1
|
El Ouardi M, Tamarit L, Vayá I, Miranda MA, Andreu I. Cellular damage photosensitized by dasatinib, radical-mediated mechanisms and photoprotection in reconstructed epidermis. Free Radic Biol Med 2024; 225:24-34. [PMID: 39313013 DOI: 10.1016/j.freeradbiomed.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Dasatinib (DAS) is an anticancer drug employed in the treatment of certain hematological malignancies. Although DAS has been mainly developed for oral administration, it has recently garnered attention for its possible topical application. The use of topical drugs can cause photosensitivity, which is not listed as an adverse reaction for DAS. Since DAS absorbs UVA, it could potentially induce photosensitivity reactions and lead to oxidative damage to cellular targets. This study aims to investigate whether DAS exhibits phototoxic reactions on primary cellular targets in both solution and artificial skin, mimicking topical drug administration. It also examines the potential generation of highly reactive intermediates like organic radicals and ROS, which could trigger photosensitivity reactions. Upon DAS irradiation in the UVA region, the first transient species detected was the diradicaloid triplet excited state (3DAS∗) with an absorption maximum of around 490 nm, which was quenched by oxygen to produce singlet oxygen. Quenching experiments with linoleic acid and 3-methylindole indicated that radical-mediated (Type I) photosensitized damage to lipids and proteins is possible. However, the lack of triplet quenching with guanosine suggests that the Type II mechanism also plays a role in the photooxidation of biomolecules. Accordingly, the neutral red uptake phototoxicity test (photoirritation factor of 5) and the comet assay, revealed that this drug is photo(geno)toxic to cells. Moreover, investigations on lipid photoperoxidation, and protein and DNA photooxidation strongly support that different cellular compartments are potential targets for DAS-induced phototoxicity. Regarding its potential application in topical dermatological formulations, an O/W emulsion of DAS was prepared and tested in reconstructed human epidermis, and a significant phototoxicity was also demonstrated. Fortunately, this undesired side effect disappeared upon formulation of DAS along with a sunscreen. Thus, for topical treatments, the photosensitivity reactions induced by DAS can be prevented by using formulations including appropriate UVA filters.
Collapse
Affiliation(s)
- Meryem El Ouardi
- Departamento de Química-Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain; Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari I Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Lorena Tamarit
- Departamento de Química-Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain; Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari I Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Ignacio Vayá
- Departamento de Química-Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain; Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari I Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Miguel A Miranda
- Departamento de Química-Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain; Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari I Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Inmaculada Andreu
- Departamento de Química-Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain; Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari I Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain.
| |
Collapse
|
2
|
Szewczyk G, Mokrzyński K, Sarna T. Generation of singlet oxygen inside living cells: correlation between phosphorescence decay lifetime, localization and outcome of photodynamic action. Photochem Photobiol Sci 2024:10.1007/s43630-024-00620-8. [PMID: 39237687 DOI: 10.1007/s43630-024-00620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
Photodynamic therapy (PDT) is a promising alternative treatment for localized lesions and infections, utilizing reactive oxygen species (ROS) generated by photosensitizers (PS) upon light activation. Singlet oxygen (1O2) is a key ROS responsible for photodynamic damage. However, the effectiveness of PS in biological systems may not correlate with the efficiency of singlet oxygen generation in homogeneous solutions. This study investigated singlet oxygen generation and its decay in various cellular microenvironments using liposome and ARPE-19 cell models. Rose Bengal (RB), methylene blue (MB), and protoporphyrin IX (PpIX) were employed as selected PS. Lifetimes of singlet oxygen generated by the selected photosensitizers in different cellular compartments varied, indicating different quenching rates with singlet oxygen. RB, located near cell membranes, exhibited the highest phototoxicity and lipid/protein peroxidation, followed by PpIX, while MB showed minimal cytotoxicity in similar conditions. Singlet oxygen decay lifetimes provide insights into PS localization and potential phototoxicity, highlighting the importance of the lipid microenvironment in PDT efficacy, providing useful screening method prior to in vivo applications.
Collapse
Affiliation(s)
- Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Krystian Mokrzyński
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
3
|
Balukova A, Bokea K, Barber PR, Ameer-Beg SM, MacRobert AJ, Yaghini E. Cellular Imaging and Time-Domain FLIM Studies of Meso-Tetraphenylporphine Disulfonate as a Photosensitising Agent in 2D and 3D Models. Int J Mol Sci 2024; 25:4222. [PMID: 38673807 PMCID: PMC11050357 DOI: 10.3390/ijms25084222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Fluorescence lifetime imaging (FLIM) and confocal fluorescence studies of a porphyrin-based photosensitiser (meso-tetraphenylporphine disulfonate: TPPS2a) were evaluated in 2D monolayer cultures and 3D compressed collagen constructs of a human ovarian cancer cell line (HEY). TPPS2a is known to be an effective model photosensitiser for both Photodynamic Therapy (PDT) and Photochemical Internalisation (PCI). This microspectrofluorimetric study aimed firstly to investigate the uptake and subcellular localisation of TPPS2a, and evaluate the photo-oxidative mechanism using reactive oxygen species (ROS) and lipid peroxidation probes combined with appropriate ROS scavengers. Light-induced intracellular redistribution of TPPS2a was observed, consistent with rupture of endolysosomes where the porphyrin localises. Using the same range of light doses, time-lapse confocal imaging permitted observation of PDT-induced generation of ROS in both 2D and 3D cancer models using fluorescence-based ROS together with specific ROS inhibitors. In addition, the use of red light excitation of the photosensitiser to minimise auto-oxidation of the probes was investigated. In the second part of the study, the photophysical properties of TPPS2a in cells were studied using a time-domain FLIM system with time-correlated single photon counting detection. Owing to the high sensitivity and spatial resolution of this system, we acquired FLIM images that enabled the fluorescence lifetime determination of the porphyrin within the endolysosomal vesicles. Changes in the lifetime dynamics upon prolonged illumination were revealed as the vesicles degraded within the cells.
Collapse
Affiliation(s)
- Andrea Balukova
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK; (A.B.); (K.B.)
| | - Kalliopi Bokea
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK; (A.B.); (K.B.)
| | - Paul R. Barber
- Department of Oncology, UCL Cancer Institute, University College London, London WC1E 6DD, UK;
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK;
| | - Simon M. Ameer-Beg
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK;
| | - Alexander J. MacRobert
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK; (A.B.); (K.B.)
| | - Elnaz Yaghini
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK; (A.B.); (K.B.)
| |
Collapse
|
4
|
Hovan A, Pevna V, Huntosova V, Miskovsky P, Bánó G. Singlet oxygen lifetime changes in dying glioblastoma cells. Photochem Photobiol 2024; 100:159-171. [PMID: 37357990 DOI: 10.1111/php.13828] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
Time-resolved phosphorescence detection was employed to determine the lifetime of singlet oxygen in live cells. Using hypericin as a photosensitizer, singlet oxygen was generated in U87MG glioblastoma cells. The phosphorescence of singlet oxygen was detected in aqueous cell suspensions following pulsed laser excitation. Our goal was to eliminate or reduce the problems associated with lifetime measurements in water-based cell suspensions. The apparatus enabled simultaneous singlet oxygen phosphorescence and transient absorption measurements, reducing uncertainty in lifetime estimation. The changes in singlet oxygen lifetime were observed during early and late apoptosis induced by photodynamic action. Our findings show that the effective lifetime of singlet oxygen in the intracellular space of the studied glioblastoma cells is 0.4 μs and increases to 1.5 μs as apoptosis progresses. Another group of hypericin, presumably located in the membrane blebs and the plasma membrane of apoptotic cells, generates singlet oxygen with a lifetime of 1.9 μs.
Collapse
Affiliation(s)
- Andrej Hovan
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Košice, Slovak Republic
| | - Viktoria Pevna
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Košice, Slovak Republic
| | - Veronika Huntosova
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Košice, Slovak Republic
| | - Pavol Miskovsky
- Cassovia New Industry Cluster, Košice, Slovak Republic
- SAFTRA Photonics Ltd., Košice, Slovak Republic
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Košice, Slovak Republic
| |
Collapse
|
5
|
Scanavachi G, Kinoshita K, Tsubone TM, Itri R. Dynamic photodamage of red blood cell induced by CisDiMPyP porphyrin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112754. [PMID: 37451154 DOI: 10.1016/j.jphotobiol.2023.112754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/18/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
It is well-known that oxidative damage in red blood cell (RBC) usually causes morphological changes and increased membrane rigidity. Although many studies have focused on investigating how RBC responds to a photodynamic stimulus, the intermediate steps between membrane damage and hemolysis are not reported. To give a comprehensive insight into changes of RBC membrane property under different oxidative damage levels, we employed the photoactivation of CisDiMPyP porphyrin that primarily generates singlet oxygen 1O2 as oxidant species. We found that there were distinguishable characteristic damages depending on the 1O2 flux over the membrane, in a way that each impact of photooxidative damage was categorized under three damage levels: mild (maintaining the membrane morphology and elasticity), moderate (membrane elongation and increased membrane elasticity) and severe (wrinkle-like deformation and hemolysis). When sodium azide (NaN3) was used as a singlet oxygen quencher, delayed cell membrane alterations and hemolysis were detected. The delay times showed that 1O2 indeed plays a key role that causes RBC photooxidation by CisDiMPyP. We suggest that the sequence of morphological changes (RBC discoid area expansion, wrinkle-like patterns, and hemolysis) under photooxidative damage occurs due to damage to the lipid membrane and cytoskeletal network proteins.
Collapse
Affiliation(s)
- Gustavo Scanavachi
- Institute of Physics, University of São Paulo, São Paulo, Brazil; Department of Cell Biology, Harvard Medical School, Program in Cellular and Molecular Medicine (PCMM), Boston Children's Hospital, Boston, MA 02115, United States
| | - Koji Kinoshita
- Institute of Physics, University of São Paulo, São Paulo, Brazil; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Biological Chemistry and Molecular Pharmacology (BCMP), Harvard Medical School, Program in Cellular and Molecular Medicine (PCMM), Boston Children's Hospital, Boston, MA 02115, United States.
| | - Tayana M Tsubone
- Institute of Physics, University of São Paulo, São Paulo, Brazil; Institute of Chemistry, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Saeed HK, Jarman PJ, Sreedharan S, Mowll R, Auty AJ, Chauvet AAP, Smythe CGW, de la Serna JB, Thomas JA. From Chemotherapy to Phototherapy - Changing the Therapeutic Action of a Metallo-Intercalating Ru II -Re I Luminescent System by Switching its Sub-Cellular Location. Chemistry 2023; 29:e202300617. [PMID: 37013945 PMCID: PMC10946911 DOI: 10.1002/chem.202300617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/05/2023]
Abstract
The synthesis of a new heterodinuclear ReI RuII metallointercalator containing RuII (dppz) and ReI (dppn) moieties is reported. Cell-free studies reveal that the complex has similar photophysical properties to its homoleptic M(dppz) analogue and it also binds to DNA with a similar affinity. However, the newly reported complex has very different in-cell properties to its parent. In complete contrast to the homoleptic system, the RuII (dppz)/ReI (dppn) complex is not intrinsically cytotoxic but displays appreciable phototoxic, despite both complexes displaying very similar quantum yields for singlet oxygen sensitization. Optical microscopy suggests that the reason for these contrasting biological effects is that whereas the homoleptic complex localises in the nuclei of cells, the RuII (dppz)/ReI (dppn) complex preferentially accumulates in mitochondria. These observations illustrate how even small structural changes in metal based therapeutic leads can modulate their mechanism of action.
Collapse
Affiliation(s)
- Hiwa K. Saeed
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Paul J. Jarman
- Department of Biomedical ScienceUniversity of SheffieldSheffieldS10 2TNUK
| | - Sreejesh Sreedharan
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
- School of Human ScienceUniversity of DerbyDerbyDE22 1GBUK
| | - Rachel Mowll
- Department of Biomedical ScienceUniversity of SheffieldSheffieldS10 2TNUK
| | | | | | - Carl G. W. Smythe
- Department of Biomedical ScienceUniversity of SheffieldSheffieldS10 2TNUK
| | - Jorge Bernardino de la Serna
- Faculty of MedicineNational Heart and Lung InstituteImperial CollegeLondonSW7 2AZUK
- Central Laser FacilityRutherford Appleton LaboratoryMRC-Research Complex at Harwell Science and Technology Facilities CouncilHarwellOX11 0FAUK
| | - Jim A. Thomas
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| |
Collapse
|
7
|
Hackbarth S, Gao S, Šubr V, Lin L, Pohl J, Etrych T, Fang J. Singlet Oxygen In Vivo: It Is All about Intensity-Part 2. J Pers Med 2023; 13:781. [PMID: 37240951 PMCID: PMC10222680 DOI: 10.3390/jpm13050781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Recently, we reported induced anoxia as a limiting factor for photodynamic tumor therapy (PDT). This effect occurs in vivo if the amount of generated singlet oxygen that undergoes chemical reactions with cellular components exceeds the local oxygen supply. The amount of generated singlet oxygen depends mainly on photosensitizer (PS) accumulation, efficiency, and illumination intensity. With illumination intensities above a certain threshold, singlet oxygen is limited to the blood vessel and the nearest vicinity; lower intensities allow singlet oxygen generation also in tissue which is a few cell layers away from the vessels. While all experiments so far were limited to light intensities above this threshold, we report experimental results for intensities at both sides of the threshold for the first time, giving proof for the described model. Using time-resolved optical detection in NIR, we demonstrate characteristic, illumination intensity-dependent changes in signal kinetics of singlet oxygen and photosensitizer phosphorescence in vivo. The described analysis allows for better optimization and coordination of PDT drugs and treatment, as well as new diagnostic methods based on gated PS phosphorescence, for which we report a first in vivo feasibility test.
Collapse
Affiliation(s)
- Steffen Hackbarth
- Institute of Physics, Photobiophysics, Humboldt University of Berlin, Newtonstr. 15, 12489 Berlin, Germany; (L.L.); (J.P.)
| | - Shanghui Gao
- Laboratory of Microbiology and Oncology, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan; (S.G.)
| | - Vladimír Šubr
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic; (V.Š.)
| | - Lisheng Lin
- Institute of Physics, Photobiophysics, Humboldt University of Berlin, Newtonstr. 15, 12489 Berlin, Germany; (L.L.); (J.P.)
- Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Jakob Pohl
- Institute of Physics, Photobiophysics, Humboldt University of Berlin, Newtonstr. 15, 12489 Berlin, Germany; (L.L.); (J.P.)
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic; (V.Š.)
| | - Jun Fang
- Laboratory of Microbiology and Oncology, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan; (S.G.)
| |
Collapse
|
8
|
Garcia-Lainez G, El Ouardi M, Moreno A, Lence E, González-Bello C, Miranda MA, Andreu I. Singlet oxygen and radical-mediated mechanisms in the oxidative cellular damage photosensitized by the protease inhibitor simeprevir. Free Radic Biol Med 2023; 194:42-51. [PMID: 36375737 DOI: 10.1016/j.freeradbiomed.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Hepatitis C, a liver inflammation caused by the hepatitis C virus (HCV), is treated with antiviral drugs. In this context, simeprevir (SIM) is an NS3/4A protease inhibitor used in HCV genotypes 1 and 4. It is orally administered and achieves high virological cure rates. Among adverse reactions associated with SIM treatment, photosensitivity reactions have been reported. In the present work, it is clearly shown that SIM is markedly phototoxic, according to the in vitro NRU assay using BALB/c 3T3 mouse fibroblast. This result sheds light on the nature of the photosensitivity reactions induced by SIM in HCV patients, suggesting that porphyrin elevation in patients treated with SIM may not be the only mechanism responsible for SIM-associated photosensitivity. Moreover, lipid photoperoxidation and protein photooxidation assays, using human skin fibroblasts (FSK) and human serum albumin (HSA), respectively, reveal the capability of this drug to promote photodamage to cellular membranes. Also, DNA photo lesions induced by SIM are noticed through comet assay in FSK cells. Photochemical and photobiological studies on the mechanism of SIM-mediated photodamage to biomolecules indicate that the key transient species generated upon SIM irradiation is the triplet excited state. This species is efficiently quenched by oxygen giving rise to singlet oxygen, which is responsible for the oxidation of lipids and DNA (Type II mechanism). In the presence of HSA, the photobehavior is dominated by binding to site 3 of the protein, to give a stable SIM@HSA complex. Inside the complex, quenching of the triplet excited state is less efficient, which results in a longer triplet lifetime and in a decreased singlet oxygen formation. Hence, SIM-mediated photooxidation of the protein is better explained through a radical (Type I) mechanism.
Collapse
Affiliation(s)
- Guillermo Garcia-Lainez
- Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Meryem El Ouardi
- Departamento de Química-Instituto de Tecnología Química UPV-CSIC. Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación UPV- IIS La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Alejandro Moreno
- Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782, Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782, Santiago de Compostela, Spain
| | - Miguel A Miranda
- Departamento de Química-Instituto de Tecnología Química UPV-CSIC. Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación UPV- IIS La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Inmaculada Andreu
- Departamento de Química-Instituto de Tecnología Química UPV-CSIC. Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación UPV- IIS La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain.
| |
Collapse
|
9
|
Jia S, Sletten EM. Spatiotemporal Control of Biology: Synthetic Photochemistry Toolbox with Far-Red and Near-Infrared Light. ACS Chem Biol 2022; 17:3255-3269. [PMID: 34516095 PMCID: PMC8918031 DOI: 10.1021/acschembio.1c00518] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The complex network of naturally occurring biological pathways motivates the development of new synthetic molecules to perturb and/or detect these processes for fundamental research and clinical applications. In this context, photochemical tools have emerged as an approach to control the activity of drug or probe molecules at high temporal and spatial resolutions. Traditional photochemical tools, particularly photolabile protecting groups (photocages) and photoswitches, rely on high-energy UV light that is only applicable to cells or transparent model animals. More recently, such designs have evolved into the visible and near-infrared regions with deeper tissue penetration, enabling photocontrol to study biology in tissue and model animal contexts. This Review highlights recent developments in synthetic far-red and near-infrared photocages and photoswitches and their current and potential applications at the interface of chemistry and biology.
Collapse
Affiliation(s)
- Shang Jia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
10
|
Xu Y, Liu R, Yang H, Qu S, Qian L, Dai Z. Enhancing Photodynamic Therapy Efficacy Against Cancer Metastasis by Ultrasound-Mediated Oxygen Microbubble Destruction to Boost Tumor-Targeted Delivery of Oxygen and Renal-Clearable Photosensitizer Micelles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25197-25208. [PMID: 35615986 DOI: 10.1021/acsami.2c06655] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hypoxic tumor microenvironment and nonspecific accumulation of photosensitizers are two key factors that limit the efficacy of photodynamic therapy (PDT). Herein, a strategy of oxygen microbubbles (MBs) boosting photosensitizer micelles is developed to enhance PDT efficacy and inhibit tumor metastasis by self-assembling renal-clearable ultrasmall poly(ethylene glycol)-modified protoporphyrin IX micelles (PPM) and perfluoropentane (PFP)-doped oxygen microbubbles (OPMBs), followed by ultrasound imaging-guided OPMB destruction to realize the tumor-targeted delivery of PPM and oxygen in tumor. Doping PFP into oxygen MBs increases the production of MBs and stability of oxygen MBs, allowing for persistent circulation in blood. Following co-injection, destruction of OPMBs with ultrasound leads to ∼2.2-fold increase of tumor-specific PPM accumulation. Furthermore, the burst release of oxygen by MB destruction improves tumor oxygenation from 22 to 50%, which not only raises the production of singlet oxygen but also significantly reduces the expression of hypoxia-inducible factor-1 alpha and related genes, thus preventing angiogenesis and epithelial-mesenchymal transition. It is verified that this strategy effectively eradicates orthotopic breast cancer and inhibits lung metastasis. Furthermore, the survival rate of mice bearing orthotopic pancreatic tumor is significantly extended by such interventional PDT strategy. Therefore, the combination of ultrasmall PPM and OPMBs represents a simple but effective strategy in overcoming the limitations of PDT.
Collapse
Affiliation(s)
- Yunxue Xu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Renfa Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Huanyu Yang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Shuai Qu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
11
|
Islayem D, Fakih FB, Lee S. Comparison of Colorimetric Methods to Detect Malondialdehyde, A Biomarker of Reactive Oxygen Species. ChemistrySelect 2022. [DOI: 10.1002/slct.202103627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Deema Islayem
- Department of Biomedical Engineering Khalifa University of Science and Technology Abu Dhabi Campus, PO Box 127788 Abu Dhabi United Arab Emirates
| | - Fatima Ba Fakih
- Department of Biomedical Engineering Khalifa University of Science and Technology Abu Dhabi Campus, PO Box 127788 Abu Dhabi United Arab Emirates
- Healthcare Engineering Innovation Center Khalifa University of Science and Technology Abu Dhabi Campus, PO Box 127788 Abu Dhabi United Arab Emirates
| | - Sungmun Lee
- Department of Biomedical Engineering Khalifa University of Science and Technology Abu Dhabi Campus, PO Box 127788 Abu Dhabi United Arab Emirates
- Healthcare Engineering Innovation Center Khalifa University of Science and Technology Abu Dhabi Campus, PO Box 127788 Abu Dhabi United Arab Emirates
- Khalifa University's Center for Biotechnology Khalifa University of Science and Technology Abu Dhabi Campus, PO Box 127788 Abu Dhabi United Arab Emirates
| |
Collapse
|
12
|
Scholz M, Croizat G, Pšenčík J, Dědic R, Nonell S, Wagnieres G. Understanding delayed fluorescence and triplet decays of Protoporphyrin IX under hypoxic conditions. Photochem Photobiol Sci 2021; 20:843-857. [PMID: 34216374 DOI: 10.1007/s43630-021-00044-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/16/2021] [Indexed: 01/24/2023]
Abstract
Photosensitizers of singlet oxygen exhibit three main types of reverse intersystem-crossing (RISC): thermally activated, triplet-triplet annihilation, and singlet oxygen feedback. RISC can be followed by delayed fluorescence (DF) emission, which can provide important information about the excited state dynamics in the studied system. An excellent model example is a widely used clinical photosensitizer Protoporphyrin IX, which manifests all three mentioned types of RISC and DF. Here, we estimated rate constants of individual RISC and DF processes in Protoporphyrin IX in dimethylformamide, and we showed how these affect triplet decays and DF signals under diverse experimental conditions, such as a varying oxygen concentration or excitation intensity. This provided a basis for a general discussion on guidelines for a more precise analysis of long-lived signals. Furthermore, it has been found that PpIX photoproducts and potential transient excited complexes introduce a new overlapping delayed luminescence spectral band with a distinct lifetime. These findings are important for design of more accurate biological oxygen sensors and assays based on DF and triplet lifetime.
Collapse
Affiliation(s)
- Marek Scholz
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic. .,Center for Imaging Medicine, Thayer School of Engineering, Dartmouth College, Hanover, USA. .,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Gauthier Croizat
- Laboratory for functional and metabolic imaging, LIFMET, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Jakub Pšenčík
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| | - Roman Dědic
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Catalunya, Spain
| | - Georges Wagnieres
- Laboratory for functional and metabolic imaging, LIFMET, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
13
|
Martínez SR, Ibarra LE, Ponzio RA, Forcone MV, Wendel AB, Chesta CA, Spesia MB, Palacios RE. Photodynamic Inactivation of ESKAPE Group Bacterial Pathogens in Planktonic and Biofilm Cultures Using Metallated Porphyrin-Doped Conjugated Polymer Nanoparticles. ACS Infect Dis 2020; 6:2202-2213. [PMID: 32538610 DOI: 10.1021/acsinfecdis.0c00268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photodynamic inactivation (PDI) protocols using photoactive metallated porphyrin-doped conjugated polymer nanoparticles (CPNs) and blue light were developed to eliminate multidrug-resistant pathogens. CPNs-PDI protocols using varying particle concentrations and irradiation doses were tested against nine pathogenic bacterial strains including antibiotic-resistant bacteria of the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens group. The bactericidal effect was achieved in methicillin-resistant Staphylococus aureus (S. aureus) strains using low light doses (9.6-14.4 J/cm2), while Gram-negative bacteria required a higher light dose (28.8 J/cm2). The bacteria-CPN interaction was studied through flow cytometry, taking advantage of the intrinsic CPN fluorescence, demonstrating that CPNs efficiently bind to the bacterial envelope. Finally, the performance of CPNs-PDI was explored in biofilms; good antibiofilm ability and almost complete eradication were observed for S. aureus and Escherichia coli biofilms, respectively, using confocal microscopy. Overall, we demonstrated that CPNs-PDI is an efficient tool not only to kill superbugs as sessile cells but also to disrupt and eradicate biofilms of highly relevant pathogenic bacterial species.
Collapse
Affiliation(s)
- Sol R. Martínez
- Instituto de Investigaciones en Tecnologı́as Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rı́o Cuarto, Consejo Nacional de Investigaciones Cientı́ficas y Tecnológicas (CONICET), Rı́o Cuarto, Córdoba X5804BYA, Argentina
| | - Luis E. Ibarra
- Instituto de Biotecnologı́a Ambiental y Salud (INBIAS), Universidad Nacional de Rı́o Cuarto, Consejo Nacional de Investigaciones Cientı́ficas y Tecnológicas (CONICET), Rı́o Cuarto, Córdoba X5804BYA, Argentina
| | - Rodrigo A. Ponzio
- Instituto de Investigaciones en Tecnologı́as Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rı́o Cuarto, Consejo Nacional de Investigaciones Cientı́ficas y Tecnológicas (CONICET), Rı́o Cuarto, Córdoba X5804BYA, Argentina
| | | | | | - Carlos A. Chesta
- Instituto de Investigaciones en Tecnologı́as Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rı́o Cuarto, Consejo Nacional de Investigaciones Cientı́ficas y Tecnológicas (CONICET), Rı́o Cuarto, Córdoba X5804BYA, Argentina
| | - Mariana B. Spesia
- Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Rı́o Cuarto, Consejo Nacional de Investigaciones Cientı́ficas y Tecnológicas (CONICET), Rı́o Cuarto, Córdoba X5804BYA, Argentina
| | - Rodrigo E. Palacios
- Instituto de Investigaciones en Tecnologı́as Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rı́o Cuarto, Consejo Nacional de Investigaciones Cientı́ficas y Tecnológicas (CONICET), Rı́o Cuarto, Córdoba X5804BYA, Argentina
| |
Collapse
|
14
|
Li X, Shi Z, Wu J, Wu J, He C, Hao X, Duan C. Lighting up metallohelices: from DNA binders to chemotherapy and photodynamic therapy. Chem Commun (Camb) 2020; 56:7537-7548. [PMID: 32573609 DOI: 10.1039/d0cc02194f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The design of novel agents that specifically target DNA and interrupt its normal biological processes is an attractive goal in drug design. Among the promising metallodrugs, metal-directed self-assembled metallohelices with defined three-dimensional stereochemical structures display unique structure-inherent and unprecedented noncovalent targeting abilities towards DNA, resulting in excellent anticancer or antibiotic activities. A newly burgeoning hotspot is focusing on lighting them up by embedding luminescent metal ions as the vertices. The photoactive metallohelices that combine strong interactions toward DNA targets and efficient 1O2 quantum yield may provide new motivation in diagnostic and photodynamic therapy (PDT) areas. This perspective focuses on research progress on metallohelices as DNA binders and chemotherapeutic agents, and highlights recent advances in fabricating luminescent examples for PDT. The relative assembly strategies are also discussed and compared. Finally, perspectives on the future development of the lit-up metallohelices are presented.
Collapse
Affiliation(s)
- Xuezhao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Li X, Wu J, Wang L, He C, Chen L, Jiao Y, Duan C. Mitochondrial‐DNA‐Targeted Ir
III
‐Containing Metallohelices with Tunable Photodynamic Therapy Efficacy in Cancer Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xuezhao Li
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Jinguo Wu
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Lei Wang
- Department of PharmacyDalian University of Technology Dalian 116012 China
| | - Cheng He
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Liyong Chen
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Yang Jiao
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Chunying Duan
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| |
Collapse
|
16
|
Li X, Wu J, Wang L, He C, Chen L, Jiao Y, Duan C. Mitochondrial‐DNA‐Targeted Ir
III
‐Containing Metallohelices with Tunable Photodynamic Therapy Efficacy in Cancer Cells. Angew Chem Int Ed Engl 2020; 59:6420-6427. [DOI: 10.1002/anie.201915281] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Xuezhao Li
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Jinguo Wu
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Lei Wang
- Department of PharmacyDalian University of Technology Dalian 116012 China
| | - Cheng He
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Liyong Chen
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Yang Jiao
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| | - Chunying Duan
- State Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116012 China
| |
Collapse
|
17
|
Scholz M, Gunn JR, Luke GP, Pogue BW. Imaging of singlet oxygen feedback delayed fluorescence and lysosome permeabilization in tumor in vivo during photodynamic therapy with aluminum phthalocyanine. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-14. [PMID: 31920049 PMCID: PMC6951482 DOI: 10.1117/1.jbo.25.6.063806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/12/2019] [Indexed: 05/20/2023]
Abstract
Significance: Singlet oxygen is a key cytotoxic agent in photodynamic therapy (PDT). As such, its imaging is highly desirable, but existing direct imaging methods are still limited by the exceptionally low yield of the luminescence signal. Singlet oxygen feedback delayed fluorescence (SOFDF) of the photosensitizer is a higher yield alternative for indirect measurement of this signal. <p> Aim: The aim was to explore feasibility of SOFDF imaging in vivo in tumor-bearing mice during PDT and investigate how SOFDF images can be transformed into images of singlet oxygen. In addition, we study whether lysosome permeabilization can be visualized through fluorescence lifetime.</p> <p> Approach: Mice were intravenously injected with 2.5 mg/kg of photosensitizer aluminum(III) phthalocyanine tetrasulfonate (AlPcS4) 20 h prior to experiments, having subcutaneous BxPC3 pancreas tumors. Time-resolved delayed fluorescence and prompt fluorescence (PF) were imaged using an intensified time-gated camera with 10-Hz pulsed laser excitation at 690 nm. </p> <p> Results: Delayed emission from AlPcS4 was detected with lifetimes 7 to 11 μs, which was attributed to SOFDF and shown to be oxygen-dependent. Singlet oxygen images were approximated by the ratio of SOFDF/PF at each pixel. SOFDF images of a good quality could be captured within several seconds with a radiant exposure of ∼20 mJ / cm2. In addition, lifetime images of AlPcS4 PF in ns-time domain enabled us to visualize the event of lysosome permeabilization, as the lifetime increased from ∼4.7 to 5.2 ns. </p> <p> Conclusions: Imaging of SOFDF in vivo in mouse tumor during PDT with AlPcS4 is feasible, and it is a promising method for singlet molecular oxygen monitoring. Moreover, the time-gated approach also enables visualization of the lysosome permeabilization that alters the PF lifetime. </p>
Collapse
Affiliation(s)
- Marek Scholz
- Dartmouth College, Thayer School of Engineering, Center for Imaging Medicine, Hanover, New Hampshire, United States
- Address all correspondence to Marek Scholz, E-mail: ; Brian W. Pogue, E-mail:
| | - Jason R. Gunn
- Dartmouth College, Thayer School of Engineering, Center for Imaging Medicine, Hanover, New Hampshire, United States
| | - Geoffrey P. Luke
- Dartmouth College, Thayer School of Engineering, Center for Imaging Medicine, Hanover, New Hampshire, United States
| | - Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Center for Imaging Medicine, Hanover, New Hampshire, United States
- Address all correspondence to Marek Scholz, E-mail: ; Brian W. Pogue, E-mail:
| |
Collapse
|
18
|
Anjum NA, Amreen, Tantray AY, Khan NA, Ahmad A. Reactive oxygen species detection-approaches in plants: Insights into genetically encoded FRET-based sensors. J Biotechnol 2019; 308:108-117. [PMID: 31836526 DOI: 10.1016/j.jbiotec.2019.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
Abstract
The generation of reactive oxygen species (ROS) (and their reaction products) in abiotic stressed plants can be simultaneous. Hence, it is very difficult to establish individual roles of ROS (and their reaction products) in plants particularly under abiotic stress conditions. It is highly imperative to detect ROS (and their reaction products) and ascertain their role in vivo and also to point their optimal level in order to unveil exact relation of ROS (and their reaction products) with the major components of ROS-controlling systems. Förster Resonance Energy Transfer (FRET) technology enables us with high potential for monitoring and quantification of ROS and redox variations, avoiding some of the obstacles presented by small-molecule fluorescent dyes. This paper aims to: (i) introduce ROS and overview ROS-chemistry and ROS-accrued major damages to major biomolecules; (ii) highlight invasive and non-invasive approaches for the detection of ROS (and their reaction products); (iii) appraise literature available on genetically encoded ROS (and their reaction products)-sensors based on FRET technology, and (iv) enlighten so far unexplored aspects in the current context. The studies integrating the outcomes of the FRET-based ROS-detection approaches with OMICS sciences (genetics, genomics, proteomics, and metabolomics) would enlighten major insights into real-time ROS and redox dynamics, and their signaling at cellular and subcellular levels in living cells.
Collapse
Affiliation(s)
- Naser A Anjum
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, U.P., India.
| | - Amreen
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, U.P., India
| | - Aadil Y Tantray
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, U.P., India
| | - Nafees A Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, U.P., India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, U.P., India.
| |
Collapse
|
19
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
20
|
Aliosman M, Angelov I, Mitrev Y, Iliev I, Durmuş M, Mantareva V. Novel Zn(II) phthalocyanine with tyrosine moieties for photodynamic therapy: Synthesis and comparative study of light-associated properties. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.01.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Hackbarth S, Islam W, Fang J, Šubr V, Röder B, Etrych T, Maeda H. Singlet oxygen phosphorescence detection in vivo identifies PDT-induced anoxia in solid tumors. Photochem Photobiol Sci 2019; 18:1304-1314. [DOI: 10.1039/c8pp00570b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extracorporeal measurements through the skin achieve sufficient SNR to analyze 1O2 kinetics and evaluate PDT efficiency.
Collapse
Affiliation(s)
- Steffen Hackbarth
- Photobiophysics
- Institute of Physics
- Humboldt University of Berlin
- 12489 Berlin
- Germany
| | - Waliul Islam
- Department of Microbiology
- Graduate School of Medical Sciences
- Kumamoto University
- Kumamoto 860-8556
- Japan
| | - Jun Fang
- Laboratory of Microbiology and Oncology
- Faculty of Pharmaceutical Sciences
- Sojo University
- Kumamoto 860-0082
- Japan
| | - Vladimír Šubr
- Institute of Macromolecular Chemistry
- Czech Academy of Sciences
- 16206 Prague
- Czech Republic
| | - Beate Röder
- Photobiophysics
- Institute of Physics
- Humboldt University of Berlin
- 12489 Berlin
- Germany
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry
- Czech Academy of Sciences
- 16206 Prague
- Czech Republic
| | - Hiroshi Maeda
- BioDynamics Research Foundation
- Kumamoto 862-0954
- Japan
| |
Collapse
|
22
|
Deng J, Liu F, Wang L, An Y, Gao M, Wang Z, Zhao Y. Hypoxia- and singlet oxygen-responsive chemo-photodynamic Micelles featured with glutathione depletion and aldehyde production. Biomater Sci 2019; 7:429-441. [DOI: 10.1039/c8bm01042k] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Triggered drug release from anti-tumor nanomedicine is an efficient approach to address the dilemma of systemic nanocarrier stability and on-demand drug liberation in tumor sites.
Collapse
Affiliation(s)
- Jian Deng
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Fang Liu
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Lina Wang
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Yang An
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Min Gao
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Zheng Wang
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| |
Collapse
|
23
|
Gao M, Meng X, Guo X, Zhu J, Fan A, Wang Z, Zhao Y. All-active antitumor micelles via triggered lipid peroxidation. J Control Release 2018; 286:381-393. [DOI: 10.1016/j.jconrel.2018.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/14/2018] [Accepted: 08/01/2018] [Indexed: 01/21/2023]
|
24
|
Huang H, Banerjee S, Sadler PJ. Recent Advances in the Design of Targeted Iridium(III) Photosensitizers for Photodynamic Therapy. Chembiochem 2018; 19:1574-1589. [PMID: 30019476 DOI: 10.1002/cbic.201800182] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Huaiyi Huang
- Department of Chemistry; University of Warwick; Gibbet Hill Coventry CV4 7AL UK
| | - Samya Banerjee
- Department of Chemistry; University of Warwick; Gibbet Hill Coventry CV4 7AL UK
| | - Peter J. Sadler
- Department of Chemistry; University of Warwick; Gibbet Hill Coventry CV4 7AL UK
| |
Collapse
|
25
|
Zhang X, Yan Q, Mulatihan DN, Zhu J, Fan A, Wang Z, Zhao Y. Pharmaceutical micelles featured with singlet oxygen-responsive cargo release and mitochondrial targeting for enhanced photodynamic therapy. NANOTECHNOLOGY 2018; 29:255101. [PMID: 29620538 DOI: 10.1088/1361-6528/aabbdb] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The efficacy of nanoparticulate photodynamic therapy is often compromised by the short life time and limited diffusion radius of singlet oxygen as well as uncontrolled intracellular distribution of photosensitizer. It was hypothesized that rapid photosensitizer release upon nanoparticle internalization and its preferred accumulation in mitochondria would address the above problems. Hence, the aim of this study was to engineer a multifunctional micellar nanosystem featured with singlet oxygen-responsive cargo release and mitochondria-targeting. An imidazole-bearing amphiphilic copolymer was employed as the micelle building block to encapsulate triphenylphosphonium-pyropheophorbide a (TPP-PPa) conjugate or PPa. Upon laser irradiation, the singlet oxygen produced by TPP-PPa/PPa oxidized the imidazole moiety to produce hydrophilic urea, leading to micelle disassembly and rapid cargo release. The co-localization analysis showed that the TPP moiety significantly enhanced the photosensitizer uptake by mitochondria, improved mitochondria depolarization upon irradiation, and hence boosted the cytotoxicity in 4T1 cells. The targeting strategy also dramatically reduced the intracellular ATP concentration as a consequence of mitochondria injury. The mitochondria damage was accompanied with the activation of the apoptosis signals (caspase 3 and caspase 9), whose level was directly correlated to the apoptosis extent. The current work provides a facile and robust means to enhance the efficacy of photodynamic therapy.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Li J, Meng X, Deng J, Lu D, Zhang X, Chen Y, Zhu J, Fan A, Ding D, Kong D, Wang Z, Zhao Y. Multifunctional Micelles Dually Responsive to Hypoxia and Singlet Oxygen: Enhanced Photodynamic Therapy via Interactively Triggered Photosensitizer Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17117-17128. [PMID: 29722261 DOI: 10.1021/acsami.8b06299] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanoparticulate antitumor photodynamic therapy (PDT) has been suffering from the limited dose accumulation in tumor. Herein, we report dually hypoxia- and singlet oxygen-responsive polymeric micelles to efficiently utilize the photosensitizer deposited in the disease site and hence facilely improve PDT's antitumor efficacy. Tailored methoxy poly(ethylene glycol)-azobenzene-poly(aspartic acid) copolymer conjugate with imidazole as the side chains was synthesized. The conjugate micelles (189 ± 19 nm) obtained by self-assembly could efficiently load a model photosensitizer, chlorin e6 (Ce6) with a loading of 4.1 ± 0.5% (w/w). The facilitated cellular uptake of micelles was achieved by the triggered azobenzene collapse that provoked poly(ethylene glycol) shedding; rapid Ce6 release was enabled by imidazole oxidation that induced micelle disassembly. In addition, the singlet oxygen-mediated cargo release not only addressed the limited diffusion range and short half-life of singlet oxygen but also decreased the oxygen level, which could in turn enhance internalization and increase the intracellular Ce6 concentration. The hypoxia-induced dePEGylation and singlet oxygen-triggered Ce6 release was demonstrated both in aqueous buffer and in Lewis lung carcinoma (LLC) cells. The cellular uptake study demonstrated that the dually responsive micelles could deliver significantly more Ce6 to the cells, which resulted in a substantially improved cytotoxicity. This concurred well with the superior in vivo antitumor ability of micelles in a LLC tumor-bearing mouse model. This study presented an intriguing nanoplatform to realize interactively triggered photosensitizer delivery and improved antitumor PDT efficacy.
Collapse
Affiliation(s)
- Juanjuan Li
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Xuan Meng
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Jian Deng
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Di Lu
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Xin Zhang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Yanrui Chen
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Jundong Zhu
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Aiping Fan
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | | | | | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
27
|
Meng Z, Zhang L, He Z, Lian H. Mucosal Penetrating Bioconjugate Coated Upconverting Nanoparticles That Integrate Biological Tracking and Photodynamic Therapy for Gastrointestinal Cancer Treatment. ACS Biomater Sci Eng 2018; 4:2203-2212. [DOI: 10.1021/acsbiomaterials.8b00359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Scholz M, Dědic R, Hála J. Microscopic time-resolved imaging of singlet oxygen by delayed fluorescence in living cells. Photochem Photobiol Sci 2018; 16:1643-1653. [PMID: 28936518 DOI: 10.1039/c7pp00132k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Singlet oxygen is a highly reactive species which is involved in a number of processes, including photodynamic therapy of cancer. Its very weak near-infrared emission makes imaging of singlet oxygen in biological systems a long-term challenge. We address this challenge by introducing Singlet Oxygen Feedback Delayed Fluorescence (SOFDF) as a novel modality for semi-direct microscopic time-resolved wide-field imaging of singlet oxygen in biological systems. SOFDF has been investigated in individual fibroblast cells incubated with a well-known photosensitizer aluminium phthalocyanine tetrasulfonate. The SOFDF emission from the cells is several orders of magnitude stronger and much more readily detectable than the very weak near-infrared phosphorescence of singlet oxygen. Moreover, the analysis of SOFDF kinetics enables us to estimate the lifetimes of the involved excited states. Real-time SOFDF images with micrometer spatial resolution and submicrosecond temporal-resolution have been recorded. Interestingly, a steep decrease in the SOFDF intensity after the photodynamically induced release of a photosensitizer from lysosomes has been demonstrated. This effect could be potentially employed as a valuable diagnostic tool for monitoring and dosimetry in photodynamic therapy.
Collapse
Affiliation(s)
- Marek Scholz
- Charles University, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Ke Karlovu 3, 121 16, Prague, The Czech Republic.
| | | | | |
Collapse
|
29
|
Hovan A, Datta S, Kruglik SG, Jancura D, Miskovsky P, Bánó G. Phosphorescence Kinetics of Singlet Oxygen Produced by Photosensitization in Spherical Nanoparticles. Part I. Theory. J Phys Chem B 2018; 122:5147-5153. [DOI: 10.1021/acs.jpcb.8b00658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Sergei G. Kruglik
- Laboratoire Jean Perrin, Sorbonne Universités, UPMC Univ. Paris 6, CNRS UMR 8237, 4 Place Jussieu, 75005 Paris, France
| | | | | | | |
Collapse
|
30
|
Sen P, Yildiz SZ, Atmaca GY, Erdogmus A. Five-nuclear phthalocyanine complex bearing terpyridine zinc complex: Synthesis, and photophysicochemical studies. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The context of this study is based on the synthesis of tetrakis{4-(2-([2,2[Formula: see text]:6[Formula: see text],2[Formula: see text]-terpyridine]Zn(II)-4[Formula: see text]-yl(methyl)amino)ethoxy)}phthalocyaninato zinc (II) (3) bearing four terpyridine-Zn(II) complexes that are directly linked through oxygen bridges to the macrocyclic core in order to create new supramolecular assemblies. The target phthalocyanine (3) was obtained by cyclotetramerization reaction of terpyridine-Zn (II) complex substituted phthalonitrile (2). All novel compounds synthesized in this study were fully characterized by general spectroscopic techniques such as FT-IR, UV-vis, and [Formula: see text]H-NMR, [Formula: see text]C-NMR, elemental analysis and mass spectroscopy. Spectral, photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen production and photodegradation under light irradiation) properties of newly synthesized phthalonitrile (2) and its phthalocyanine derivative (3) as five nuclear phthalocyanine were investigated in DMSO solutions.
Collapse
Affiliation(s)
- Pinar Sen
- Uskudar University, Faculty of Engineering and Natural Sciences, Department of Forensic Science, Turkey
- Sakarya University, Faculty of Arts and Sciences, Department of Chemistry, 54187, Sakarya, Turkey
| | - S. Zeki Yildiz
- Uskudar University, Faculty of Engineering and Natural Sciences, Department of Forensic Science, Turkey
| | - Göknur Yasa Atmaca
- Department of Chemistry, Yildiz Technical University, 34210 Esenler, Istanbul, Turkey
| | - Ali Erdogmus
- Department of Chemistry, Yildiz Technical University, 34210 Esenler, Istanbul, Turkey
| |
Collapse
|
31
|
Müller A, Preuß A, Röder B. Photodynamic inactivation of Escherichia coli - Correlation of singlet oxygen kinetics and phototoxicity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:219-227. [PMID: 29156350 DOI: 10.1016/j.jphotobiol.2017.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 01/22/2023]
Abstract
Photodynamic inactivation (PDI) of bacteria may play a major role in facing the challenge of the ever expanding antibiotic resistances. Here we report about the direct correlation of singlet oxygen luminescence kinetics and phototoxicity in E. coli cell suspension under PDI using the widely applied cationic photosensitizer TMPyP. Through direct access to the microenvironment, the time resolved investigation of singlet oxygen luminescence plays a key role in understanding the photosensitization mechanism and inactivation pathway. Using the homemade set-up for highly sensitive time resolved singlet oxygen luminescence detection, we show that the cationic TMPyP is localized predominantly outside the bacterial cells but in their immediate vicinity prior to photodynamic inactivation. Throughout following light exposure, a clear change in singlet oxygen kinetics indicates a redistribution of photosensitizer molecules to at least one additional microenvironment. We found the signal kinetics mirrored in cell viability measurements of equally treated samples from same overnight cultures conducted in parallel: A significant drop in cell viability of the illuminated samples and stationary viability of dark controls. Thus, for the system investigated in this work - a Gram-negative model bacteria and a well-known PS for its PDI - singlet oxygen kinetics correlates with phototoxicity. This finding suggests that it is well possible to evaluate PDI efficiency directly via time resolved singlet oxygen detection.
Collapse
Affiliation(s)
- Alexander Müller
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Annegret Preuß
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Beate Röder
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany.
| |
Collapse
|
32
|
Li X, Gao M, Xin K, Zhang L, Ding D, Kong D, Wang Z, Shi Y, Kiessling F, Lammers T, Cheng J, Zhao Y. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. J Control Release 2017; 260:12-21. [DOI: 10.1016/j.jconrel.2017.05.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 11/15/2022]
|
33
|
Guo L, Ge J, Liu Q, Jia Q, Zhang H, Liu W, Niu G, Liu S, Gong J, Hackbarth S, Wang P. Versatile Polymer Nanoparticles as Two-Photon-Triggered Photosensitizers for Simultaneous Cellular, Deep-Tissue Imaging, and Photodynamic Therapy. Adv Healthc Mater 2017; 6. [PMID: 28338291 DOI: 10.1002/adhm.201601431] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/23/2017] [Indexed: 11/10/2022]
Abstract
Clinical applications of current photodynamic therapy (PDT) photosensitizers (PSs) are often limited by their absorption in the UV-vis range that possesses limited tissue penetration ability, leading to ineffective therapeutic response for deep-seated tumors. Alternatively, two-photon excited PS (TPE-PS) using NIR light triggered is one the most promising candidates for PDT improvement. Herein, multimodal polymer nanoparticles (PNPs) from polythiophene derivative as two-photon fluorescence imaging as well as two-photon-excited PDT agent are developed. The prepared PNPs exhibit excellent water dispersibility, high photostability and pH stability, strong fluorescence brightness, and low dark toxicity. More importantly, the PNPs also possess other outstanding features including: (1) the high 1 O2 quantum yield; (2) the strong two-photon-induced fluorescence and efficient 1 O2 generation; (3) the specific accumulation in lysosomes of HeLa cells; and (4) the imaging detection depth up to 2100 µm in the mock tissue under two-photon. The multifunctional PNPs are promising candidates as TPE-PDT agent for simultaneous cellular, deep-tissue imaging, and highly efficient in vivo PDT of cancer.
Collapse
Affiliation(s)
- Liang Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Qian Liu
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
- National Center for Nanoscience and Technology Beijing 100190 China
| | - Qingyan Jia
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Hongyan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Guangle Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Sha Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jianru Gong
- National Center for Nanoscience and Technology Beijing 100190 China
| | - Steffen Hackbarth
- Photobiophysik – Singlet Oxygen LabHumboldt‐Universität zu Berlin Berlin 12489 Germany
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
34
|
Belik VP, Gadzhiev IM, Semenova IV, Vasyutinskii OS. Time-resolved spectral analysis of Radachlorin luminescence in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 178:181-184. [PMID: 28187316 DOI: 10.1016/j.saa.2017.01.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 05/16/2023]
Abstract
We report results of spectral- and time-resolved study of Radachlorin photosensitizer luminescence in water in the spectral range of 950-1350nm and for determination of the photosensitizer triplet state and the singlet oxygen lifetimes responsible for singlet oxygen generation and degradation. At any wavelength within the explored spectral range the luminescence decay contained two major contributions: a fast decay at the ns time scale and a slow evolution at the μs time scale. The fast decay was attributed to electric dipole fluorescence transitions in photosensitizer molecules and the slow evolution to intercombination phosphorescence transitions in singlet oxygen and photosensitizer molecules. Relatively high-amplitude ns peak observed at all wavelengths suggests that singlet oxygen monitoring with spectral isolation methods alone, without additional temporal resolution can be controversial. In the applied experimental conditions the total phosphorescence signal at any wavelength contained a contribution from the photosensitizer triplet state decay, while at 1274nm the singlet oxygen phosphorescence dominated. The results obtained can be used for optimization of the methods of singlet oxygen monitoring and imaging.
Collapse
Affiliation(s)
- V P Belik
- Ioffe Institute, Polytekhnicheskaya 26, St.Petersburg 194021, Russia
| | - I M Gadzhiev
- Ioffe Institute, Polytekhnicheskaya 26, St.Petersburg 194021, Russia
| | - I V Semenova
- Ioffe Institute, Polytekhnicheskaya 26, St.Petersburg 194021, Russia
| | - O S Vasyutinskii
- Ioffe Institute, Polytekhnicheskaya 26, St.Petersburg 194021, Russia; Peter the Great St.Petersburg Polytechnic University, Polytekhnicheskaya 29, St.Petersburg 195251, Russia.
| |
Collapse
|
35
|
Pfitzner M, Schlothauer JC, Lin L, Li B, Röder B. 4 Singlet oxygen luminescence imaging. IMAGING IN PHOTODYNAMIC THERAPY 2017. [DOI: 10.1201/9781315278179-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Aliosman M, Göksel M, Mantareva V, Stoineva I, Durmuş M. Tyrosine conjugated zinc(II) phthalocyanine for photodynamic therapy: Synthesis and photophysicochemical properties. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Zhang L, Dong X, Lu D, Liu S, Ding D, Kong D, Fan A, Wang Z, Zhao Y. Controlled ROS production by corannulene: the vehicle makes a difference. Biomater Sci 2017; 5:1236-1240. [DOI: 10.1039/c7bm00221a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vehicle can dramatically influence corannulene's ability in terms of ROS production.
Collapse
Affiliation(s)
- Limei Zhang
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Xiaopeng Dong
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Di Lu
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Sihui Liu
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Science
- Nankai University
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Science
- Nankai University
| | - Aiping Fan
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Zheng Wang
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| |
Collapse
|
38
|
Liu S, Lu D, Wang X, Ding D, Kong D, Wang Z, Zhao Y. Topology dictates function: controlled ROS production and mitochondria accumulation via curved carbon materials. J Mater Chem B 2017; 5:4918-4925. [DOI: 10.1039/c7tb00954b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curvature-induced dipole moment can induce ROS production and mitochondrial accumulation.
Collapse
Affiliation(s)
- Sihui Liu
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
- China
| | - Di Lu
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
- China
| | - Xinchang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Science
- Nankai University
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Science
- Nankai University
| | - Zheng Wang
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
- China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
39
|
Jiang S, Zhu R, He X, Wang J, Wang M, Qian Y, Wang S. Enhanced photocytotoxicity of curcumin delivered by solid lipid nanoparticles. Int J Nanomedicine 2016; 12:167-178. [PMID: 28053531 PMCID: PMC5191853 DOI: 10.2147/ijn.s123107] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Curcumin (Cur) is a promising photosensitizer that could be used in photodynamic therapy. However, its poor solubility and hydrolytic instability limit its clinical use. The aim of the present study was to encapsulate Cur into solid lipid nanoparticles (SLNs) in order to improve its therapeutic activity. The Cur-loaded SLNs (Cur-SLNs) were prepared using an emulsification and low-temperature solidification method. The functions of Cur and Cur-SLNs were studied on the non-small cell lung cancer A549 cells for photodynamic therapy. The results revealed that Cur-SLNs induced ~2.27-fold toxicity higher than free Cur at a low concentration of 15 μM under light excitation, stocking more cell cycle at G2/M phase. Cur-SLNs could act as an efficient drug delivery system to increase the intracellular concentration of Cur and its accumulation in mitochondria; meanwhile, the hydrolytic stability of free Cur could be improved. Furthermore, Cur-SLNs exposed to 430 nm light could produce more reactive oxygen species to induce the disruption of mitochondrial membrane potential. Western blot analysis revealed that Cur-SLNs increased the expression of caspase-3, caspase-9 proteins and promoted the ratio of Bax/Bcl-2. Overall, the results from these studies demonstrated that the SLNs could enhance the phototoxic effects of Cur.
Collapse
Affiliation(s)
- Shan Jiang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University
| | - Rongrong Zhu
- Tenth People's Hospital, School of Life Science and Technology, Tongji University
| | - Xiaolie He
- Tenth People's Hospital, School of Life Science and Technology, Tongji University
| | - Jiao Wang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University
| | - Mei Wang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University
| | - Yechang Qian
- Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, People's Republic of China
| | - Shilong Wang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University
| |
Collapse
|
40
|
Li B, Lin L, Lin H, Wilson BC. Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy. JOURNAL OF BIOPHOTONICS 2016; 9:1314-1325. [PMID: 27136270 DOI: 10.1002/jbio.201600055] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 05/03/2023]
Abstract
Photodynamic therapy (PDT) uses photosensitizers and visible light in combination with molecular oxygen to produce reactive oxygen species (ROS) that kill malignant cells by apoptosis and/or necrosis, shut down the tumor microvasculature and stimulate the host immune system. The excited singlet state of oxygen (1 O2 ) is recognized to be the main cytotoxic ROS generated during PDT for the majority of photosensitizers used clinically and for many investigational new agents, so that maximizing its production within tumor cells and tissues can improve the therapeutic response, and several emerging and novel approaches for this are summarized. Quantitative techniques for 1 O2 production measurement during photosensitization are also of immense importance of value for both preclinical research and future clinical practice. In this review, emerging strategies for enhanced photosensitized 1 O2 generation are introduced, while recent advances in direct detection and imaging of 1 O2 luminescence are summarized. In addition, the correlation between cumulative 1 O2 luminescence and PDT efficiency will be highlighted. Meanwhile, the validation of 1 O2 luminescence dosimetry for PDT application is also considered. This review concludes with a discussion on future demands of 1 O2 luminescence detection for PDT dosimetry, with particular emphasis on clinical translation. Eye-catching color image for graphical abstract.
Collapse
Affiliation(s)
- Buhong Li
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Lisheng Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Huiyun Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Brian C Wilson
- Department of Medical Biophysics, University of Toronto/University Health Network, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
41
|
Garcia-Diaz M, Huang YY, Hamblin MR. Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy. Methods 2016; 109:158-166. [PMID: 27374076 PMCID: PMC5075498 DOI: 10.1016/j.ymeth.2016.06.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy involves the excitation of a non-toxic dye by harmless visible light to produce a long-lived triplet state that can interact with molecular oxygen to produce reactive oxygen species (ROS), which can damage biomolecules and kill cells. ROS produced by electron transfer (Type 1) include superoxide, hydrogen peroxide and hydroxyl radical (HO), while singlet oxygen (1O2) is produced by energy transfer. Diverse methods exist to distinguish between these two pathways, some of which are more specific or more sensitive than others. In this review we cover the use of two fluorescence probes: singlet oxygen sensor green (SOSG) detects 1O2; and 4-hydroxyphenyl-fluorescein (HPF) that detects HO. Interesting data was collected concerning the photochemical pathways of functionalized fullerenes compared to tetrapyrroles, stable synthetic bacteriochlorins with and without central metals, phenothiazinium dyes interacting with inorganic salts such as azide.
Collapse
Affiliation(s)
- Maria Garcia-Diaz
- Department of Pharmacy, University of Copenhagen, Universitetsparken, 2, DK-2100, Copenhagen, Denmark
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
42
|
Pfitzner M, Schlothauer JC, Bastien E, Hackbarth S, Bezdetnaya L, Lassalle HP, Röder B. Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice. Photodiagnosis Photodyn Ther 2016; 14:204-10. [DOI: 10.1016/j.pdpdt.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/06/2016] [Accepted: 03/10/2016] [Indexed: 11/16/2022]
|
43
|
Preuß A, Bornhütter T, Färber A, Schaller C, Röder B. Photodynamic inactivation of biofilm building microorganisms by photoactive facade paints. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 160:79-85. [PMID: 27101275 DOI: 10.1016/j.jphotobiol.2016.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 01/04/2023]
Abstract
This study was performed as a proof of concept for singlet oxygen generating facade paint as an alternative to conventional biocide containing facade paint for the prevention of biofilm growth on outdoor walls. Biofilms on outdoor walls cause esthetic problems and economic damage. Therefore facade paints often contain biocides. However commercially available biocides may have a series of adverse effects on living organisms as well as harmful environmental effects. Furthermore, biocides are increasingly designed to be more effective and are environmentally persistent. Thus, an eco-friendly and non-harmful to human health alternative to conventional biocides in wall color is strongly recommended. The well-known photosensitizer 5,10,15,20-tetrakis(N-methyl-4-pyridyl)-21H,23H-porphine (TMPyP) was used as an additive in a commercially available facade paint. The generation of singlet molecular oxygen was shown using time resolved 2D measurements of the singlet oxygen luminescence. The photodynamic activity of the photosensitizer in the facade paint was demonstrated by phototoxicity tests with defined mold fungi and a mixture of microorganisms harvested from native outdoor biofilms as model organisms. It was proven in general that it is possible to inhibit the growth of biofilm forming microorganisms growing on solid wall paint surfaces by the cationic photosensitizer TMPyP added to the facade paint using daylight conditions for illumination in 12h light and dark cycles.
Collapse
Affiliation(s)
- Annegret Preuß
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany.
| | - Tobias Bornhütter
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Alexander Färber
- Sto SE & Co. KGaA, Ehrenbachstraße 1, D-79780 Stühlingen, Germany
| | | | - Beate Röder
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| |
Collapse
|
44
|
Real-Time Monitoring of Singlet Oxygen and Oxygen Partial Pressure During the Deep Photodynamic Therapy In Vitro. Ann Biomed Eng 2016; 44:2737-45. [PMID: 26833036 DOI: 10.1007/s10439-016-1557-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/27/2016] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) is an effective noninvasive method for the tumor treatment. The major challenge in current PDT research is how to quantitatively evaluate therapy effects. To our best knowledge, this is the first time to combine multi-parameter detection methods in PDT. More specifically, we have developed a set of system, including the high-sensitivity measurement of singlet oxygen, oxygen partial pressure and fluorescence image. In this paper, the detection ability of the system was validated by the different concentrations of carbon quantum dots. Moreover, the correlation between singlet oxygen and oxygen partial pressure with laser irradiation was observed. Then, the system could detect the signal up to 0.5 cm tissue depth with 660 nm irradiation and 1 cm tissue depth with 980 nm irradiation by using up-conversion nanoparticles during PDT in vitro. Furthermore, we obtained the relationship among concentration of singlet oxygen, oxygen partial pressure and tumor cell viability under certain conditions. The results indicate that the multi-parameter detection system is a promising asset to evaluate the deep tumor therapy during PDT. Moreover, the system might be potentially used for the further study in biology and molecular imaging.
Collapse
|
45
|
Mattila H, Khorobrykh S, Havurinne V, Tyystjärvi E. Reactive oxygen species: Reactions and detection from photosynthetic tissues. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:176-214. [PMID: 26498710 DOI: 10.1016/j.jphotobiol.2015.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) have long been recognized as compounds with dual roles. They cause cellular damage by reacting with biomolecules but they also function as agents of cellular signaling. Several different oxygen-containing compounds are classified as ROS because they react, at least with certain partners, more rapidly than ground-state molecular oxygen or because they are known to have biological effects. The present review describes the typical reactions of the most important ROS. The reactions are the basis for both the detection methods and for prediction of reactions between ROS and biomolecules. Chemical and physical methods used for detection, visualization and quantification of ROS from plants, algae and cyanobacteria will be reviewed. The main focus will be on photosynthetic tissues, and limitations of the methods will be discussed.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Sergey Khorobrykh
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Vesa Havurinne
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland.
| |
Collapse
|
46
|
Wu D, Fan L, Xu C, Liu Z, Zhang Y, Liu L, Wang Q, Tao L. GJIC Enhances the phototoxicity of photofrin-mediated photodynamic treatment by the mechanisms related with ROS and Calcium pathways. JOURNAL OF BIOPHOTONICS 2015; 8:764-774. [PMID: 25597481 DOI: 10.1002/jbio.201400131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 11/28/2014] [Accepted: 11/30/2014] [Indexed: 06/04/2023]
Abstract
Despite initially positive responses, recurrences after Photodynamic treatment (PDT) can occur and there is need for improvement in the effectiveness of PDT. Our study uniquely showed that there was a significantly gap junctional intercellular communication (GJIC)-dependent PDT cytotoxicity. The presence of GJIC composed of Connexin 32 increased the PDT phototoxicity in transfected HeLa cells and in the xenograft tumors, and the enhanced phototoxicity of Photofrin-mediated PDT by GJIC was related with ROS and calcium pathways. Our study indicates the possibility that up-regulation or maintenance of gap junction functionality may be used to increase the efficacy of PDT. The phototoxicity effect of Photofrin was substantially greater in Dox-treated cells, which expressed the Cx32 and formed the GJ, than Dox-untreated.
Collapse
Affiliation(s)
- Dengpan Wu
- Department of Pharmacology, Pharmacy School of Xuzhou Medical College, 221004, Xuzhou, P.R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical College, 221004, Xuzhou, P.R. China
| | - Lixia Fan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, P.R. China
| | - Chengfang Xu
- Department of Gynaecology and Obstetrics, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, P.R. China
| | - Zhen Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, P.R. China
| | - Yuan Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, P.R. China
| | - Lucy Liu
- Department of Cell & Systems Biology, University of Toronto, Ontario, M5S3G5, Canada
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, P.R. China.
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, P.R. China
| |
Collapse
|
47
|
Blázquez-Castro A, Stockert JC. In vitro human cell responses to a low-dose photodynamic treatment vs. mild H2O2 exposure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 143:12-9. [DOI: 10.1016/j.jphotobiol.2014.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/07/2014] [Accepted: 12/13/2014] [Indexed: 01/01/2023]
|
48
|
Scholz M, Biehl AL, Dědic R, Hála J. The singlet-oxygen-sensitized delayed fluorescence in mammalian cells: a time-resolved microscopy approach. Photochem Photobiol Sci 2015; 14:700-13. [DOI: 10.1039/c4pp00339j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Microsecond kinetics of singlet-oxygen-sensitized delayed fluorescence (SOSDF) have been detected from individual living fibroblast cells as a proof-of-concept. These provide valuable information about excited state lifetimes and their changes during PDT-like treatment.
Collapse
Affiliation(s)
- Marek Scholz
- Charles University in Prague
- Faculty of Mathematics and Physics
- Department of Chemical Physics and Optics
- The Czech Republic
| | - Anna-Louisa Biehl
- Charles University in Prague
- Faculty of Mathematics and Physics
- Department of Chemical Physics and Optics
- The Czech Republic
- On leave from Ernst-Abbe-Fachhochschule Jena
| | - Roman Dědic
- Charles University in Prague
- Faculty of Mathematics and Physics
- Department of Chemical Physics and Optics
- The Czech Republic
| | - Jan Hála
- Charles University in Prague
- Faculty of Mathematics and Physics
- Department of Chemical Physics and Optics
- The Czech Republic
| |
Collapse
|
49
|
Hackbarth S, Röder B. Singlet oxygen luminescence kinetics in a heterogeneous environment – identification of the photosensitizer localization in small unilamellar vesicles. Photochem Photobiol Sci 2015; 14:329-34. [DOI: 10.1039/c4pp00229f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Singlet oxygen luminescence kinetics in microheterogeneous environment reflect the localization of the photosensitizer.
Collapse
Affiliation(s)
- S. Hackbarth
- Humboldt-Universität zu Berlin
- Institute of Physics
- Photobiophysics
- 12489 Berlin
- Germany
| | - B. Röder
- Humboldt-Universität zu Berlin
- Institute of Physics
- Photobiophysics
- 12489 Berlin
- Germany
| |
Collapse
|
50
|
|