1
|
Gomes August EM, Horn PA, Cavichioli N, Rebelo AM, Reinke CK, Zeni ALB. Seasonal Phenolic Profile, Antioxidant, and Photoprotective Activities of Psidium guajava L. Leaves. Chem Biodivers 2024:e202402852. [PMID: 39737645 DOI: 10.1002/cbdv.202402852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/01/2025]
Abstract
This study aimed to evaluate the phytochemicals from extracts of Psidium guajava L. leaves (P. guajava extract [PGE]) and its antioxidant and photoprotective effects. PGE showed constant production of total phenolics and maintained high antioxidant capacity across seasons and years. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis revealed the phenolic compounds quercetin, catechin, gallic acid, epicatechin, vanillic acid, and syringic acid, as well as two new compounds, syringaldehyde and ferulic acid. The high sun protection factor (SPF) was observed in all seasons. The phytochemicals ferulic acid, syringic acid, and quercetin were correlated with cloudiness and humidity. Antioxidant activity was correlated with vanillic acid, ascorbic acid, flavonoids, and tannins, and SPF with temperature, antioxidant activity, flavonoids, vanillic acid, gallic acid, and catechin. The formulations containing UVA/UVB filters or not, plus aqueous autumn extract, showed an increase in SPF. Therefore, the results suggested that PGE has potential photoprotective and antioxidant agents for the production of new sunscreen formulations with environmental and health benefits.
Collapse
Affiliation(s)
- Elaine Mara Gomes August
- Laboratório Avaliação de Substâncias Bioativas, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
- Programa de Pós-Graduação em Química, Departamento de Química, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Priscila Aparecida Horn
- Laboratório Avaliação de Substâncias Bioativas, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Natalia Cavichioli
- Laboratório Avaliação de Substâncias Bioativas, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Andrey Martinez Rebelo
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina-EPAGRI, Itajai, Santa Catarina, Brazil
| | - Cássia Katrin Reinke
- Serviço Nacional de Aprendizagem Industrial-SENAI, Instituto SENAI de Tecnologia Ambiental, Blumenau, Santa Catarina, Brazil
| | - Ana Lúcia Bertarello Zeni
- Laboratório Avaliação de Substâncias Bioativas, Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| |
Collapse
|
2
|
Milutinov J, Pavlović N, Ćirin D, Atanacković Krstonošić M, Krstonošić V. The Potential of Natural Compounds in UV Protection Products. Molecules 2024; 29:5409. [PMID: 39598798 PMCID: PMC11597743 DOI: 10.3390/molecules29225409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Overexposure to ultraviolet radiation mainly leads to skin disorders (erythema, burns, immunosuppression), skin aging, and skin cancer as the most serious side effect. It has been widely accepted that using sunscreen products is an important way to protect against the harmful effects of UV rays. Although commercial sunscreens have constantly changed and improved over time, there are emerging concerns about the safety of conventional, organic, UV filters due to adverse effects on humans (such as photoallergic dermatitis, contact sensitivity, endocrine-disrupting effects, etc.) as well as accumulation in the environment and aquatic organisms. This is why natural compounds are increasingly being investigated and used in cosmetic and pharmaceutical sunscreens. Some of these compounds are widely available, non-toxic, safer for use, and have considerable UV protective properties and less side effects. Plant-based compounds such as flavonoids can absorb UVA and UVB rays and possess antioxidant, anticarcinogenic, and anti-inflammatory effects that contribute to photoprotection. Apart from flavonoids, other natural products such as certain vegetable oils, carotenoids, stilbenes, and ferulic acid also have UV-absorbing properties. Some vitamins might also be beneficial for skin protection due to their antioxidant activity. Therefore, the aim of this research was to gain insight into the potential of natural compounds to replace or reduce the amount of conventional UV filters, based on recent research.
Collapse
Affiliation(s)
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (J.M.); (D.Ć.); (M.A.K.); (V.K.)
| | | | | | | |
Collapse
|
3
|
Wang X, Wang Z, Zhang K, Szeto IMY, Yan Y, Liu B, Zhang J, Evivie SE, Li B, Duan S. Evaluating the binding mechanism, structural changes and stability of ternary complexes formed by the interaction of folic acid with whey protein concentrate-80 and L-ascorbyl 6-palmitate. Food Chem 2024; 457:139924. [PMID: 38917563 DOI: 10.1016/j.foodchem.2024.139924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
In the present study, we investigated the mechanisms associated with the stabilizing effects of whey protein concentrate-80 (WPC80) and L-ascorbyl 6-palmitate (LAP) on folic acid (FA). Multispectral techniques show that WPC80 binds to FA and LAP mainly through hydrophobic interactions, and that energy is transferred from WPC80 to FA and LAP in a nonradiative form (FA/LAP); The combination of FA/LAP resulted in a change in the conformation and secondary structure content of WPC80, an increase in the absolute zeta potential of the system, and a shift in the particle size distribution towards smaller sizes. The compound system exhibits strengthened antioxidant properties and favorable binding properties. Besides, WPC80 improves the storage stability of FA under different conditions. These results demonstrated that the ternary complex formed by FA co-binding with WPC80 and LAP is an effective way to improve the stability against of FA.
Collapse
Affiliation(s)
- Xiaodong Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Zengbo Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Kangyong Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Ignatius Man-Yau Szeto
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, 100070, China
| | - Yalu Yan
- Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, 100070, China
| | - Biao Liu
- Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, 100070, China
| | - Jie Zhang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Smith Etareri Evivie
- Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City 300001, Nigeria
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Sufang Duan
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, 100070, China.
| |
Collapse
|
4
|
Plota-Pietrzak A, Czechowski L, Miszczak S, Masek A. Innovative Materials Based on Epoxy Resin for Use as Seat Elements in Bulk Transport. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1829. [PMID: 38673186 PMCID: PMC11051280 DOI: 10.3390/ma17081829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The subject of this research is the development of epoxy composites with a defined service life for the purpose of seat elements in rail vehicles, which will be more environmentally friendly. The produced materials based on epoxy resin filled with PLA or PLA and quercetin were subjected to solar aging tests for 800 h to investigate the impact of the additives used on the aging behavior of the epoxy matrix. Firstly, the TGA analysis showed that the use of the proposed additives allowed for the maintenance of the thermal stability of the epoxy resin. Moreover, based on an optical microscopy test, it was noticed that the introduction of PLA and PLA with quercetin did not contribute to an increase in matrix defects. The one-directional tensile tests carried out before and after solar aging showed that the presence of polylactide in epoxy composites causes a slight growth of the stiffness and strength. Based on contact angle and color change measurements, it was found that quercetin was oxidized, thus ensuring protection for the epoxy matrix. This phenomenon was confirmed by FTIR study, where the carbonyl index (CI) value for the R-PLA-Q composite was lower than for the reference sample. The obtained composite structures may be a good alternative to traditionally used systems as seat elements in rail vehicles, which are not only characterized by high aging resistance but are also more eco-friendly.
Collapse
Affiliation(s)
- Angelika Plota-Pietrzak
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland;
| | - Leszek Czechowski
- Department of Strength of Materials, Lodz University of Technology, 90-537 Lodz, Poland;
| | - Sebastian Miszczak
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-537 Lodz, Poland;
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland;
| |
Collapse
|
5
|
A Bioengineered Quercetin-Loaded 3D Bio-Polymeric Graft for Tissue Regeneration and Repair. Biomedicines 2022; 10:biomedicines10123157. [PMID: 36551913 PMCID: PMC9775630 DOI: 10.3390/biomedicines10123157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Phytochemicals extracted from plant sources have potential remedial effects to cure a broad range of acute to severe illnesses and ailments. Quercetin is a flavonoid isolated from different dietary sources such as vegetables and fruits, exhibiting strong anti-inflammatory, anti-oxidative and non-toxic effects on the biological system. However, the direct uptake or administration of quercetin results in loss of functionality, poor activity, and reduced shelf-life of the bioactive component. In this regard, to improve the uptake, potential, and efficiency of natural components with prolonged storage in the host's body after administration, numerous polymer drug delivery systems have been created. In the current study, three-dimensional (3D) porous (porosity: 92%; pore size: 81 µm) bio-polymeric foaming gelatin-alginate (GA) beads were fabricated for the entrapment of quercetin as therapeutic drug molecules-gelatin-alginate-quercetin (GAQ). The GAQ beads showed a significant uptake of quercetin molecules resulting in a reduction of reduced porosity up to 64% and pore size 63 µm with a controlled release profile in the PBS medium, showing ~80% release within 24 h. Subsequently, the GAQ beads showed remarkable antioxidant effects, and 95% anti-inflammatory activities along with remarkable in vitro cell culture growth and the observed proliferation of seeded fibroblast cells. Thus, we can conclude that the consistent release of quercetin showed non-toxic effects on normal cell lines and the bioactive surface of the GAQ beads enhances cell adhesion, proliferation, and differentiation more effectively than control GA polymeric beads and tissue culture plates (TCP). In summary, these findings show that these GAQ beads act as a biocompatible 3D construct with enormous potential in medicinal administration and tissue regeneration for accelerated healing.
Collapse
|
6
|
Guo B, Chou F, Huang L, Yin F, Fang J, Wang JB, Jia Z. Recent insights into oxidative metabolism of quercetin: catabolic profiles, degradation pathways, catalyzing metalloenzymes and molecular mechanisms. Crit Rev Food Sci Nutr 2022; 64:1312-1339. [PMID: 36037033 DOI: 10.1080/10408398.2022.2115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Quercetin is the most abundant polyphenolic flavonoid (flavonol subclass) in vegetal foods and medicinal plants. This dietary chemopreventive agent has drawn significant interest for its multiple beneficial health effects ("polypharmacology") largely associated with the well-documented antioxidant properties. However, controversies exist in the literature due to its dual anti-/pro-oxidant character, poor stability/bioavailability but multifaceted bioactivities, leaving much confusion as to its exact roles in vivo. Increasing evidence indicates that a prior oxidation of quercetin to generate an array of chemical diverse products with redox-active/electrophilic moieties is emerging as a new linkage to its versatile actions. The present review aims to provide a comprehensive overview of the oxidative conversion of quercetin by systematically analyzing the current quercetin-related knowledge, with a particular focus on the complete spectrum of metabolite products, the enzymes involved in the catabolism and the underlying molecular mechanisms. Herein we review and compare the oxidation pathways, protein structures and catalytic patterns of the related metalloenzymes (phenol oxidases, heme enzymes and specially quercetinases), aiming for a deeper mechanistic understanding of the unusual biotransformation behaviors of quercetin and its seemingly controversial biological functions.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Fang Chou
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Libin Huang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Feifan Yin
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Jing Fang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Jian-Bo Wang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
7
|
Shi Z, Liu Y, Hu Z, Liu L, Yan Q, Geng D, Wei M, Wan Y, Fan G, Yang H, Yang P. Effect of radiation processing on phenolic antioxidants in cereal and legume seeds: A review. Food Chem 2022; 396:133661. [PMID: 35849987 DOI: 10.1016/j.foodchem.2022.133661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
Phenolic compounds in cereal and legume seeds show numerous benefits to human health mainly because of their good antioxidant capacity. However, long-term storage and some improper preservation may reduce their antioxidant potential. It is necessary to retain or modify the phenolic antioxidants with improved technology before consumption. Radiation processing is usually applied as a physical method to extend the shelf life and retain the quality of plant produce. However, the effect of radiation processing on phenolic antioxidants in cereal and legume seeds is still not well understood. This review summarizes recent research on the effect of radiation, including ionizing and nonionizing radiation on the content and profile of phenolic compounds, and antioxidant activities in cereal and legume seeds, the influencing factors and possible mechanisms are also discussed. The article will improve the understanding of radiation effect on phenolic antioxidants, and promote the radiation modification of natural phenolic compounds in cereal and legume seeds and other sources.
Collapse
Affiliation(s)
- Zhiqiang Shi
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China.
| | - Ying Liu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China
| | - Zhiming Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, PR China
| | - Liu Liu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China
| | - Qinghai Yan
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China
| | - Dandan Geng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China
| | - Min Wei
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China.
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, PR China.
| | - Gaoqiong Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu, Sichuan 611130, PR China
| | - Hongkun Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu, Sichuan 611130, PR China
| | - Pinghua Yang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China
| |
Collapse
|
8
|
Stability and ultraviolet A photostability of silymarin polyphenols and its consequences for practical use in dermatology. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Han HS, Koo SY, Choi KY. Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging. Bioact Mater 2021; 14:182-205. [PMID: 35310344 PMCID: PMC8892098 DOI: 10.1016/j.bioactmat.2021.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
Over thousands of years, natural bioactive compounds derived from plants (bioactive phytocompounds, BPCs) have been used worldwide to address human health issues. Today, they are a significant resource for drug discovery in the development of modern medicines. Although many BPCs have promising biological activities, most of them cannot be effectively utilized in drugs for therapeutic applications because of their inherent limitations of low solubility, structural instability, short half-life, poor bioavailability, and non-specific distribution to organs. Researchers have utilized emerging nanoformulation (NF) technologies to overcome these limitations as they have demonstrated great potential to improve the solubility, stability, and pharmacokinetic and pharmacodynamic characteristics of BPCs. This review exemplifies NF strategies for resolving the issues associated with BPCs and summarizes recent advances in their preclinical and clinical applications for imaging and therapy. This review also highlights how innovative NF technologies play a leading role in next-generation BPC-based drug development for extended therapeutic applications. Finally, this review discusses the opportunities to take BPCs with meaningful clinical impact from bench to bedside and extend the patent life of BPC-based medicines with new formulations or application to new adjacent diseases beyond the primary drug indications. Natural bioactive phytocompounds derived from plants have been used worldwide to address human health issues. However, most of them cannot be effectively utilized in drugs for therapeutic applications because of their inherent limitations. Nanoformulation approach has recently been underlined as an emerging pharmaceutical strategy to overcome the intrinsic drawbacks of bioactive phytocompounds. Various types of nanoformulation and their up-to-date applications for targeted delivery, phototherapy, and imaging are reviewed. Finally, their clinical implications for the repurposing of bioactive phytocompounds are deliberated.
Collapse
Affiliation(s)
- Hwa Seung Han
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Song Yi Koo
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Ki Young Choi
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Corresponding author. Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea.
| |
Collapse
|
10
|
Sandhya J, Kalaiselvam S. UV responsive quercetin derived and functionalized CuO/ZnO nanocomposite in ameliorating photocatalytic degradation of rhodamine B dye and enhanced biocidal activity against selected pathogenic strains. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:835-848. [PMID: 34038321 DOI: 10.1080/10934529.2021.1930770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 05/27/2023]
Abstract
Quercetin was investigated for its role as a reducing agent in biosynthesizing CuO/ZnO nanocomposite, its subsequent surface functionalization and influence in Rhodamine B dye degradation and biocidal activity. The as synthesized quercetin functionalized CuO/ZnO nanocomposite (CuO/ZnO@Q) was analyzed using X-ray diffraction (XRD), Fourier transform infra red spectroscopy (FTIR), Transmission electron microscopy (TEM), Energy dispersive spectroscopy (EDS) and Ultraviolet-visible spectroscopy (UV-Vis). XRD showed the formation of crystalline CuO, ZnO phases and FTIR analysis revealed the incorporation of quercetin functional groups in the synthesized nanocomposite. TEM image displayed the formation of quercetin deposited spherical CuO/ZnO nanostructure with the EDAX results confirming the presence of organic carbon composition from quercetin. The UV absorption spectra ascertained the presence and role of quercetin in the enhanced absorption of radiation in the UV range. CuO/ZnO@Q showed improved photocatalysis with complete Rhodamine B dye degradation after 75 min of UV irradiation, as against pure CuO/ZnO, which exhibited incomplete dye degradation even after 90 min of irradiation. Moreover, quercetin surface functionalization effectively ameliorated its antimicrobial activity against E. coli, S. aureus, Shigella, B. subtilis, A. niger and C. albicans, proving its potential in significantly enhancing biocidal activity along with photocatalytic dye degradation in a natural and eco-friendly route.
Collapse
Affiliation(s)
- J Sandhya
- Department of Applied Science and Technology, Anna University, Chennai, India
| | - S Kalaiselvam
- Department of Applied Science and Technology, Anna University, Chennai, India
| |
Collapse
|
11
|
Golonka I, Wilk S, Musiał W. The Influence of UV Radiation on the Degradation of Pharmaceutical Formulations Containing Quercetin. Molecules 2020; 25:E5454. [PMID: 33233773 PMCID: PMC7699961 DOI: 10.3390/molecules25225454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to assess the photostability of quercetin in the presence of anionic and nonionic polymeric gels with varied compositions of an added component-glycerol. The samples were irradiated continuously at constant temperature. The stability of quercetin in solution and incorporated into the gels was evaluated by an UV-Vis spectrophotometer. FTIR spectroscopy (Fourier-transform infrared spectroscopy) was used to detect the changes in the structure of quercetin depending on the polymer used in the gel, and on the exposure time. Photostabilization is an important aspect of quality assurance in photosensitive compounds. The decomposition rate of quercetin in the ionic preparation of polyacrylic acid (PAA) with glycerol was 1.952·10-3 min-1, whereas the absence of glycerol resulted in a decay rate of 5.032·10-4 min-1. The formulation containing non-ionic methylcellulose resulted in a decomposition rate of quercetin in the range of 1.679·10-3 min-1. The decay rate of quercetin under light influence depended on the composition of the gel. It was found that the cross-linked PAA stabilized quercetin and the addition of glycerol accelerated the photodegradation.
Collapse
Affiliation(s)
| | | | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50–556 Wroclaw, Poland; (I.G.); (S.W.)
| |
Collapse
|
12
|
Abstract
In this study, the LC-MS/MS was applied to explore the stability of four common dietary flavonols, kaempferol, quercetin, isorhamnetin, and myricetin, in the presence of hydrogen peroxide and saliva. In addition, the influence of saliva on the representative quercetin glycosides, rutin, quercitrin, hyperoside, and spiraeoside was examined. Our study showed that, regardless of the oxidative agent used, flavonols stability decreases with increasing B-ring substitution. The decomposition of analyzed compounds was based on their splitting by the opening the heterocyclic C-ring and realizing more simple aromatic compounds. The dead-end products corresponded to different benzoic acid derivatives derived from B-ring. Kaempferol, quercetin, isorhamnetin, and myricetin were transformed into 4-hydroxybeznoic acid, protocatechuic acid, vanillic acid, and gallic acid, respectively. Additionally, for quercetin and myricetin, two intermediate depsides and 2,4,6-trihydroxybenzoic acid derived from A-ring were detected. All analyzed glycosides were resistant to hydrolysis in the presence of saliva. Based on our data, saliva was proven to be a next oxidative agent which leads to the formation of corresponding phenolic acids. Hence, studies on flavonols’ metabolism should take into consideration that the flavonols decomposition starts in the oral cavity; hence, in subsequent parts of the human digestive tract, they could be present not in their parent form but as phenolic acids. Further analyses of the influence of saliva on flavonols glycosides need to be performed due to the possible interindividual fluctuations.
Collapse
|
13
|
Skarupova D, Vostalova J, Rajnochova Svobodova A. Ultraviolet A protective potential of plant extracts and phytochemicals. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:1-22. [PMID: 32188958 DOI: 10.5507/bp.2020.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Chronic exposure to solar radiation is related to an increased incidence of various skin disorders, including premature skin aging and melanoma and non-melanoma skin cancers. Ultraviolet (UV) photons in particular are responsible for skin damage. Solar UV photons mainly belong to UVA wavebands, however UVA radiation has been mostly ignored for a long time. At the cellular level, UVA photons mainly provoke indirect oxidative damage to biomolecules via the massive generation of unstable and highly reactive compounds. Human skin has several effective mechanisms that forestall, repair and eliminate damage caused by solar radiation. Regardless, some damage persists and can accumulate with chronic exposure. Therefore, conscious protection against solar radiation (UVB+UVA) is necessary. Besides traditional types of photoprotection such as sunscreen use, new strategies are being searched for and developed. One very popular protective strategy is the application of phytochemicals as active ingredients of photoprotection preparations instead of synthetic chemicals. Phytochemicals usually possess additional biological activities besides absorbing the energy of photons, and those properties (e.g. antioxidant, anti-inflammatory) magnify the protective potential of phytochemicals and extracts. Therefore, compounds of natural origin are in the interest of researchers as well as developers. In this review, only studies on UVA protection with well-documented experimental conditions are summarized. This article includes 17 well standardized plant extracts (Camellia sinensis (L.) Kuntze, Silybum marianum L. Gaertn., Punica granatum L., Polypodium aureum L., Vaccinium myrtillus L., Lonicera caerulea L., Thymus vulgaris L., Opuntia ficus-indica (L.) Mill., Morinda citrifolia L., Aloe vera (L.) Burm.f., Oenothera paradoxa Hudziok, Galinsoga parviflora Cav., Galinsoga quadriradiata Ruiz et Pavón, Hippophae rhamnoides L., Cola acuminata Schott & Endl., Theobroma cacao L. and Amaranthus cruentus L.) and 26 phytochemicals.
Collapse
Affiliation(s)
- Denisa Skarupova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jitka Vostalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Alena Rajnochova Svobodova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
14
|
Hu L, Cheng H, Gao Y, Liang L. Mechanism for Inhibition of Folic Acid Photodecomposition by Various Antioxidants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:340-350. [PMID: 31874034 DOI: 10.1021/acs.jafc.9b06263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Folic acid, a synthetic form of folate, is a water-soluble vitamin that is essential during periods of rapid cell division and growth. However, it decomposes upon ultraviolet irradiation to form inactive photoproducts. In this study, the protective effect and mechanisms of antioxidants, including cinnamic acids, flavonoids, catechol and its derivatives, stilbenes, p-benzoquinone and its derivatives, isoprenoids, curcumin, oleic acid, and linoleic acid, against folic acid photodecomposition were investigated by using fluorescence and absorbance spectroscopy, high-performance liquid chromatography, and antioxidant assay. It was found that antioxidants could inhibit or delay the folic acid decomposition in varying degrees, among which caffeic acid was the most effective. The increase in its remarkable antioxidant efficiency and absorbance in the UVA region during irradiation contributed to its effective protection. This finding could be useful for the protection of photolabile components in food and other uses.
Collapse
|
15
|
Wasan EK, Zhao J, Poteet J, Mohammed MA, Syeda J, Orlowski T, Soulsbury K, Cawthray J, Bunyamin A, Zhang C, Fahlman BM, Krol ES. Development of a UV-Stabilized Topical Formulation of Nifedipine for the Treatment of Raynaud Phenomenon and Chilblains. Pharmaceutics 2019; 11:pharmaceutics11110594. [PMID: 31717566 PMCID: PMC6920966 DOI: 10.3390/pharmaceutics11110594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/24/2022] Open
Abstract
Raynaud’s Phenomenon is a vascular affliction resulting in pain and blanching of the skin caused by excessive and prolonged constriction of arterioles, usually due to cold exposure. Nifedipine is a vasodilatory calcium channel antagonist, which is used orally as the first-line pharmacological treatment to reduce the incidence and severity of attacks when other interventions fail to alleviate the condition and there is danger of tissue injury. Oral administration of nifedipine, however, is associated with systemic adverse effects, and thus topical administration with nifedipine locally to the extremities would be advantageous. However, nifedipine is subject to rapid photodegradation, which is problematic for exposed skin such as the hands. The goal of this project was to analyze the photostability of a novel topical nifedipine cream to UVA light. The effect of incorporating the photoprotectants rutin, quercetin, and/or avobenzone (BMDBM) into the nifedipine cream on the stability of nifedipine to UVA light exposure and the appearance of degradation products of nifedipine was determined. Rutin and quercetin are flavonoids with antioxidant activity. Both have the potential to improve the photostability of nifedipine by a number of mechanisms that either quench the intermolecular electron transfer of the singlet excited dihydropyridine to the nitrobenzene group or by preventing photoexcitation of nifedipine. Rutin at either 0.1% or 0.5% (w/w) did not improve the stability of nifedipine 2% (w/w) in the cream after UVA exposure up to 3 h. Incorporation of quercetin at 0.5% (w/w) did improve nifedipine stability from 40% (no quercetin) to 77% (with quercetin) of original drug concentration after 3 h UVA exposure. A combination of BMDBM and quercetin was the most effective photoprotectant for maintaining nifedipine concentration following up to 8 h UVA exposure.
Collapse
Affiliation(s)
- Ellen K. Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (J.P.); (M.A.M.); (J.S.); (T.O.); (J.C.); (A.B.); (C.Z.); (B.M.F.); (E.S.K.)
- Correspondence: ; Tel.: +1-306-966-3202
| | - Jinying Zhao
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Joshua Poteet
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (J.P.); (M.A.M.); (J.S.); (T.O.); (J.C.); (A.B.); (C.Z.); (B.M.F.); (E.S.K.)
| | - Munawar A. Mohammed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (J.P.); (M.A.M.); (J.S.); (T.O.); (J.C.); (A.B.); (C.Z.); (B.M.F.); (E.S.K.)
| | - Jaweria Syeda
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (J.P.); (M.A.M.); (J.S.); (T.O.); (J.C.); (A.B.); (C.Z.); (B.M.F.); (E.S.K.)
| | - Tatiana Orlowski
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (J.P.); (M.A.M.); (J.S.); (T.O.); (J.C.); (A.B.); (C.Z.); (B.M.F.); (E.S.K.)
| | - Kevin Soulsbury
- British Columbia Institute of Technology, Burnaby, BC V5G 3H2, Canada;
| | - Jacqueline Cawthray
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (J.P.); (M.A.M.); (J.S.); (T.O.); (J.C.); (A.B.); (C.Z.); (B.M.F.); (E.S.K.)
| | - Amanda Bunyamin
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (J.P.); (M.A.M.); (J.S.); (T.O.); (J.C.); (A.B.); (C.Z.); (B.M.F.); (E.S.K.)
| | - Chi Zhang
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (J.P.); (M.A.M.); (J.S.); (T.O.); (J.C.); (A.B.); (C.Z.); (B.M.F.); (E.S.K.)
| | - Brian M. Fahlman
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (J.P.); (M.A.M.); (J.S.); (T.O.); (J.C.); (A.B.); (C.Z.); (B.M.F.); (E.S.K.)
| | - Ed S. Krol
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (J.P.); (M.A.M.); (J.S.); (T.O.); (J.C.); (A.B.); (C.Z.); (B.M.F.); (E.S.K.)
| |
Collapse
|
16
|
Ma T, Liu Y, Wu Q, Luo L, Cui Y, Wang X, Chen X, Tan L, Meng X. Quercetin-Modified Metal-Organic Frameworks for Dual Sensitization of Radiotherapy in Tumor Tissues by Inhibiting the Carbonic Anhydrase IX. ACS NANO 2019; 13:4209-4219. [PMID: 30933559 DOI: 10.1021/acsnano.8b09221] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The development of multifunctional nanoscale radiosensitizers has attracted a tremendous amount of attention, which can enhance the radiosensitization of tumor tissues and reduce unnecessary damage to the surrounding organs. However, the persistent hypoxia environment within the tumor limits their applications in radiotherapy. In this paper, a stable nanocomposite was engineered to overcome the hypoxia properties by using 1,4-benzenedicarboxylic acid produced from a Zr-MOF as a carbonic anhydrase IX (CA IX) inhibitor and quercetin (QU) as a radiosensitizer. QU was encapsulated into the Zr-MOF structure to achieve a synergetic dual sensitization therapy. Zr-MOF-QU exhibits an excellent potential of radiotherapy sensitization characteristics in vitro and in vivo from the γ-H2AX immunofluorescence staining and colony assays. The mechanisms of alleviating hypoxia-induced resistance and sensitizing tumor tissues to improve cell apoptosis from radiation were found to suppress CA IX expressions by the decomposition product from Zr-MOF and boost the sensitivity by QU in radiation therapy. Moreover, there was no significant systemic toxicity during the treatment, and the therapeutic outcome was assessed in animal models. Therefore, our results demonstrate a promising cancer treatment approach in the radiation field.
Collapse
Affiliation(s)
- Tengchuang Ma
- Department of Nuclear Medicine , Harbin Medical University Cancer Hospital , Nangang District, Harbin , Heilongjiang Province 150086 , P.R. China
| | - Yunduo Liu
- Department of Gynecology , Harbin Medical University Cancer Hospital , Nangang District, Harbin , Heilongjiang Province 150086 , P.R. China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , No. 29 East Road Zhongguancun , Beijing 100190 , P.R. China
| | - Lifang Luo
- Department of Gynecology , Harbin Medical University Cancer Hospital , Nangang District, Harbin , Heilongjiang Province 150086 , P.R. China
| | - Yali Cui
- Department of Nuclear Medicine , Harbin Medical University Cancer Hospital , Nangang District, Harbin , Heilongjiang Province 150086 , P.R. China
| | - Xinghua Wang
- Department of Nuclear Medicine , Harbin Medical University Cancer Hospital , Nangang District, Harbin , Heilongjiang Province 150086 , P.R. China
| | - Xiuwei Chen
- Department of Gynecology , Harbin Medical University Cancer Hospital , Nangang District, Harbin , Heilongjiang Province 150086 , P.R. China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , No. 29 East Road Zhongguancun , Beijing 100190 , P.R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , No. 29 East Road Zhongguancun , Beijing 100190 , P.R. China
| |
Collapse
|
17
|
Development and characterization of antioxidant active packaging and intelligent Al 3+-sensing films based on carboxymethyl chitosan and quercetin. Int J Biol Macromol 2019; 126:1074-1084. [PMID: 30625350 DOI: 10.1016/j.ijbiomac.2018.12.264] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/22/2018] [Accepted: 12/29/2018] [Indexed: 11/20/2022]
Abstract
Different amounts of quercetin were mixed with carboxymethyl chitosan (CMCS) to develop novel antioxidant active packaging and intelligent Al3+-sensing films. The physical properties, structure, antioxidant and Al3+-sensing abilities of CMCS-quercetin composite films were investigated. Results showed CMCS-quercetin composite films presented a dark yellowish color. When compared with CMCS film, CMCS-quercetin composite films containing 5 and 7.5 wt% of quercetin on CMCS basis exhibited higher thicknesses, opacity and thermal stability; however, presented lower moisture contents, UV-vis light transmittance and elongation at break. Besides, the incorporation of quercetin could not significantly change the water solubility and water vapor barrier property of CMCS film. Morphological observation showed the surface of CMCS-quercetin composite film became coarse when 7.5 wt% of quercetin was incorporated. Infrared spectra and X-ray diffraction patterns of CMCS-quercetin composite films further indicated quercetin was compatible with CMCS. Importantly, CMCS-quercetin composite films could sustainably release antioxidant ability into aqueous and fatty food stimulants. Moreover, CMCS-quercetin composite films were sensitive to Al3+. The color and UV-vis absorption patterns of CMCS-quercetin composite films were changed by the addition of Al3+. Results suggested that CMCS-quercetin composite films could be used as novel antioxidant and intelligent Al3+-sensing materials in food packaging.
Collapse
|
18
|
|
19
|
Azzi J, Jraij A, Auezova L, Fourmentin S, Greige-Gerges H. Novel findings for quercetin encapsulation and preservation with cyclodextrins, liposomes, and drug-in-cyclodextrin-in-liposomes. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Lv X, Liu T, Ma H, Tian Y, Li L, Li Z, Gao M, Zhang J, Tang Z. Preparation of Essential Oil-Based Microemulsions for Improving the Solubility, pH Stability, Photostability, and Skin Permeation of Quercetin. AAPS PharmSciTech 2017; 18:3097-3104. [PMID: 28516411 DOI: 10.1208/s12249-017-0798-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/30/2017] [Indexed: 12/17/2022] Open
Abstract
Quercetin can bring many benefits to skin based on its various bioactivities. However, the therapeutic effect of quercetin is limited due to the poor water solubility, pH instability, light instability, and skin permeation. The aim of the present work was applying essential oil-based microemulsions to improve the solubility, pH stability, photostability, and skin permeation of quercetin for topical application. Peppermint oil (PO-ME), clove oil (CO-ME), and rosemary oil (RMO-ME) were selected as model essential oils. Microemulsions composed of Cremophor EL/1,2-propanediol/essential oils (47:23:30, w/w) were selected as model formulations, based on the pseudo-ternary phase diagram and the characterizations. In the solubility study, the solubility of quercetin was improved dozens of times by microemulsions. Quercetin was found instable under alkaline condition, with 50% degraded in the solution of pH 13. However, PO-ME, CO-ME, and RMO-ME could protect quercetin from the hydroxide ions, with 47, 9, and 12% of quercetin degraded. In the photostability study, the essential oil-based microemulsions showed the capability of protecting quercetin from degradation under UV radiation. Where more than 67% of quercetin was degraded in aqueous solution, while less than 7% of quercetin degraded in microemulsions. At last, the in vitro skin permeation study showed that the essential oil-based microemulsions could enhance the permeation capacity of quercetin by 2.5-3 times compared to the aqueous solution. Hence, the prepared essential oil microemulsions could improve the solubility, pH stability, photostability, and skin permeation of quercetin, which will be beneficial for its topical application.
Collapse
|
21
|
Zenkevich IG, Pushkareva TI. Systematization of the results of the chromatography–mass spectrometry identification of the products of quercetin oxidation by atmospheric oxygen in aqueous solutions. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817080147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Weiz G, Breccia JD, Mazzaferro LS. Screening and quantification of the enzymatic deglycosylation of the plant flavonoid rutin by UV–visible spectrometry. Food Chem 2017; 229:44-49. [DOI: 10.1016/j.foodchem.2017.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
|
23
|
Rajnochová Svobodová A, Ryšavá A, Psotová M, Kosina P, Zálešák B, Ulrichová J, Vostálová J. The Phototoxic Potential of the Flavonoids, Taxifolin and Quercetin. Photochem Photobiol 2017; 93:1240-1247. [PMID: 28303596 DOI: 10.1111/php.12755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/14/2017] [Indexed: 12/13/2022]
Abstract
Quercetin, one of the most abundant polyphenols in the plant kingdom has been shown to be photodegraded on exposure to UV light. Despite the fact, it is a component of several dermatological preparations. Its phototoxic potential has not been evaluated to date. The aim of this study was to assess whether photo-induced degradation of quercetin is linked to phototoxic effects on living cells. Its dihydro derivative, taxifolin, was included in the study. For evaluation, the 3T3 Neutral Red Uptake Phototoxicity Test according to OECD TG 432 was used. To better approximate human skin, HaCaT keratinocytes, normal human epidermal keratinocytes and dermal fibroblasts were used, apart from the Balb/c 3T3 cell line. Quercetin showed a dose-dependent photodegradation in aqueous and organic environments and a phototoxic effect on all used cells. Quercetin pretreatment and following UVA exposure resulted in increased reactive oxygen species production and intracellular glutathione level depletion in human dermal fibroblasts. Taxifolin was found completely nonphototoxic and photostable. As only in vitro methodology was used, further studies using 3D skin models and/or human volunteers are needed to confirm whether exposure to sunlight, tanning sunbeds and/or phototherapy in people using cosmetics containing quercetin is a health risk.
Collapse
Affiliation(s)
- Alena Rajnochová Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Alena Ryšavá
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Michaela Psotová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Pavel Kosina
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Bohumil Zálešák
- Department of Plastic and Aesthetic Surgery, University Hospital Olomouc, Olomouc, Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Jitka Vostálová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
24
|
Szakács Z, Kállay M, Kubinyi M. Theoretical study on the photooxygenation and photorearrangement reactions of 3-hydroxyflavone. RSC Adv 2017. [DOI: 10.1039/c7ra04590e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanisms of three photodegradation reactions of 3-hydroxyflavone – its photosensitized oxygenation, photooxygenation with 3O2 and photorearrangement into an indanedione derivative – have been investigated by computing the free energy profiles.
Collapse
Affiliation(s)
- Zoltán Szakács
- Department of Physical Chemistry and Materials Science
- Budapest University of Technology and Economics
- 1521 Budapest
- Hungary
| | - Mihály Kállay
- MTA-BME Lendület Quantum Chemistry Research Group
- Department of Physical Chemistry and Materials Science
- Budapest University of Technology and Economics
- 1521 Budapest
- Hungary
| | - Miklós Kubinyi
- Department of Physical Chemistry and Materials Science
- Budapest University of Technology and Economics
- 1521 Budapest
- Hungary
- Institute of Materials and Environmental Chemistry
| |
Collapse
|
25
|
Kajbafvala A, Salabat A, Salimi A. Formulation, characterization, and in vitro/ex vivo evaluation of quercetin-loaded microemulsion for topical application. Pharm Dev Technol 2016; 23:741-750. [DOI: 10.1080/10837450.2016.1263995] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Azar Kajbafvala
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| | - Alireza Salabat
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| | - Anayatollah Salimi
- Department of Pharmaceutics, School of Pharmacy, Nanotechnology Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
26
|
Aerobic Decomposition of Trialkylquercetins: Structure Characterization and Antiproliferative Effect. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aerobic decomposition of 3,4′,7- O-trialkylquercetins was first reported in this paper. The structures of four new decomposed products were characterized by analyzing the 1D and 2D NMR data, as well as their high resolution mass spectroscopic data. Their antiproliferative activity toward human prostate cancer cells has been assessed through WST-1 cell proliferation assay. The decomposition mechanism was also proposed.
Collapse
|
27
|
Forte L, Torricelli P, Boanini E, Gazzano M, Rubini K, Fini M, Bigi A. Antioxidant and bone repair properties of quercetin-functionalized hydroxyapatite: An in vitro osteoblast-osteoclast-endothelial cell co-culture study. Acta Biomater 2016; 32:298-308. [PMID: 26689470 DOI: 10.1016/j.actbio.2015.12.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/12/2015] [Accepted: 12/09/2015] [Indexed: 11/28/2022]
Abstract
Quercetin (3,3',4',5,7-pentahydroxy-flavone) is a flavonoid known for its pharmacological activities, which include antioxidant and anti-inflammatory properties, as well as possible beneficial action on diseases involving bone loss. In this work, we explored the possibility to functionalize hydroxyapatite (HA) with quercetin in order to obtain new materials for bone repair through local administration of the flavonoid. HA was synthesized in presence of different concentrations of quercetin according to two different procedures: direct synthesis and phase transition from monetite. Direct synthesis lead to composite nanocrystals containing up to 3.1 wt% quercetin, which provokes a reduction of the crystals mean dimensions and of the length of the coherently scattering domains. Synthesis conditions provoke a partial oxidation of quercetin and, as a consequence, a significant reduction of its radical scavenging activity (RSA). On the other hand, synthesis through phase transition yields samples containing up to 1.3 wt% of quercetin incorporated into hydroxyapatite, with minor structural modifications, which exhibit relevant anti-oxidant activities, as testified by their high RSA levels, (slightly lower than that of pure quercetin). The biological response to these materials was tested using an innovative triculture model involving osteoblast, osteoclast and endothelial cells, in order to mimic bone microenvironment. The results show that the presence of quercetin in the composite materials enhances human osteoblast-like MG63 proliferation and differentiation, whereas it downregulates osteoclastogenesis of osteoclast precursors 2T-110, and supports proliferation and differentiation of human umbilical vein endothelial cells (HUVEC). STATEMENT OF SIGNIFICANCE The pharmacological activities of the flavonoid quercetin include anti-oxidant and antiinflammatory properties, as well as capability to prevent bone loss. In this paper, we demonstrate that it is possible to synthesize hydroxyapatite functionalized with different amounts of quercetin and obtain new composite materials which display both the good bioactivity of the inorganic phase and the therapeutic properties of the flavonoid. The innovative in vitro model developed in this study, which involves co-culture of osteoblast, osteoclast and endothelial cells, allows to state that the new materials exert a beneficial action onto bone repair microenvironment, stimulating osteoblast proliferation and activity, downregulating osteoclastogenesis, and supporting microangiogenetic processes necessary for new bone formation.
Collapse
Affiliation(s)
- Lucia Forte
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Paola Torricelli
- Laboratory of Preclinical and Surgical Studies, Research Institute Codivilla Putti - Rizzoli Orthopaedic Institute, via di Barbiano, 40126 Bologna, Italy
| | - Elisa Boanini
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy.
| | - Massimo Gazzano
- ISOF-CNR, c/o Department of Chemistry "G. Ciamician", Bologna, Italy
| | - Katia Rubini
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Research Institute Codivilla Putti - Rizzoli Orthopaedic Institute, via di Barbiano, 40126 Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
28
|
Riboflavin degradation in the presence of quercetin in methanol under continuous UV-B irradiation: the ESI–MS–UHPLC analysis. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1561-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Development and Characterization of an Active Chitosan-Based Film Containing Quercetin. FOOD BIOPROCESS TECH 2015. [DOI: 10.1007/s11947-015-1580-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Morina F, Takahama U, Yamauchi R, Hirota S, Veljovic-Jovanovic S. Quercetin 7-O-glucoside suppresses nitrite-induced formation of dinitrosocatechins and their quinones in catechin/nitrite systems under stomach simulating conditions. Food Funct 2015; 6:219-29. [DOI: 10.1039/c4fo00695j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Catechins in foods can be transformed into dinitrosocatechins and the quinones by salivary nitrite in the stomach, and the transformation can be suppressed by flavonols including quercetin and its 7-O-glucoside.
Collapse
Affiliation(s)
- Filis Morina
- Institute for Multidisciplinary Research
- University of Belgrade
- Belgrade 11030
- Republic of Serbia
| | - Umeo Takahama
- Department of Bioscience
- Kyushu Dental University
- Kitakyushu 803-8580
- Japan
| | - Ryo Yamauchi
- Department of Applied Life Science
- Faculty of Applied Biological Sciences
- Gifu University
- Gifu 501-1193
- Japan
| | - Sachiko Hirota
- Faculty of Applied Health Sciences
- University of East Asia
- Shimonoseki 751-8503
- Japan
| | | |
Collapse
|
31
|
Huvaere K, Skibsted LH. Flavonoids protecting food and beverages against light. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:20-35. [PMID: 24961228 DOI: 10.1002/jsfa.6796] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 06/03/2023]
Abstract
Flavonoids, which are ubiquitously present in the plant kingdom, preserve food and beverages at the parts per million level with minor perturbation of sensory impressions. Additionally, they are safe and possibly contribute positive health effects. Flavonoids should be further exploited for the protection of food and beverages against light-induced quality deterioration through: (1) direct absorption of photons as inner filters protecting sensitive food components; (2) deactivation of (triplet-)excited states of sensitisers like chlorophyll and riboflavin; (3) quenching of singlet oxygen from type II photosensitisation; and (iv) scavenging of radicals formed as reaction intermediates in type I photosensitisation. For absorption of light, combinations of flavonoids, as found in natural co-pigmentation, facilitate dissipation of photon energy to heat thus averting photodegradation. For protection against singlet oxygen and triplet sensitisers, chemical quenching gradually decreases efficiency hence the pathway to physical quenching should be optimised through product formulation. The feasibility of these protection strategies is further supported by kinetic data that are becoming available, allowing for calculation of threshold levels of flavonoids to prevent beer and dairy products from going off. On the other hand, increasing understanding of the interplay between light and matrix physicochemistry, for example the effect of aprotic microenvironments on phototautomerisation of compounds like quercetin, opens up for engineering better light-to-heat converting channels in processed food to eventually prevent quality loss.
Collapse
Affiliation(s)
- Kevin Huvaere
- Department of Food Science, Faculty of Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958, Denmark
| | | |
Collapse
|
32
|
Merzoug S, Toumi ML, Tahraoui A. Quercetin mitigates Adriamycin-induced anxiety- and depression-like behaviors, immune dysfunction, and brain oxidative stress in rats. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:921-33. [DOI: 10.1007/s00210-014-1008-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/10/2014] [Indexed: 12/11/2022]
|
33
|
Zhang S, Wang L, Liu H, Zhao G, Ming L. Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells. Diagn Pathol 2014; 9:68. [PMID: 24650056 PMCID: PMC3994494 DOI: 10.1186/1746-1596-9-68] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/13/2014] [Indexed: 11/26/2022] Open
Abstract
Objective Myricetin, a common dietary flavonoid is widely distributed in fruits and vegetables, and is used as a health food supplement based on its immune function, anti-oxidation, anti-tumor, and anti-inflammatory properties. The aim of this study was to investigate the effects of myricetin on combination with radiotherapy enhance radiosensitivity of lung cancer A549 and H1299 cells. Methods A549 cells and H1299 cells were exposed to X-ray with or without myricetin treatment. Colony formation assays, CCK-8 assay, flow cytometry and Caspase-3 level detection were used to evaluate the radiosensitization activity of myricetin on cell proliferation and apoptosis in vitro. Nude mouse tumor xenograft model was built to assessed radiosensitization effect of myricetin in vivo. Results Compared with the exposed group without myricetin treatment, the groups treated with myricetin showed significantly suppressed cell surviving fraction and proliferation, increased the cell apoptosis and increased Caspase-3 protein expression after X-ray exposure in vitro. And in vivo assay, growth speed of tumor xenografts was significantly decreased in irradiated mice treated with myricetin. Conclusions The study demonstrated both in vitro and in vivo evidence that combination of myricetin with radiotherapy can enhance tumor radiosensitivity of pulmonary carcinoma A549 and H1299 cells, and myricetin could be a potential radiosensitizer for lung cancer therapy. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5791518001210633
Collapse
Affiliation(s)
| | | | | | - Guoqiang Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, No,1, Jianshe Road, Zhengzhou 450052, PR China.
| | | |
Collapse
|
34
|
Qin H, Li D. Enhanced Resistance to UV-B Radiation in Anabaena sp. PCC 7120 (Cyanophyceae) by Repeated Exposure. Curr Microbiol 2014; 69:1-9. [DOI: 10.1007/s00284-014-0543-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 12/10/2013] [Indexed: 12/24/2022]
|
35
|
Qiao L, Sun Y, Chen R, Fu Y, Zhang W, Li X, Chen J, Shen Y, Ye X. Sonochemical effects on 14 flavonoids common in citrus: relation to stability. PLoS One 2014; 9:e87766. [PMID: 24516562 PMCID: PMC3916345 DOI: 10.1371/journal.pone.0087766] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/30/2013] [Indexed: 02/01/2023] Open
Abstract
The sonochemical effects of ultrasound (US) treatment on 14 flavonoids representing the main flavonoids in citrus fruit were investigated in a standard mixture by stability evaluation of a model system. Degradation products were further tentatively identified by Fourier transform infrared spectroscopy and high-performance liquid chromatography–ultraviolet detection–electrospray ionization tandem mass spectrometry. Thirteen flavonoids (i.e., eriocitrin, narirutin, neohesperidin, quercitrin, eridictyol, didymin, naringenin, luteolin, sinensetin, nobiletin, tangeretin, naringin, and hesperidin) were fairly stable whereas quercetin was degraded significantly by US treatment. The types of solvent and temperature used were important factors that determined the resulting degradation reactions. The degradation rate of quercetin was highest in 80% ethanol aqueous solution and decreased with increasing temperature. Longer US durations caused increases in the extent of quercetin degradation. Liquid height, ultrasonic intensity, pulse length, and duty cycle of US affected degradation rates but did not change the nature of degradation of the flavonoids. Four types of reactions occurred simultaneously for quercetin under US treatment: oxidation, addition, polymerization, and decomposition. Eight degradation products were tentatively identified as dimer, alcohol addition, oxidation, and decomposition products.
Collapse
Affiliation(s)
- Liping Qiao
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science; Zhejiang R & D Center for Food Technology and Equipment;Zhejiang University, Hangzhou, PR China
| | - Yujing Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, PR China
| | - Rongrong Chen
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science; Zhejiang R & D Center for Food Technology and Equipment;Zhejiang University, Hangzhou, PR China
| | - Yu Fu
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science; Zhejiang R & D Center for Food Technology and Equipment;Zhejiang University, Hangzhou, PR China
| | - Wenjuan Zhang
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science; Zhejiang R & D Center for Food Technology and Equipment;Zhejiang University, Hangzhou, PR China
| | - Xin Li
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science; Zhejiang R & D Center for Food Technology and Equipment;Zhejiang University, Hangzhou, PR China
| | - Jianchu Chen
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science; Zhejiang R & D Center for Food Technology and Equipment;Zhejiang University, Hangzhou, PR China
| | - Yan Shen
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science; Zhejiang R & D Center for Food Technology and Equipment;Zhejiang University, Hangzhou, PR China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Fuli Institute of Food Science; Zhejiang R & D Center for Food Technology and Equipment;Zhejiang University, Hangzhou, PR China
- * E-mail:
| |
Collapse
|
36
|
Benzophenone Suppression of Quercetin Antioxidant Activity towards Lipids under UV-B Irradiation Regime: Detection by HPLC Chromatography. J CHEM-NY 2013. [DOI: 10.1155/2013/761675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Quercetin, a well-known flavonoid antioxidant, has been employed to control benzophenone-sensitized peroxidation of the lipid mixture in methanol solution, induced by continuous UV-B irradiation. Surprisingly, the detected quercetin antioxidant activity was almost negligible. The presented data suggests that the reason is not in its own UV-B-induced degradation but rather in its interrelationship with benzophenone during UV-B stress. On the other side of this relationship, benzophenone anticipated sensitizing role towards lipids; that is, the initiation of lipid peroxidation has been affected as well. These results, obtained by HPLC chromatography, partly confirm but partly relativize to some extent recent results obtained with the same system by spectrophotometric method.
Collapse
|
37
|
Neugart S, Zietz M, Schreiner M, Rohn S, Kroh LW, Krumbein A. Structurally different flavonol glycosides and hydroxycinnamic acid derivatives respond differently to moderate UV-B radiation exposure. PHYSIOLOGIA PLANTARUM 2012; 145:582-93. [PMID: 22292604 DOI: 10.1111/j.1399-3054.2012.01567.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The aim of this study was to investigate the modifying influence of moderate ultraviolet-B (UV-B) radiation exposure on structurally different flavonol glycosides and hydroxycinnamic acid derivatives during pre-harvest using kale, a leafy Brassica species with a wide spectrum of different non-acylated and acylated flavonol glycosides. Juvenile kale plants were treated with short-term (1 day), moderate UV-B radiation [0.22-0.88 kJ m⁻² day⁻¹ biologically effective UV-B (UV-B(BE))]. Twenty compounds were quantified, revealing a structure-specific response of flavonol glycosides and hydroxycinnamic acid derivatives to UV-B radiation. A dose- and structure-dependent response of the investigated phenolic compounds to additional UV-B radiation was found. The investigated quercetin glycosides decreased under UV-B; for kaempferol glycosides, however, the amount of sugar moieties and the flavonol glycoside hydoxycinnamic acid residue influenced the response to UV-B. Monoacylated kaempferol tetraglucosides decreased in the investigated UV-B range, whereas the monoacylated kaempferol diglucosides increased strongly with doses of 0.88 kJ m⁻² day⁻¹ UV-B(BE) . The UV-B-induced increase in monoacylated kaempferol triglucosides was dependent on the acylation pattern. Furthermore, the hydroxycinnamic acid glycosides disinapoyl-gentiobiose and sinapoyl-feruloyl-gentiobiose were enhanced in a dose-dependent manner under UV-B. While UV-B radiation treatments often focus on flavonol aglycones or total flavonols, our investigations were extended to structurally different non-acylated and acylated glycosides of quercetin and kaempferol.
Collapse
Affiliation(s)
- Susanne Neugart
- Leibniz-Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Maini S, Hodgson HL, Krol ES. The UVA and aqueous stability of flavonoids is dependent on B-ring substitution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6966-6976. [PMID: 22715887 DOI: 10.1021/jf3016128] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Flavonols such as kaempferol and quercetin are believed to provide protection against ultraviolet (UV)-induced damage to plants. Recent in vitro studies have examined the ability of flavonols to protect against UV-induced damage to mammalian cells. Stability of flavonols in cell culture media, however, has been problematic, especially for quercetin, one of the most widely studied flavonols. As part of our investigations into the potential for flavonols to protect skin against UV-induced damage, we have determined the stability of a series of flavonols that differ only in the number of substituents on the B-ring. We measured the stability of these flavonols over time to UVA radiation, Dulbecco's modified Eagle's medium (DMEM), and Dulbecco's phosphate-buffered saline (DPBS) using high performance liquid chromatography with UV detection (HPLC-UV). The identification of the breakdown products of flavonols was accomplished by using a hybrid quadrupole linear ion trap mass spectrometer coupled with liquid chromatography. Tandem mass spectrometric analysis (MS/MS) of flavonol photoproducts was confirmed by comparing with the known standard samples. We have determined that flavonol stability decreases with increasing B-ring substitution, suggesting that future investigation of potential photoprotective flavonols will need to be cognizant of this trend.
Collapse
Affiliation(s)
- Sabia Maini
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | |
Collapse
|
39
|
Costa LB, Rangel DEN, Morandi MAB, Bettiol W. Impact of UV-B radiation on Clonostachys rosea germination and growth. World J Microbiol Biotechnol 2012; 28:2497-504. [DOI: 10.1007/s11274-012-1057-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 04/09/2012] [Indexed: 11/30/2022]
|
40
|
Mülazımoğlu İE, Mülazımoğlu AD. Investigation of Sensitivity Against Different Flavonoid Derivatives of Aminophenyl-Modified Glassy Carbon Sensor Electrode and Antioxidant Activities. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-012-9393-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Duncan SE, Chang HH. Implications of light energy on food quality and packaging selection. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 67:25-73. [PMID: 23034114 DOI: 10.1016/b978-0-12-394598-3.00002-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Light energy in the ultraviolet and visible light regions plays a critical role in overall food quality, leading to various degradation and oxidation reactions. Food degradation and oxidation result in the destruction of nutrients and bioactive compounds, the formation of off odors and flavors, the loss of food color, and the formation of toxic substances. Food compounds are sensitive to various light wavelengths. Understanding the effect that specific light wavelengths have on food compounds will allow the development of novel food packaging materials that block the most damaging light wavelengths to photostability of specific food compounds. Future research should focus more specifically on the effect of specific light wavelengths on the quality of specific food products, as there is limited published information on this particular topic. This information also can be directly related to the selection of food packaging materials to retain both high quality and visual clarity of food products exposed to light.
Collapse
Affiliation(s)
- Susan E Duncan
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | | |
Collapse
|
42
|
Lin C, Yu Y, Zhao HG, Yang A, Yan H, Cui Y. Combination of quercetin with radiotherapy enhances tumor radiosensitivity in vitro and in vivo. Radiother Oncol 2011; 104:395-400. [PMID: 22119371 DOI: 10.1016/j.radonc.2011.10.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 09/22/2011] [Accepted: 10/29/2011] [Indexed: 10/15/2022]
Abstract
PURPOSE Quercetin (3, 3,' 4', 5, 7 - five-flavonoids) is one of the main components of flavonoids, with multifunctions on immune function, anti-oxidation, anti-viral, anti-inflammatory, and cardiovascular protection. We hypothesize that a combination of quercetin with radiation would increase tumor radiosensitivity. To test this hypothesis, we conducted in vitro and in vivo studies. METHODS AND MATERIALS The in vitro radio-sensitization activity of quercetin was tested in DLD1, HeLa and MCF-7 tumor cell lines by colony formation assays. The in vivo activity was assessed in the DLD-1 human colorectal cancer xenograft model in nude mice. Mechanistic studies were conducted in several cell lines using Western blot analysis and immunofluorescence microscopy. RESULTS We found that quercetin can significantly increase tumor radiosensitivity both in vitro and in vivo. The in vitro Sensitizing Enhancement Ratios in DLD1, HeLa and MCF-7 cells were 1.87, 1.65, and 1.74, respectively. The mean doubling time of tumor xenografts was significantly increased in irradiated mice treated with quercetin. At the cellular level, exposure to quercetin resulted in prolonged DNA repair. The mechanistic studies demonstrated that quercetin induced radio-sensitization is through inhibiting the ATM kinase, one of the critical DNA damage response proteins. CONCLUSION We demonstrate both in vitro and in vivo evidence that combination of quercetin with radiotherapy can enhance tumor radiosensitivity by targeting the ATM-mediated pathway in response to radiation.
Collapse
Affiliation(s)
- Chenghe Lin
- Department of Nuclear Medicine, Jilin University, Changchun, China.
| | | | | | | | | | | |
Collapse
|
43
|
Wang RE, Hunt CR, Chen J, Taylor JS. Biotinylated quercetin as an intrinsic photoaffinity proteomics probe for the identification of quercetin target proteins. Bioorg Med Chem 2011; 19:4710-20. [PMID: 21798748 PMCID: PMC3397245 DOI: 10.1016/j.bmc.2011.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/01/2011] [Accepted: 07/02/2011] [Indexed: 01/01/2023]
Abstract
Quercetin is a flavonoid natural product, that is, found in many foods and has been found to have a wide range of medicinal effects. Though a number of quercetin binding proteins have been identified, there has been no systematic approach to identifying all potential targets of quercetin. We describe an O7-biotinylated derivative of quercetin (BioQ) that can act as a photoaffinity proteomics reagent for capturing quercetin binding proteins, which can then be identified by LC-MS/MS. BioQ was shown to inhibit heat induction of HSP70 with almost the same efficiency as quercetin, and to both inhibit and photocrosslink to CK2 kinase, a known target of quercetin involved in activation of the heat shock transcription factor. BioQ was also able to pull down a number of proteins from unheated and heated Jurkat cells following UV irradiation that could be detected by both silver staining and Western blot analysis with an anti-biotin antibody. Analysis of the protein bands by trypsinization and LC-MS/MS led to the identification of heat shock proteins HSP70 and HSP90 as possible quercetin target proteins, along with ubiquitin-activating enzyme, a spliceosomal protein, RuvB-like 2 ATPases, and eukaryotic translation initiation factor 3. In addition, a mitochondrial ATPase was identified that has been previously shown to be a target of quercetin. Most of the proteins identified have also been previously suggested to be potential anticancer targets, suggesting that quercetin's antitumor activity may be due to its ability to inhibit multiple target proteins.
Collapse
Affiliation(s)
- Rongsheng E. Wang
- Department of Chemistry, Washington University, St Louis, MO, 63130, USA
| | - Clayton R. Hunt
- Department of Radiation Oncology, School of Medicine, Washington University, St Louis, MO, 63108, USA
| | - Jiawei Chen
- Department of Chemistry, Washington University, St Louis, MO, 63130, USA
- Center for Biomedical and Bioorganic Mass Spectrometry, Washington University, St Louis, MO, 63130, USA
| | | |
Collapse
|
44
|
Kim W, Seong KM, Youn B. Phenylpropanoids in radioregulation: double edged sword. Exp Mol Med 2011; 43:323-33. [PMID: 21483230 PMCID: PMC3128910 DOI: 10.3858/emm.2011.43.6.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2011] [Indexed: 11/04/2022] Open
Abstract
Radiotherapy, frequently used for treatment of solid tumors, carries two main obstacles including acquired radioresistance in cancer cells during radiotherapy and normal tissue injury. Phenylpropanoids, which are naturally occurring phytochemicals found in plants, have been identified as potential radiotherapeutic agents due to their anti-cancer activity and relatively safe levels of cytotoxicity. Various studies have proposed that these compounds could not only sensitize cancer cells to radiation resulting in inhibition of growth and cell death but also protect normal cells against radiation-induced damage. This review is intended to provide an overview of recent investigations on the usage of phenylpropanoids in combination with radiotherapy in cancer treatment.
Collapse
Affiliation(s)
- Wanyeon Kim
- College of Natural Sciences Department of Biological Sciences Pusan National University Busan 609-735, Korea
| | | | | |
Collapse
|
45
|
Duckstein SM, Stintzing FC. Investigation on the phenolic constituents in Hamamelis virginiana leaves by HPLC-DAD and LC-MS/MS. Anal Bioanal Chem 2011; 401:677-88. [DOI: 10.1007/s00216-011-5111-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/09/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
|