertension. Great strides have been made in our ability to care for CDH patients, specifically in the prenatal improvement of lung volume and morphology with fetoscopic endoluminal tracheal occlusion (FETO). While the anatomic effects of FETO have been described in-depth, the changes it induces at the cellular and molecular level remain a budding area of CDH research. This review will delve into the cellular and molecular effects of FETO in the developing lung, emphasize areas in which further research may improve our understanding of CDH, and highlight opportunities to optimize the FETO procedure for improved postnatal outcomes.
Collapse
Affiliation(s)
- Oluyinka O Olutoye Ii
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Walker D Short
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Jamie Gilley
- Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, United States
| | - J D Hammond Ii
- Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, United States
| | - Michael A Belfort
- Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| | - Timothy C Lee
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States
| | - Alice King
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States
| | - Jimmy Espinoza
- Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| | - Luc Joyeux
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States
| | - Krithika Lingappan
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Sundeep G Keswani
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
12
|
Morphofunctional Characterization of Different Tissue Factors in Congenital Diaphragmatic Hernia Affected Tissue. Diagnostics (Basel) 2021; 11:diagnostics11020289. [PMID: 33673194 PMCID: PMC7918239 DOI: 10.3390/diagnostics11020289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Congenital diaphragm hernia (CDH) is a congenital disease that occurs during prenatal development. Although the morbidity and mortality rate is rather significant, the pathogenesis of CDH has been studied insignificantly due to the decreased accessibility of human pathological material. Therefore the aim of our work was to evaluate growth factors (transforming growth factor-beta (TGF-β), basic fibroblast growth factor (bFGF), insulin-like growth factor 1 (IGF-1), hepatocyte growth factor (HGF)) and their receptors (fibroblast growth factor receptor 1 (FGFR1), insulin-like growth factor 1 (IGF-1R)), muscle (dystrophin, myosin, alpha actin) and nerve quality (nerve growth factor (NGF), nerve growth factor receptor (NGFR), neurofilaments (NF)) factors, local defense factors (ß-defensin 2, ß-defensin 4), programmed cell death (TUNEL), and separate gene (Wnt-1) expression in human pathological material to find immunohistochemical marker differences between the control and the CDH patient groups. A semi-quantitative counting method was used for the evaluation of the tissues and structures in the Biotin-Streptavidin-stained slides. Various statistically significant differences were found in immunoreactive expression between the patient and the control group tissue and the morphological structures as well as very strong, strong, and moderate correlations between immunoreactives in different diaphragm cells and structures. These significant changes and various correlations indicate that multiple morphopathogenetic pathways are affected in CDH pathogenesis. This work contains the evaluation of the causes for these changes and their potential involvement in CDH pathogenesis.
Collapse
|
13
|
Aydın E, Torlak N, Yildirim A, Bozkurt EG. Reversible Fetal Tracheal Occlusion in Mice: A Novel Minimal Invasive Technique. J Surg Res 2020; 260:278-283. [PMID: 33360752 DOI: 10.1016/j.jss.2020.11.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/24/2020] [Accepted: 11/01/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND There is a certain need for reversible, cheap, and reproducible animal models for understanding the impact of tracheal occlusion (TO) in the congenital diaphragmatic hernia and pathophysiology. We aimed to present an easy, reversible, and minimally invasive murine TO model with optimized time points for introduction and removal of TO. METHODS Time-mated C57BL/6 mice underwent laparotomy at embryonic day 16.5 (E16.5) with transuterine TO performed on two fetuses in each uterine horn. In the TO group, the fetuses were harvested at E18.5 without suture removal; the suture was released at E17.5 in the TO-R group, and all fetuses were harvested at E18.5. The lungs of the fetuses were compared by morphometric and histologic analysis. RESULTS Successful TO was confirmed in 34 of 37 fetuses. Twenty-nine of them survived to E18.5 (90.6%), six of the fetuses had a spontaneous vaginal delivery. Fetal weights were comparable, but there was significant difference in lung weights and lung-to-body weight ratios (0.020 ± 0.006 [control] versus 0.026 ± 0.002 [TO] versus 0.023 ± 0.005 [TO-R]; P = 0.013). DNA/protein and DNA/lung weight ratios were elevated, whereas protein/lung weight ratio was lower in TO compared with the control group. CONCLUSIONS Reversal of fetal transuterine TO at E17.5, which was put at E16.5 in mice, is feasible with comparable outcomes to other current animal models with certain advantages and potential to translate the studies to the human.
Collapse
Affiliation(s)
- Emrah Aydın
- Department of Pediatric Surgery, Koç University School of Medicine, Istanbul, Turkey; Cellular and Molecular Medicine, Koç University Graduate School of Health Sciences, Istanbul, Turkey; Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
| | - Nilhan Torlak
- Cellular and Molecular Medicine, Koç University Graduate School of Health Sciences, Istanbul, Turkey
| | - Alkim Yildirim
- Department of Pediatric Surgery, Koç University School of Medicine, Istanbul, Turkey
| | - Elif Gökçen Bozkurt
- Department of Pediatric Surgery, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
14
|
Kirby E, Keijzer R. Congenital diaphragmatic hernia: current management strategies from antenatal diagnosis to long-term follow-up. Pediatr Surg Int 2020; 36:415-429. [PMID: 32072236 DOI: 10.1007/s00383-020-04625-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a developmental birth defect consisting of a diaphragmatic defect and abnormal lung development. CDH complicates 2.3-2.8 per 10,000 live births. Despite efforts to standardize clinical practice, management of CDH remains challenging. Frequent re-evaluation of clinical practices in CDH reveals that management of CDH is evolving from one of postnatal stabilization to prenatal optimization. Translational research reveals promising avenues for in utero therapeutic intervention, including fetoscopic endoluminal tracheal occlusion. These remain highly experimental and demand improved antenatal diagnostics. Timely diagnosis of CDH and identification of severely affected fetuses allow time for delivery planning or in utero therapeutics. Optimal perinatal care and surgical treatment strategies are highly debated. Improved CDH mortality rates have placed increased emphasis on identifying and monitoring the long-term sequelae of disease throughout childhood and into adulthood. We review the current management strategies for CDH, highlighting where progress has been made, and where future developments have the potential to revolutionize care in this vulnerable patient population.
Collapse
Affiliation(s)
- Eimear Kirby
- Trinity College Dublin School of Medicine, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Richard Keijzer
- Thorlakson Chair in Surgical Research, Division of Pediatric Surgery, Department of Surgery and Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada. .,Department of Pediatrics and Child Health and Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada. .,Department of Physiology and Pathophysiology and Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
15
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
16
|
Mudri M, Smith SA, Vander Tuin C, Davidson J, Regnault TRH, Bütter A. Surgical technique for developing a rabbit model of congenital diaphragmatic hernia and tracheal occlusion. MethodsX 2019; 6:594-600. [PMID: 30976533 PMCID: PMC6441759 DOI: 10.1016/j.mex.2019.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/03/2019] [Indexed: 11/17/2022] Open
Abstract
The surgical model of congenital diaphragmatic hernia (CDH) has been utilized in exploring treatments and innovative therapies, such as tracheal occlusion (TO). The rabbit is an excellent surgical model compared to others due to lower cost, ease of care, short gestational period, and large litter size. This model is also ideal in studying lung hypoplasia of CDH because rabbit lung development is most similar to humans as alveolarization begins prior to birth and continues post-natally. However, the surgical technique in creating a rabbit model of CDH is quite difficult and information is lacking on how to establish this model. Therefore, the aim of this paper is to describe: Surgical technique in establishing a rabbit model of CDH and TO Perioperative care for pregnant rabbit does
Collapse
Affiliation(s)
- M Mudri
- Division of General Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - S A Smith
- Division of General Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - C Vander Tuin
- Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Schulich School of Medicine, Western University, London, ON, Canada
| | - J Davidson
- Division of Paediatric General Surgery, Children's Hospital London Health Science Centre, Schulich School of Medicine, Western University, London, ON, Canada
| | - T R H Regnault
- Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Schulich School of Medicine, Western University, London, ON, Canada
| | - A Bütter
- Division of Paediatric General Surgery, Children's Hospital London Health Science Centre, Schulich School of Medicine, Western University, London, ON, Canada
| |
Collapse
|