1
|
Chen L, Yan Y, Hong C, Wei X, Xiong J, Huang C, Shen X. Successive electromembrane extraction: A new insight in simultaneous extraction of polar and non-polar metabolic molecules from biological samples. Anal Chim Acta 2025; 1344:343727. [PMID: 39984214 DOI: 10.1016/j.aca.2025.343727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Simultaneous determination of different natures of analytes is of great significance for saving sample volumes and simplifying analytical procedures. However, sample preparation for the simultaneous extraction of polar and non-polar analytes represents a challenge in sample preparation. Inspired by the successive liquid-phase microextraction (sLPME) method for acidic and basic analytes that we previously developed, we first proposed an efficient successive electromembrane extraction (sEME) system by adjusting the acidity of the donor solution and using binary organic solvents for extraction of polar and non-polar targets from biological samples in this work. RESULTS We performed a detailed optimization of the sEME system. Here, carnitine (C0) and acylcarnitines were selected as model analytes since the demand increased especially in metabolomics studies. The combination of 2-nonanone and 2-nitrophenylpentyl ether (NPPE) was selected as supported liquid membranes (SLMs), and trichloroacetic acid (TCA) 100 % (v/v) was added to donor solution to adjust the acidity of the donor solution after the first sEME process (sEME-1). The recoveries of the targets in blood and urine were 47%-119% and 54%-118%, respectively. Moreover, the sEME systems were evaluated by liquid chromatography tandem mass spectrometry (LC-MS/MS) from biological samples. The limit of detection (LOD) and limit of quantitation (LOQ) of analytes were 0.03-1.33 ng mL-1 and 0.09-4.42 ng mL-1, respectively. SIGNIFICANCE sEME enabled the extraction of polar and non-polar analytes from the same sample under optimal extraction conditions for all target analytes, which provided ideas for efficient sEME of exogenous and endogenous analytes from biological samples for forensic, clinical, and epidemiological studies.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Yibo Yan
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China
| | - Changbao Hong
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China
| | - Xiangting Wei
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China
| | - Jianhua Xiong
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China.
| | - Xiantao Shen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
2
|
Su JQ, Wu XQ, Wang Q, Xie BY, Xiao CY, Su HY, Tang JX, Yao CW. The microbial metabolite trimethylamine N-oxide and the kidney diseases. Front Cell Infect Microbiol 2025; 15:1488264. [PMID: 40134790 PMCID: PMC11933022 DOI: 10.3389/fcimb.2025.1488264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Trimethylamine N-oxide (TMAO), a metabolite, is a co-metabolite produced by both gut microbiota and livers, originating from foods rich in choline or carnitine. Emerging evidence suggests that TMAO may play a role in the pathogenesis of various kidney diseases, including acute kidney injury and chronic kidney disease. Research has demonstrated that heightened levels of TMAO are correlated with a heightened likelihood of kidney disease advancement and cardiovascular incidents among individuals with chronic kidney disease. Furthermore, TMAO has been observed to stimulate inflammation, oxidative stress, and fibrosis in animal models of kidney disease. Mechanistically, TMAO may contribute to kidney disease pathogenesis by inhibiting autophagy, activating the NLRP3 inflammasome, and inducing mitochondrial dysfunction. Therefore, targeting TMAO may represent a promising therapeutic strategy for the treatment of kidney diseases. Future studies are needed to further investigate the role of TMAO in kidney disease pathogenesis and to develop TMAO-targeted therapies for the prevention and treatment of kidney diseases.
Collapse
Affiliation(s)
- Jin-Qi Su
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiang-Qi Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Bo-Yang Xie
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cui-Yan Xiao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hong-Yong Su
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cui-Wei Yao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
3
|
Zhang L, Yin Y, Jin S. Gut microbial metabolites: The bridge connecting diet and atherosclerosis, and next-generation targets for dietary interventions. Microbiol Res 2025; 292:128037. [PMID: 39752807 DOI: 10.1016/j.micres.2024.128037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Mounting evidence indicates that gut microbial metabolites are central hubs linking the gut microbiota to atherosclerosis (AS). Gut microbiota enriched with pathobiont bacteria responsible for producing metabolites like trimethylamine N-oxide and phenylacetylglutamine are related to an increased risk of cardiovascular events. Furthermore, gut microbiota enriched with bacteria responsible for producing short-chain fatty acids, indole, and its derivatives, such as indole-3-propionic acid, have demonstrated AS-protective effects. This study described AS-related gut microbial composition and how microbial metabolites affect AS. Summary findings revealed gut microbiota and their metabolites-targeted diets could benefit AS treatment. In conclusion, dietary interventions centered on the gut microbiota represent a promising strategy for AS treatment, and understanding diet-microbiota interactions could potentially be devoted to developing novel anti-AS therapies.
Collapse
Affiliation(s)
- Liyin Zhang
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Yao Yin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China.
| |
Collapse
|
4
|
Escobar C, Aldeguer X, Vivas D, Manzano Fernández S, Gonzalez Caballero E, Garcia Martín A, Barrios V, Freixa-Pamias R. The gut microbiota and its role in the development of cardiovascular disease. Expert Rev Cardiovasc Ther 2025; 23:23-34. [PMID: 39915986 DOI: 10.1080/14779072.2025.2463366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
INTRODUCTION The pathophysiology of cardiovascular diseases encompasses a complex interplay of genetic and environmental risk factors. Even if traditional risk factors are treated to target, there remains a residual risk. AREAS COVERED This manuscript reviews the potential role of gut microbiota in the development of cardiovascular disease, and as potential target. A systematic search was conducted until 30 October 2024 on PubMed (MEDLINE), using the MeSH terms [Gut microbiota] + [Dysbiosis] + [Cardiovascular] + [TMAO] + [bile acids] + [short-chain fatty acids]. EXPERT OPINION The term dysbiosis implies changes in equilibrium, with modifications in the composition and functionality of microbiota and a series of additional factors: reduced diversity and uniformity of microorganisms; reduced short-chain fatty acid-producing bacteria; increased gut permeability; release of metabolites, such as trimethylamine N-oxide, betaine, phenylalanine, tryptophan-kynurenine, phenylacetylglutamine, and lipopolysaccharides; and reduced secondary bile acid excretion, leading to inflammation, oxidative stress, and endothelial dysfunction and facilitating the onset of pathological conditions, including obesity, hypertension, diabetes, atherosclerosis, and heart failure. Attempts to restore gut microbiota balance through different interventions, mainly changes in diet, have been shown to positively affect individual components and metabolites and reduce the risk of cardiovascular disease. In addition, probiotics and prebiotics are potentially useful. Fecal microbiota transplantation is a promising therapy.
Collapse
Affiliation(s)
- Carlos Escobar
- Cardiology Department, University Hospital La Paz, Madrid, Spain
| | - Xavier Aldeguer
- Gastroenterology Department, Hospital Doctor Josep Trueta i Santa Caterina, Institut d'investigació Biomèdica de Girona IDIBGI, Girona/Salt, Spain
| | - David Vivas
- Cardiovascular Institute, San Carlos University Hospital, Madrid, Spain
- Cardiology Department, Cardiovascular Institute Vithas Milagrosa and Aravaca, Madrid, Spain
| | | | | | - Ana Garcia Martín
- Cardiology Department, University Hospital Ramón y Cajal, Alcalá University, Madrid, Spain
| | - Vivencio Barrios
- Cardiology Department, University Hospital Ramón y Cajal, Alcalá University, Madrid, Spain
| | - Román Freixa-Pamias
- Cardiology Department, Complex Hospitalari Moisès Broggi, Sant Joan Despí, Barcelona, Spain
| |
Collapse
|
5
|
Peng D, Huang X, Wang Q, Huang L, Liu F, Xia X, Liu F, Cai C, Deng T. Reaction-Based Fluorescence Assays for the Determination of Food Trimethylamine Oxide. LUMINESCENCE 2024; 39:e70056. [PMID: 39663122 DOI: 10.1002/bio.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/29/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
Trimethylamine oxide (TMAO), a microbial metabolite commonly found in foods, has been attracting increasing attention as it is associated with the risk of several diseases. Simple and accurate analytical methods are crucial for TMAO study. In the present study, we proposed a chemical reaction-based fluorescence assay for TMAO detection using synthetic small molecular probes. After systematic screening and optimization, the sensitive and selective quantification of TMAO has been achieved based on a fluorescence probe P6 (3-iodopropanyl group modified resorufin). Excellent linearity (R2 = 0.997) was found between 6.25 and 50 μM, and the limit of detection (LOD) was 0.20 μM. Using this method, TMAO levels in several marine fishes and shellfishes have been successfully analyzed. The probe-based assay offers a simple and useful way for TMAO determination. The design is inspired by the unique oxidation reaction between TMAO and halogen, which opens a new perspective in the development of more advanced analytical assays for TMAO in the future.
Collapse
Affiliation(s)
- Danfeng Peng
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinxin Huang
- Chemical Engineering College, Nanjing University of Science & Technology, Nanjing, China
| | - Qiling Wang
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liying Huang
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang Liu
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaotong Xia
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fangle Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Chun Cai
- Chemical Engineering College, Nanjing University of Science & Technology, Nanjing, China
| | - Tao Deng
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Medicine, Foshan University, Foshan, China
| |
Collapse
|
6
|
Liu Z, Xiang P, Zeng S, Weng P, Wen Y, Zhang W, Hu H, Zhao D, Ma L, Yu C. N-Acetylneuraminic acid triggers endothelial pyroptosis and promotes atherosclerosis progression via GLS2-mediated glutaminolysis pathway. Cell Death Discov 2024; 10:467. [PMID: 39537619 PMCID: PMC11561128 DOI: 10.1038/s41420-024-02233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Vascular endothelial injury initiates atherosclerosis (AS) progression. N-Acetylneuraminic acid (Neu5Ac) metabolic disorder was found to intensify endothelial mitochondrial damage. And GLS2-associated glutaminolysis disorder contributed to mitochondrial dysfunction. However, mechanisms underlying Neu5Ac-associated mitochondrial dysfunction as well as its association with GLS2 remains unclear. In this study, we constructed GLS2-/-ApoE-/- mice by using HBLV-GLS2 shRNA injection. And methods like immunofluorescence, western blotting, transmission electron microscopy were applied to detect profiles of endothelial injury and AS progression both in vivo and in vitro. We demonstrated that Neu5Ac accumulation increased GLS2 expression and promoted glutaminolysis disorder, which further induced endothelial mitochondrial dysfunction via a pyroptosis-dependent pathway in vivo and in vitro. Mechanically, Neu5Ac interacted with SIRT3 and led to FOXO3a deacetylation and phosphorylation, further facilitated c-Myc antagonism and ultimately increased GLS2 levels. Inhibition of GLS2 could improve mitochondrial function and mitigate pyroptosis process. In addition, blocking Neu5Ac production using neuraminidases (NEUs) inhibitor could rescue endothelial damage and alleviate AS development in ApoE-/- mice. These findings proposed that Neu5Ac induced GLS2-mediated glutaminolysis disorder and then promoted mitochondrial dysfunction in a pyroptosis-dependent pathway. Targeting GLS2 or inhibiting Neu5Ac production could prevent AS progression.
Collapse
Affiliation(s)
- Zhaohong Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Peng Xiang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Shengmei Zeng
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Ping Weng
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Yilin Wen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Wanping Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Hui Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Dezhang Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Research Center for Innovative Pharmaceutical and Experiment Analysis Technology, Chongqing, China
| | - Limei Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China.
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China.
| |
Collapse
|
7
|
Thakkar H, Gangakhedkar S, Shah RP. Bioanalysis of Stress Biomarkers through Sensitive HILIC-MS/MS Method: A Stride toward Accurate Quantification of MDA, ACR, and CTA. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1110-1119. [PMID: 38665041 DOI: 10.1021/jasms.3c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Quantifying reactive aldehyde biomarkers, such as malondialdehyde, acrolein, and crotonaldehyde, is the most preferred approach to determine oxidative stress. However, reported analytical methods lack specificity for accurately quantifying these aldehydes as certain methodologies may produce false positive results due to harsh experimental conditions. Thus, in this research work, a novel HILIC-MS/MS method with endogenous histidine derivatization is developed, which proves to have higher specificity and reproducibility in quantifying these aldehydes from the biological matrix. To overcome the reactivity of aldehyde, endogenous histidine is used for its derivatization. The generated adduct is orthogonally characterized by NMR and LC-HRMS. The method employed a hydrophilic HILIC column and multiple reaction monitoring (MRM) to accurately quantify these reactive aldehydes. The developed method is an unequivocal solution for quantifying stress in in vivo and in vitro studies.
Collapse
Affiliation(s)
- Harsh Thakkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gandhinagar 382355, India
| | - Shriya Gangakhedkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gandhinagar 382355, India
| | - Ravi P Shah
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gandhinagar 382355, India
| |
Collapse
|
8
|
Bao Y, Zhu L, Wang Y, Liu J, Liu Z, Li Z, Zhou A, Wu H. Gualou-Xiebai herb pair and its active ingredients act against atherosclerosis by suppressing VSMC-derived foam cell formation via regulating P2RY12-mediated lipophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155341. [PMID: 38518636 DOI: 10.1016/j.phymed.2024.155341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Atherosclerosis (AS) is a chronic disease characterized by lipid accumulation in the aortic wall and the formation of foam cells overloaded with large lipids inclusions. Currently, Western medicine is primarily used to improve lipid metabolism disorders and reduce inflammatory reactions to delay AS progression, but these medicines come with serious side effects and drug resistance. Gualou-Xiebai (GLXB) is a renowned herb pair that has been proven effective against AS. However, the potential molecular mechanism through which GLXB exerts the anti-atherosclerotic effects of increasing lipophagy in vascular smooth muscle cells (VSMCs) remains unknown. PURPOSE This study aims to explore the role of lipophagy and the therapeutic mechanism of GLXB in AS. METHODS UPLC-Q-TOF-MS for the determination of the main components of GLXB-containing serum. An AS mouse model was established by feeding a high-fat diet (HFD) to ApoE-/- mice for 12 weeks. Ultrasonography monitoring was used to confirm the successful establishment of the AS model. Plaque areas and lipid deposition were evaluated using HE staining and aorta imagingafter GLXB treatment. Immunofluorescence staining and Western blotting were utilized to observe the P2RY12 and lipophagy levels in AS mice. VSMCs were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce foam cell formation. The degree of lipophagy and the related molecular mechanisms were assessed after treating the VSMCs with GLXB-containing serum or si-P2RY12 transfection. The active components of GLXB-containing serum that act on P2RY12 were screened and verified by molecular docking and dual-luciferase reporter assays. RESULTS Seventeen components of GLXB were identified in rat serum by UPLC-Q-TOF-MS. GLXB significantly reduced lipid deposition in HFD-fed ApoE-/- mice and ox-LDL-induced VSMCs. GLXB strikingly increased lipophagy levels by downregulating P2RY12, p62, and plin2, upregulating LC3Ⅱ protein expression, and increasing the number of autophagosomes. Notably, the lipophagy inhibitor CQ and the P2RY12 receptor agonist ADPβ abolished the GLXB-induced increase in lipophagy. Last, we confirmed that albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin from GLXB significantly inhibited P2RY12. CONCLUSION GLXB activates lipophagy and inhibits lipid accumulation-associated VSMC-derived foam cell formation through suppressing P2RY12 activation, resulting in anti-atherosclerotic effects. The GLXB components albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin are the potential active effectors against P2RY12.
Collapse
MESH Headings
- Animals
- Atherosclerosis/drug therapy
- Foam Cells/drug effects
- Foam Cells/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Male
- Mice
- Drugs, Chinese Herbal/pharmacology
- Receptors, Purinergic P2Y12/metabolism
- Diet, High-Fat
- Mice, Inbred C57BL
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Disease Models, Animal
- Autophagy/drug effects
- Rats, Sprague-Dawley
- Lipid Metabolism/drug effects
- Aorta/drug effects
- Lipoproteins, LDL/metabolism
Collapse
Affiliation(s)
- Youli Bao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Li Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yuting Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Jiahui Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Zijian Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Zhenglong Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - An Zhou
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
9
|
Chen W, Liu Y, Li L, Liang B, Wang S, Xu X, Xing D, Wu X. The potential role and mechanism of circRNAs in foam cell formation. Noncoding RNA Res 2023; 8:315-325. [PMID: 37032721 PMCID: PMC10074414 DOI: 10.1016/j.ncrna.2023.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
Atherosclerosis is a significant risk factor for coronary heart disease (CHD) and myocardial infarction (MI). Atherosclerosis develops during foam cell generation, which is caused by an imbalance in cholesterol uptake, esterification, and efflux. LOX-1, SR-A1, and CD36 all increased cholesterol uptake. ACAT1 and ACAT2 promote free cholesterol (FC) esterification to cholesteryl esters (CE). The hydrolysis of CE to FC was aided by nCEH. FC efflux was promoted by ABCA1, ABCG1, ADAM10, and apoA-I. SR-BI promotes not only cholesterol uptake but also FC efflux. Circular RNAs (circRNAs), which are single-stranded RNAs with a closed covalent circular structure, have emerged as promising biomarkers and therapeutic targets for atherosclerosis due to their highly tissue, cell, and disease state-specific expression profiles. Numerous studies have shown that circRNAs regulate foam cell formation, acting as miRNA sponges to influence atherosclerosis development by regulating the expression of SR-A1, CD36, ACAT2, ABCA1, ABCG1, ADAM10, apoA-I, SR-B1. Several circRNAs, including circ-Wdr91, circ 0004104, circRNA0044073, circRNA_0001805, circDENND1B, circRSF1, circ 0001445, and circRNA 102682, are potential biomarkers for atherosclerosis to better evaluate cardiovascular risk. It is difficult to deliver synthetic therapeutic circRNAs to the desired target tissues. Nanotechnology, such as GA-RM/GZ/PL, may be an important solution to this problem. In this review, we focus on the potential role and mechanism of circRNA/miRNA axis in foam cell formation in the hopes of discovering new targets for the diagnosis, prevention, and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wujun Chen
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
| | - Yihui Liu
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261031, China
| | - Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Bing Liang
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
| | - Shuai Wang
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261031, China
| | - Xiaodan Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Corresponding author.
| | - Dongming Xing
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Corresponding author. Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China.
| | - Xiaolin Wu
- Department of Orthopedics, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China
- Corresponding author. Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, China.
| |
Collapse
|
10
|
Lei D, Yu W, Liu Y, Jiang Y, Li X, Lv J, Li Y. Trimethylamine N-Oxide (TMAO) Inducing Endothelial Injury: UPLC-MS/MS-Based Quantification and the Activation of Cathepsin B-Mediated NLRP3 Inflammasome. Molecules 2023; 28:molecules28093817. [PMID: 37175227 PMCID: PMC10180140 DOI: 10.3390/molecules28093817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/25/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
TMAO is a new risk biomarker for cardiovascular disease. With trimethylammonium as its main chemical skeleton, TMAO is structurally similar to many endogenous metabolites, such as acetylcholine, carnitine, phosphorylcholine, etc. The mechanism of TMAO on the pathological process of CVD is still unclear. In this study, the quantitative analysis of plasma TMAO is conducted, and the contribution of Cathepsin B and NLRP3 inflammasome during the process of TMAO-induced endothelial injury was proposed and investigated at animal and cellular levels. Immunofluorescence assay was applied to represent the protein expression of Cathepsin B and NLRP3 inflammasome located at endothelial cells. The results showed that TMAO could disrupt endothelial cells permeability to induce endothelial injury, meanwhile, TMAO could increase NLRP3 inflammasome activation and promote the activity and expression of Cathepsin B in vitro and in vivo, whereas inhibition of NLRP3 inflammasome activation by MCC950 could protect the endothelial cells from TMAO associated endothelial injury via Cathepsin B. The study reveals that TMAO can cause endothelial injury via Cathepsin B-dependent NLRP3 inflammasome, and inhibition of Cathepsin B and NLRP3 inflammasome can reduce the TMAO-induced damage. The results provide new insight into the role of TMAO in CVD, which can be a potential therapeutic target for disease treatment and drug design.
Collapse
Affiliation(s)
- Dongyu Lei
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
- Department of Physiology, School of Basic Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Wenbo Yu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Yi Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Yujie Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jing Lv
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
11
|
Sequeira-Antunes B, Ferreira HA. Urinary Biomarkers and Point-of-Care Urinalysis Devices for Early Diagnosis and Management of Disease: A Review. Biomedicines 2023; 11:biomedicines11041051. [PMID: 37189669 DOI: 10.3390/biomedicines11041051] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Biosensing and microfluidics technologies are transforming diagnostic medicine by accurately detecting biomolecules in biological samples. Urine is a promising biological fluid for diagnostics due to its noninvasive collection and wide range of diagnostic biomarkers. Point-of-care urinalysis, which integrates biosensing and microfluidics, has the potential to bring affordable and rapid diagnostics into the home to continuing monitoring, but challenges still remain. As such, this review aims to provide an overview of biomarkers that are or could be used to diagnose and monitor diseases, including cancer, cardiovascular diseases, kidney diseases, and neurodegenerative disorders, such as Alzheimer’s disease. Additionally, the different materials and techniques for the fabrication of microfluidic structures along with the biosensing technologies often used to detect and quantify biological molecules and organisms are reviewed. Ultimately, this review discusses the current state of point-of-care urinalysis devices and highlights the potential of these technologies to improve patient outcomes. Traditional point-of-care urinalysis devices require the manual collection of urine, which may be unpleasant, cumbersome, or prone to errors. To overcome this issue, the toilet itself can be used as an alternative specimen collection and urinalysis device. This review then presents several smart toilet systems and incorporated sanitary devices for this purpose.
Collapse
|
12
|
Zixin Y, Lulu C, Xiangchang Z, Qing F, Binjie Z, Chunyang L, Tai R, Dongsheng O. TMAO as a potential biomarker and therapeutic target for chronic kidney disease: A review. Front Pharmacol 2022; 13:929262. [PMID: 36034781 PMCID: PMC9411716 DOI: 10.3389/fphar.2022.929262] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota and its metabolites have become a hotspot of recent research. Trimethylamine N-oxide (TMAO) metabolized by the gut microbiota is closely related to many diseases such as cardiovascular disease, chronic kidney disease, type 2 diabetes, etc. Chronic kidney disease (CKD) is an important contributor to morbidity and mortality from non-communicable diseases. Recently, increasing focus has been put on the role of TMAO in the development and progress of chronic kidney disease. The level of TMAO in patients with chronic kidney disease is significantly increased, and a high level of TMAO deteriorates chronic kidney disease. This article describes the relationship between TMAO and chronic kidney disease and the research progress of drugs targeted TMAO, providing a reference for the development of anti-chronic kidney disease drugs targeted TMAO.
Collapse
Affiliation(s)
- Ye Zixin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chen Lulu
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
- Department of Clinical Pharmacy, Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Zeng Xiangchang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Fang Qing
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Zheng Binjie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Luo Chunyang
- Department of Clinical Pharmacy, Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Rao Tai
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ouyang Dongsheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
13
|
Li Y, Kang J, Lee Y, Chung JY, Cho JY. A validated simple LC-MS/MS method for quantifying trimethylamine N-oxide (TMAO) using a surrogate matrix and its clinical application. Transl Clin Pharmacol 2022; 29:216-225. [PMID: 35024362 PMCID: PMC8718357 DOI: 10.12793/tcp.2021.29.e19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/31/2021] [Indexed: 11/19/2022] Open
Abstract
Trimethylamine N-oxide (TMAO) is a small molecular amine oxide generated from dietary choline and carnitine through intestinal microbial metabolism. Recently, TMAO has attracted much public attention as its role in disease progression has been proven in many clinical studies. The plasma concentration of TMAO in humans was found to be positively associated with the increased risk of many diseases including cardiovascular diseases and chronic kidney diseases. To achieve accurate and sensitive quantitation of TMAO for clinical applications, we established and validated a simple quantitative method using a liquid chromatography tandem mass spectrometry (LC-MS/MS) system. We constructed an eight-point calibration curve in an artificial surrogate matrix instead of the commonly used biological matrices to avoid interference from the endogenous TMAO. The calibration curve showed excellent linearity in the range of 1 to 5,000 ng/mL, with a correlation coefficient (R2) higher than 0.996 in each validation batch. Moreover, both the intra-day and inter-day assays achieved satisfactory precision and accuracy results ranging from 1.65–7.15% and 96.36–111.43%, respectively. Further, this method was cross-validated using a human plasma matrix and applied to a clinical pharmacology study. Overall, these results demonstrate that the developed quantitation method is applicable in clinical research for monitoring disease progression and evaluating drug effects.
Collapse
Affiliation(s)
- Yufei Li
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
| | - Jihyun Kang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yujin Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.,Clinical Trials Center, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
14
|
Higher Trimethylamine- N-Oxide Plasma Levels with Increasing Age Are Mediated by Diet and Trimethylamine-Forming Bacteria. mSystems 2021; 6:e0094521. [PMID: 34519520 PMCID: PMC8547441 DOI: 10.1128/msystems.00945-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gut microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) is linked to an increased risk for cardiovascular diseases. Trimethylamine (TMA), which is subsequently oxidized to TMAO in the liver, is formed by intestinal bacteria via distinct biochemical routes from dietary precursors that are enriched in animal product-based foods. To get a full picture of the entire process of the diet > gut microbiota > TMAO axis, we quantified potential TMA-forming gut bacteria and plasma metabolites using gene-targeted assays and targeted metabolomics on a subsample (n = 425) of a German population-based cohort study. We specifically compared persons reporting daily meat intake with those that rarely or never consume meat. While meat intake did not predict TMAO plasma levels in our study, two major bacterial TMA-forming pathways were linked to the metabolite's concentration. Furthermore, advancing age was strongly associated with TMAO. Construction of a structural equation model allowed us to disentangle the different routes that promote higher TMAO levels with increasing age, demonstrating, for the first time, a functional role of gut microbiota in the process, where specific food items augmented abundances of TMA-forming bacteria that were associated with higher TMAO plasma concentrations. Analyses stratified by age showed an association between carotid intima-media thickness and TMAO only in individuals >65 of age, indicating that this group is particularly affected by the metabolite. IMPORTANCE Many cohort studies have investigated the link between diet and plasma TMAO levels, reporting incongruent results, while gut microbiota were only recently included into analyses. In these studies, taxonomic data were recorded that are not a good proxy for TMA formation, as specific members of various taxa exhibit genes catalyzing this reaction, demanding function-based technologies for accurate quantification of TMA-synthesizing bacteria. Using this approach, we demonstrated that abundances of the main components leading to TMAO formation, i.e., TMA precursors and TMA-forming bacteria, are uncoupled and not governed by the same (dietary) factors. Results emphasize that all levels leading to TMA(O) formation should be considered for accurate risk assessment, rejecting the simple view that diets rich in TMA precursors directly lead to increased plasma levels of this hazardous compound. The results can assist in developing strategies to reduce TMAO levels, specifically in the elderly, who are prone to TMAO-associated diseases.
Collapse
|