1
|
Sarmah P, Ghanashyam C, Khanna R, Bankapur A. Unraveling biochemical differences in the membrane of functional RBCs and elliptocytes using vortex beam-based micro-Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125911. [PMID: 39999581 DOI: 10.1016/j.saa.2025.125911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/31/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
Understanding the complexity of membrane biochemical changes in in-vitro-induced elliptocytosis can be interesting as it may mimic those in hereditary elliptocytosis. Studying the membrane biochemical changes in metabolically active elliptocytes can be crucial, but most modern methods, such as ektacytometry and EMA binding tests, fail to do so. This study employs single-cell Raman spectroscopy, a proven technique to study biochemical changes in individual functional cells to investigate biochemical modifications in the membrane and cytoskeleton of elliptocytes. This was possible by applying a vortex beam, which can probe the RBC membrane with a reduced contribution from hemoglobin, which otherwise dominates the cell spectrum. Raman spectral variations in elliptocytes indicated changes in proteins, lipids, and lipid-protein interactions. The study also presented an incidental observation of diversity in membrane components and membrane-hemoglobin interaction among tested individuals.
Collapse
Affiliation(s)
- Panchanil Sarmah
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India
| | - Cheviri Ghanashyam
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India
| | - Ruchee Khanna
- Department of Pathology, Kasturba Medical College, Manipal. Manipal Academy of Higher Education, Manipal 576104, India
| | - Aseefhali Bankapur
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
2
|
Nelliat M, Mohan G, Lukose J, Shastry S, Chidangil S. Advancing Transfusion Medicine through Raman Tweezers Spectroscopy: A Review of Recent Progress and Future Perspectives. Transfus Med Hemother 2024; 51:430-438. [PMID: 39664454 PMCID: PMC11630904 DOI: 10.1159/000538972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 04/16/2024] [Indexed: 12/13/2024] Open
Abstract
Background Raman tweezers spectroscopy (RTS) is a powerful tool that combines optical tweezers and Raman spectroscopy to study single living cells. RTS has become increasingly popular in biomedical and clinical research due to its high molecular specificity and sensitivity, which enable the study of cell viability, cell deformation, cell-protein, cell-nanoparticle, cell-cell interaction, etc. In transfusion medicine, RTS can give valuable insights into the storage lesions and effects of various preservatives and intravenous fluids on blood cells. Summary By analyzing the Raman spectra of individual blood cells, RTS can detect changes in the cellular blood components which can be used to monitor the quality of blood products during storage and transfusion. The present review article highlights the principle and clinical applications of RTS in transfusion medicine. Key Messages Raman spectroscopy is a versatile analytical method for biomedical research. Combining the Raman spectroscopy method with the optical tweezers technique will allow us to explore the dynamics of live single cells in their physiological medium.
Collapse
Affiliation(s)
- Mithun Nelliat
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India
| | - Ganesh Mohan
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India
| | - Shamee Shastry
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Jayraj S, Sarmah P, Ghanashyam C, Bankapur A. Light-sheet Raman tweezers for whole-cell biochemical analysis of functional red blood cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123951. [PMID: 38277790 DOI: 10.1016/j.saa.2024.123951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Micro-Raman spectroscopy has emerged as one of the foremost techniques for analyzing biological cells in recent years due to its non-destructive nature and high spatial resolution. The development of optical tweezers has eased the research on biological cells as they confine living cells and organisms in the optical trap without causing much damage. Combining optical tweezers with Raman spectroscopy has opened a wide range of applications in the biomedical field as it facilitates biochemical analysis of biological samples by maintaining in-vivo conditions. Herein, we developed a light sheet-based optical tweezer that traps red blood cells (RBCs) at a very low power density spread across the whole cell, otherwise impossible with conventional optical tweezers. Furthermore, it is combined with micro-Raman spectroscopy to perform whole-cell biochemical analysis for the first time. Raman spectra of individual RBCs recorded under the line focal spot excitation are of superior quality and lack spectral signatures of photo-oxidation and heme aggregation, which is common in point focal spot excitations.
Collapse
Affiliation(s)
- Smrithi Jayraj
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Panchanil Sarmah
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Cheviri Ghanashyam
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aseefhali Bankapur
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
4
|
García-Hernández LA, Martínez-Martínez E, Pazos-Solís D, Aguado-Preciado J, Dutt A, Chávez-Ramírez AU, Korgel B, Sharma A, Oza G. Optical Detection of Cancer Cells Using Lab-on-a-Chip. BIOSENSORS 2023; 13:bios13040439. [PMID: 37185514 PMCID: PMC10136345 DOI: 10.3390/bios13040439] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
The global need for accurate and efficient cancer cell detection in biomedicine and clinical diagnosis has driven extensive research and technological development in the field. Precision, high-throughput, non-invasive separation, detection, and classification of individual cells are critical requirements for successful technology. Lab-on-a-chip devices offer enormous potential for solving biological and medical problems and have become a priority research area for microanalysis and manipulating cells. This paper reviews recent developments in the detection of cancer cells using the microfluidics-based lab-on-a-chip method, focusing on describing and explaining techniques that use optical phenomena and a plethora of probes for sensing, amplification, and immobilization. The paper describes how optics are applied in each experimental method, highlighting their advantages and disadvantages. The discussion includes a summary of current challenges and prospects for cancer diagnosis.
Collapse
Affiliation(s)
- Luis Abraham García-Hernández
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro, Pedro Escobedo, Querétaro C.P. 76703, Mexico
| | | | - Denni Pazos-Solís
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Querétaro C.P. 76130, Mexico
| | - Javier Aguado-Preciado
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Querétaro C.P. 76130, Mexico
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, Circuito Exterior S/N Ciudad Universitaria, Mexico City C.P. 04510, Mexico
| | - Abraham Ulises Chávez-Ramírez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro, Pedro Escobedo, Querétaro C.P. 76703, Mexico
| | - Brian Korgel
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712-1062, USA
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Querétaro C.P. 76130, Mexico
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro, Pedro Escobedo, Querétaro C.P. 76703, Mexico
| |
Collapse
|
5
|
Banerjee A, Dey T, Majumder R, Bhattacharya T, Dey S, Bandyopadhyay D, Chattopadhyay A. Oleic acid prevents erythrocyte death by preserving haemoglobin and erythrocyte membrane proteins. Free Radic Biol Med 2023; 202:17-33. [PMID: 36965537 DOI: 10.1016/j.freeradbiomed.2023.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Haemolysis of erythrocytes upon exposure to haemato-toxic phenylhydrazine (PHZ), makes it an experimental model of anaemia and a partial model of β-thalassaemia, where oxidative stress (OS) was identified as principal causative factor. Oleic acid (OA) was evidenced to ameliorate such stress with antioxidative potential. Erythrocytes were incubated in vitro using 1 mM PHZ, 0.06 nM OA. Erythrocyte membrane protein densities and haemoglobin (Hb) status were examined. Any interaction of Hb with PHZ/OA was checked by calorimetric and spectroscopic analysis using pure molecules. Occurrence of erythrocyte apoptosis and involvement of free iron in all groups were evaluated. PHZ exposure to erythrocytes results in OS with subsequent apoptosis as evidenced from increased lipid peroxidation and translocation of phosphatidylserine in outer membrane. Preservations of erythrocyte cytoskeletal architecture and membrane bound enzyme activity were found in presence of OA. Moreover, both heme and globin of Hb was examined to be conserved by OA. Presence of OA, impeded apoptosis also, possibly by thwarting Hb breakdown followed by free iron release and consequent free radical generation. Additionally, direct sequential binding of OA with PHZ endorsed another protective mechanism of OA toward erythrocytes. OA affords protection to erythrocytes by conserving its major components and prevents haemolysis which projects OA as a haemato-protective agent. Apart from combating PHZ toxicity, anti-apoptotic action of OA strongly suggests its usage in anaemia and β-thalassaemia patients to curb irreversible erythrocyte breakdown. This research strongly recommends OA in pure form or from dietary sources as a therapeutic against haemolytic disorders.
Collapse
Affiliation(s)
- Adrita Banerjee
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Tiyasa Dey
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Romit Majumder
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Tuhin Bhattacharya
- Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Sanjit Dey
- Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India.
| |
Collapse
|
6
|
Liu Y, Wang Z, Zhou Z, Xiong T. Analysis and comparison of machine learning methods for blood identification using single-cell laser tweezer Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 277:121274. [PMID: 35500354 DOI: 10.1016/j.saa.2022.121274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Raman spectroscopy, a "fingerprint" spectrum of substances, can be used to characterize various biological and chemical samples. To allow for blood classification using single-cell Raman spectroscopy, several machine learning algorithms were implemented and compared. A single-cell laser optical tweezer Raman spectroscopy system was established to obtain the Raman spectra of red blood cells. The Boruta algorithm extracted the spectral feature frequency shift, reduced the spectral dimension, and determined the essential features that affect classification. Next, seven machine learning classification models are analyzed and compared based on the classification accuracy, precision, and recall indicators. The results show that support vector machines and artificial neural networks are the two most appropriate machine learning algorithms for single-cell Raman spectrum blood classification, and this finding provides essential guidance for future research studies.
Collapse
Affiliation(s)
- Yiming Liu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Ziqi Wang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Zhehai Zhou
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instruments, Beijing Information Science and Technology University, Beijing, China.
| | - Tao Xiong
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| |
Collapse
|
7
|
Xie Y, Liu X. Multifunctional manipulation of red blood cells using optical tweezers. JOURNAL OF BIOPHOTONICS 2022; 15:e202100315. [PMID: 34773382 DOI: 10.1002/jbio.202100315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Serving as natural vehicles to deliver oxygen throughout the whole body, red blood cells (RBCs) have been regarded as important indicators for biomedical analysis and clinical diagnosis. Various diseases can be induced due to the dysfunction of RBCs. Hence, a flexible tool is required to perform precise manipulation and quantitative characterization of their physiological mechanisms and viscoelastic properties. Optical tweezers have emerged as potential candidates due to their noncontact manipulation and femtonewton-precision measurements. This review aimed to highlight the recent advances in the multifunctional manipulation of RBCs using optical tweezers, including controllable deformation, dynamic stretching, RBC aggregation, blood separation and Raman characterization. Further, great attentions have been focused on the precise assembly of functional biophotonics devices with trapped RBCs, and a brief overview was offered for the growing interests to manipulate RBCs in vivo.
Collapse
Affiliation(s)
- Yanzheng Xie
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Xiaoshuai Liu
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Wang Z, Liu Y, Lu W, Fu YV, Zhou Z. Blood identification at the single-cell level based on a combination of laser tweezers Raman spectroscopy and machine learning. BIOMEDICAL OPTICS EXPRESS 2021; 12:7568-7581. [PMID: 35003853 PMCID: PMC8713663 DOI: 10.1364/boe.445149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 06/14/2023]
Abstract
Laser tweezers Raman spectroscopy (LTRS) combines optical tweezers technology and Raman spectroscopy to obtain biomolecular compositional information from a single cell without invasion or destruction, so it can be used to "fingerprint" substances to characterize numerous types of biological cell samples. In the current study, LTRS was combined with two machine learning algorithms, principal component analysis (PCA)-linear discriminant analysis (LDA) and random forest, to achieve high-precision multi-species blood classification at the single-cell level. The accuracies of the two classification models were 96.60% and 96.84%, respectively. Meanwhile, compared with PCA-LDA and other classification algorithms, the random forest algorithm is proved to have significant advantages, which can directly explain the importance of spectral features at the molecular level.
Collapse
Affiliation(s)
- Ziqi Wang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Yiming Liu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| | - Weilai Lu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhehai Zhou
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instruments, Beijing Information Science and Technology University, Beijing, China
| |
Collapse
|
9
|
N M, Lukose J, Mohan G, Shastry S, Chidangil S. Single cell spectroscopy of red blood cells in intravenous crystalloid fluids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119726. [PMID: 33848954 DOI: 10.1016/j.saa.2021.119726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Crystalloid fluids, a subset of intravenous (IV) fluid solutions are commonly used in clinical settings. The influence of these fluids on the functions of blood components are least explored. Raman spectroscopy combined with optical trapping has been widely used to evaluate the impact of external stress agents on red blood cells. The present study investigates the impact of commonly used crystalloid fluids on red blood cells in comparison with that of blood plasma using Raman Tweezers spectroscopy. The red blood cells suspended in crystalloid fluids undergo deoxygenation readily than that in blood plasma. In addition, cells in blood plasma were able to withstand laser induced deoxygenation comparatively better than that in crystalloid fluids at higher laser powers. Principle component analysis of the Raman spectral data has clearly demonstrated the discrimination of cells in plasma with that of crystalloid fluids demonstrating the effect of external induced stress on RBCs.
Collapse
Affiliation(s)
- Mithun N
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ganesh Mohan
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Shamee Shastry
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
10
|
C G, Shetty S, Bharati S, Chidangil S, Bankapur A. Optical Trapping and Micro-Raman Spectroscopy of Functional Red Blood Cells Using Vortex Beam for Cell Membrane Studies. Anal Chem 2021; 93:5484-5493. [PMID: 33764040 DOI: 10.1021/acs.analchem.0c05204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There has been a long-standing interest in Raman spectroscopic investigation of optically trapped single functional cells. Optical trapping using a Gaussian beam has helped researchers for decades to investigate single cells suspended in a physiological medium. However, complete and sensitive probing of single cells demands further advancements in experimental methods. Herein, we propose optical trapping and simultaneous micro-Raman spectroscopy of red blood cells (RBCs) in an unconventional face-on orientation using an optical vortex beam. Using this novel method, we are successful in comparing the conformational state of hemoglobin (Hb) molecules near the RBC membrane and inside the bulk of the cell. This method enabled us to successfully probe the oxy/deoxy ratio of Hb molecules near the RBC membrane and inside the bulk of the cell. Because of the face-on orientation, the Raman spectra of RBCs acquired using a vortex beam have a significant contribution from membrane components compared to that recorded using the Gaussian beam.
Collapse
Affiliation(s)
- Ghanashyam C
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sachin Shetty
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India.,Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal 576104, India
| | - Aseefhali Bankapur
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India.,Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
11
|
Lenzi E, Dinarelli S, Longo G, Girasole M, Mussi V. Multivariate analysis of mean Raman spectra of erythrocytes for a fast analysis of the biochemical signature of ageing. Talanta 2021; 221:121442. [PMID: 33076067 DOI: 10.1016/j.talanta.2020.121442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Ageing of red blood cells (RBC) is a physiological process, fundamental to ensure a proper blood homeostasis that, in vivo, balances the production of new cells and the removal of senescent erythrocytes. A detailed characterization at the cellular level of the progression of the ageing phenomenon can reveal biological, biophysical and biochemical fingerprints for diseases related to misbalances of the cell turnover and for blood pathologies. We applied Principal Components Analysis (PCA) to mean Raman spectra of single cells at different ageing times to rapidly highlight subtle spectral differences associated with conformational and biochemical modifications. Our results demonstrate a two-step ageing process characterized by a first phase in which proteins plays a relevant role, followed by a further cellular evolution driven by alterations in the membrane lipid contribution. Moreover, we used the same approach to directly analyse relevant spectral effects associated to reduction in Haemoglobin oxygenation level and membrane fluidity induced by the ageing. The method is robust and effective, allowing to classify easily the studied cells based on their age and morphology, and consequently to evaluate the biological quality of a blood sample.
Collapse
Affiliation(s)
- E Lenzi
- Physics Department, University of Rome Tor Vergata, Rome, Italy
| | - S Dinarelli
- Institute of Structure of Matter, National Research Council, Rome, Italy
| | - G Longo
- Institute of Structure of Matter, National Research Council, Rome, Italy
| | - M Girasole
- Institute of Structure of Matter, National Research Council, Rome, Italy
| | - V Mussi
- Institute of Microelectronics and Microsystems, National Research Council, Rome, Italy.
| |
Collapse
|
12
|
Zhu R, Avsievich T, Popov A, Meglinski I. Optical Tweezers in Studies of Red Blood Cells. Cells 2020; 9:545. [PMID: 32111018 PMCID: PMC7140472 DOI: 10.3390/cells9030545] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Optical tweezers (OTs) are innovative instruments utilized for the manipulation of microscopic biological objects of interest. Rapid improvements in precision and degree of freedom of multichannel and multifunctional OTs have ushered in a new era of studies in basic physical and chemical properties of living tissues and unknown biomechanics in biological processes. Nowadays, OTs are used extensively for studying living cells and have initiated far-reaching influence in various fundamental studies in life sciences. There is also a high potential for using OTs in haemorheology, investigations of blood microcirculation and the mutual interplay of blood cells. In fact, in spite of their great promise in the application of OTs-based approaches for the study of blood, cell formation and maturation in erythropoiesis have not been fully explored. In this review, the background of OTs, their state-of-the-art applications in exploring single-cell level characteristics and bio-rheological properties of mature red blood cells (RBCs) as well as the OTs-assisted studies on erythropoiesis are summarized and presented. The advance developments and future perspectives of the OTs' application in haemorheology both for fundamental and practical in-depth studies of RBCs formation, functional diagnostics and therapeutic needs are highlighted.
Collapse
Affiliation(s)
- Ruixue Zhu
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570 Oulu, Finland; (T.A.); (A.P.)
| | - Tatiana Avsievich
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570 Oulu, Finland; (T.A.); (A.P.)
| | - Alexey Popov
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570 Oulu, Finland; (T.A.); (A.P.)
| | - Igor Meglinski
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570 Oulu, Finland; (T.A.); (A.P.)
- Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, 634050 Tomsk, Russia
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University (MEPhI), 115409 Moscow, Russia
- Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
13
|
Hansson B, Allen CH, Qutob S, Behr B, Nyiri B, Chauhan V, Murugkar S. Development of a flow cell based Raman spectroscopy technique to overcome photodegradation in human blood. BIOMEDICAL OPTICS EXPRESS 2019; 10:2275-2288. [PMID: 31149373 PMCID: PMC6524574 DOI: 10.1364/boe.10.002275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 05/16/2023]
Abstract
Raman spectroscopy of blood offers significant potential for label-free diagnostics of disease. However, current techniques are limited by the use of low laser power to avoid photodegradation of blood; this translates to a low signal to noise ratio in the Raman spectra. We developed a novel flow cell based Raman spectroscopy technique that provides reproducible Raman spectra with a high signal to noise ratio and low data acquisition time while ensuring a short dwell time in the laser spot to avoid photodamage in blood lysates. We show that our novel setup is capable of detecting minute changes in blood lysate spectral features from natural aging. Moreover, we demonstrate that by rigorously controlling the experimental conditions, the aging effect due to natural oxidation does not confound the Raman spectral measurements and that blood treated with hydrogen peroxide to induce oxidative stress can be discriminated from normal blood with a high accuracy of greater than 90% demonstrating potential for use in a clinical setting.
Collapse
Affiliation(s)
- Ben Hansson
- Department of Physics, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
- Equal contribution
| | - Christian Harry Allen
- Department of Physics, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
- Equal contribution
| | - Sami Qutob
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, K1A 0K9, Ottawa, Canada
| | - Bradford Behr
- Tornado Spectral Systems, 555 Richmond Street West, Suite 402, Toronto, ON M5V 3B1, Canada
| | - Balazs Nyiri
- Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, ON K1H 8L6, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, K1A 0K9, Ottawa, Canada
| | - Sangeeta Murugkar
- Department of Physics, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
14
|
Lukose J, N M, Mohan G, Shastry S, Chidangil S. Normal saline-induced deoxygenation of red blood cells probed by optical tweezers combined with the micro-Raman technique. RSC Adv 2019; 9:7878-7884. [PMID: 35521160 PMCID: PMC9061285 DOI: 10.1039/c8ra10061f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/18/2019] [Indexed: 11/21/2022] Open
Abstract
The use of normal saline for washing red blood cells and treating critically ill patients is a regular medical practice in hospital settings. An optical tweezer in combination with Raman spectroscopy is an analytical tool employed for the investigation of single cell dynamics, thus providing molecular fingerprint of the cell by optically trapping the cell at a laser focus. In this study, the impact of normal saline on individual human red blood cell was compared with that of blood plasma using Raman tweezers spectroscopy. Major spectral variations in the marker frequencies at 1209 cm-1, 1222 cm-1, 1544 cm-1, and 1561 cm-1 of the Raman spectrum of the treated cells imply that the transition of hemoglobin to the deoxygenated state occurs when 0.9% normal saline is used. This may result in serious implications in blood transfusion. The results obtained from the principal component analysis also displayed clear differentiation among the red blood cells diluted in normal saline and those diluted in plasma. In future studies, efforts will be made to correlate the deoxygenation status of red blood cells with various human disorders.
Collapse
Affiliation(s)
- Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education Manipal Karnataka India-576104
| | - Mithun N
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education Manipal Karnataka India-576104
| | - Ganesh Mohan
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal Academy of Higher Education Manipal Karnataka India-576104
| | - Shamee Shastry
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal Academy of Higher Education Manipal Karnataka India-576104
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education Manipal Karnataka India-576104
| |
Collapse
|
15
|
Lukose J, N. M, M. P, Mohan G, Shastry S, Chidangil S. Laser Raman tweezer spectroscopy to explore the bisphenol A-induced changes in human erythrocytes. RSC Adv 2019; 9:15933-15940. [PMID: 35521407 PMCID: PMC9064284 DOI: 10.1039/c9ra01840a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 11/21/2022] Open
Abstract
Hemoglobin depletion was observed at higher BPA concentration.
Collapse
Affiliation(s)
- Jijo Lukose
- Centre of Excellence for Biophotonics
- Department of Atomic and Molecular Physics
- Manipal Academy of Higher Education
- Manipal
- India 576104
| | - Mithun N.
- Centre of Excellence for Biophotonics
- Department of Atomic and Molecular Physics
- Manipal Academy of Higher Education
- Manipal
- India 576104
| | - Priyanka M.
- Centre of Excellence for Biophotonics
- Department of Atomic and Molecular Physics
- Manipal Academy of Higher Education
- Manipal
- India 576104
| | - Ganesh Mohan
- Department of Immunohematology and Blood Transfusion
- Kasturba Medical College
- Manipal Academy of Higher Education
- Manipal
- India 576104
| | - Shamee Shastry
- Department of Immunohematology and Blood Transfusion
- Kasturba Medical College
- Manipal Academy of Higher Education
- Manipal
- India 576104
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics
- Department of Atomic and Molecular Physics
- Manipal Academy of Higher Education
- Manipal
- India 576104
| |
Collapse
|
16
|
El-Said WA, Yoon J, Choi JW. Nanostructured surfaces for analysis of anticancer drug and cell diagnosis based on electrochemical and SERS tools. NANO CONVERGENCE 2018; 5:11. [PMID: 29721403 PMCID: PMC5913382 DOI: 10.1186/s40580-018-0143-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/12/2018] [Indexed: 05/22/2023]
Abstract
Discovering new anticancer drugs and screening their efficacy requires a huge amount of resources and time-consuming processes. The development of fast, sensitive, and nondestructive methods for the in vitro and in vivo detection of anticancer drugs' effects and action mechanisms have been done to reduce the time and resources required to discover new anticancer drugs. For the in vitro and in vivo detection of the efficiency, distribution, and action mechanism of anticancer drugs, the applications of electrochemical techniques such as electrochemical cell chips and optical techniques such as surface-enhanced Raman spectroscopy (SERS) have been developed based on the nanostructured surface. Research focused on electrochemical cell chips and the SERS technique have been reviewed here; electrochemical cell chips based on nanostructured surfaces have been developed for the in vitro detection of cell viability and the evaluation of the effects of anticancer drugs, which showed the high capability to evaluate the cytotoxic effects of several chemicals at low concentrations. SERS technique based on the nanostructured surface have been used as label-free, simple, and nondestructive techniques for the in vitro and in vivo monitoring of the distribution, mechanism, and metabolism of different anticancer drugs at the cellular level. The use of electrochemical cell chips and the SERS technique based on the nanostructured surface should be good tools to detect the effects and action mechanisms of anticancer drugs.
Collapse
Affiliation(s)
- Waleed A. El-Said
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04375 Republic of Korea
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| | - Jinho Yoon
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04375 Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04375 Republic of Korea
| |
Collapse
|
17
|
Moreira LP, Silveira L, da Silva AG, Fernandes AB, Pacheco MTT, Rocco DDFM. Raman spectroscopy applied to identify metabolites in urine of physically active subjects. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 176:92-99. [DOI: 10.1016/j.jphotobiol.2017.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/04/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
18
|
Effect of infrared light on live blood cells: Role of β-carotene. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 171:104-116. [DOI: 10.1016/j.jphotobiol.2017.04.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/27/2017] [Indexed: 01/14/2023]
|
19
|
Atkins CG, Buckley K, Blades MW, Turner RFB. Raman Spectroscopy of Blood and Blood Components. APPLIED SPECTROSCOPY 2017; 71:767-793. [PMID: 28398071 DOI: 10.1177/0003702816686593] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Blood is a bodily fluid that is vital for a number of life functions in animals. To a first approximation, blood is a mildly alkaline aqueous fluid (plasma) in which a large number of free-floating red cells (erythrocytes), white cells (leucocytes), and platelets are suspended. The primary function of blood is to transport oxygen from the lungs to all the cells of the body and move carbon dioxide in the return direction after it is produced by the cells' metabolism. Blood also carries nutrients to the cells and brings waste products to the liver and kidneys. Measured levels of oxygen, nutrients, waste, and electrolytes in blood are often used for clinical assessment of human health. Raman spectroscopy is a non-destructive analytical technique that uses the inelastic scattering of light to provide information on chemical composition, and hence has a potential role in this clinical assessment process. Raman spectroscopic probing of blood components and of whole blood has been on-going for more than four decades and has proven useful in applications ranging from the understanding of hemoglobin oxygenation, to the discrimination of cancerous cells from healthy lymphocytes, and the forensic investigation of crime scenes. In this paper, we review the literature in the field, collate the published Raman spectroscopy studies of erythrocytes, leucocytes, platelets, plasma, and whole blood, and attempt to draw general conclusions on the state of the field.
Collapse
Affiliation(s)
- Chad G Atkins
- 1 Michael Smith Laboratories, The University of British Columbia, Canada
- 2 Department of Chemistry, The University of British Columbia, Canada
| | - Kevin Buckley
- 1 Michael Smith Laboratories, The University of British Columbia, Canada
- 3 Nanoscale Biophotonics Laboratory, National University of Ireland, Ireland
| | - Michael W Blades
- 2 Department of Chemistry, The University of British Columbia, Canada
| | - Robin F B Turner
- 1 Michael Smith Laboratories, The University of British Columbia, Canada
- 2 Department of Chemistry, The University of British Columbia, Canada
- 4 Department of Electrical and Computer Engineering, The University of British Columbia, Canada
| |
Collapse
|
20
|
Kuligowski J, EL-Zahry MR, Sánchez-Illana Á, Quintás G, Vento M, Lendl B. Surface enhanced Raman spectroscopic direct determination of low molecular weight biothiols in umbilical cord whole blood. Analyst 2016; 141:2165-74. [DOI: 10.1039/c5an01865j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biothiols are determined in whole blood samples by Surface Enhanced Raman Spectroscopy (SERS).
Collapse
Affiliation(s)
- Julia Kuligowski
- Neonatal Research Unit
- Health Research Institute Hospital La Fe
- 46026 Valencia
- Spain
| | - Marwa R. EL-Zahry
- Institute of Chemical Technologies and Analytics
- Vienna University of Technology
- A-1060 Vienna
- Austria
- Department of Pharmaceutical Analytical Chemistry
| | - Ángel Sánchez-Illana
- Neonatal Research Unit
- Health Research Institute Hospital La Fe
- 46026 Valencia
- Spain
| | - Guillermo Quintás
- Safety & Sustainability
- Leitat Technological Center
- 46026 Valencia
- Spain
- Analytical Unit
| | - Máximo Vento
- Neonatal Research Unit
- Health Research Institute Hospital La Fe
- 46026 Valencia
- Spain
- Division of Neonatology
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics
- Vienna University of Technology
- A-1060 Vienna
- Austria
| |
Collapse
|
21
|
Hossain MK, Cho HY, Kim KJ, Choi JW. In situ monitoring of doxorubicin release from biohybrid nanoparticles modified with antibody and cell-penetrating peptides in breast cancer cells using surface-enhanced Raman spectroscopy. Biosens Bioelectron 2015; 71:300-305. [DOI: 10.1016/j.bios.2015.04.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/09/2015] [Accepted: 04/17/2015] [Indexed: 01/09/2023]
|
22
|
Redding B, Schwab M, Pan YL. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles. SENSORS 2015; 15:19021-46. [PMID: 26247952 PMCID: PMC4570358 DOI: 10.3390/s150819021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 06/30/2015] [Accepted: 07/27/2015] [Indexed: 12/20/2022]
Abstract
The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field.
Collapse
Affiliation(s)
- Brandon Redding
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA.
| | - Mark Schwab
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA.
| | - Yong-le Pan
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA.
| |
Collapse
|
23
|
Huser T, Chan J. Raman spectroscopy for physiological investigations of tissues and cells. Adv Drug Deliv Rev 2015; 89:57-70. [PMID: 26144996 DOI: 10.1016/j.addr.2015.06.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 06/08/2015] [Accepted: 06/26/2015] [Indexed: 12/29/2022]
Abstract
Raman micro-spectroscopy provides a convenient non-destructive and location-specific means of probing cellular physiology and tissue physiology at sub-micron length scales. By probing the vibrational signature of molecules and molecular groups, the distribution and metabolic products of small molecules that cannot be labeled with fluorescent dyes can be analyzed. This method works well for molecular concentrations in the micro-molar range and has been demonstrated as a valuable tool for monitoring drug-cell interactions. If the small molecule of interest does not contain groups that would allow for a discrimination against cytoplasmic background signals, "labeling" of the molecule by isotope substitution or by incorporating other unique small groups, e.g. alkynes provides a stable signal even for time-lapse imaging such compounds in living cells. In this review we highlight recent progress in assessing the physiology of cells and tissue by Raman spectroscopy and imaging.
Collapse
|
24
|
Schulze HG, Atkins CG, Devine DV, Blades MW, Turner RFB. Fully automated decomposition of Raman spectra into individual Pearson's type VII distributions applied to biological and biomedical samples. APPLIED SPECTROSCOPY 2015; 69:26-36. [PMID: 25498957 DOI: 10.1366/14-07510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Rapid technological advances have made the acquisition of large numbers of spectra not only feasible, but also routine. As a result, a significant research effort is focused on semi-automated and fully automated spectral processing techniques. However, the need to provide initial estimates of the number of peaks, their band shapes, and the initial parameters of these bands presents an obstacle to the full automation of peak fitting and its incorporation into fully automated spectral-preprocessing workflows. Moreover, the sensitivity of peak-fit routines to initial parameter settings and the resultant variations in solution quality further impede user-free operation. We have developed a technique to perform fully automated peak fitting on fully automated preconditioned spectra-specifically, baseline-corrected and smoothed spectra that are free of cosmic-ray-induced spikes. Briefly, the tallest peak in a spectrum is located and a Gaussian peak-fit is performed. The fitted peak is then subtracted from the spectrum, and the procedure is repeated until the entire spectrum has been processed. In second and third passes, all the peaks in the spectrum are fitted concurrently, but are fitted to a Pearson Type VII model using the parameters for the model established in the prior pass. The technique is applied to a synthetic spectrum with several peaks, some of which have substantial overlap, to test the ability of the method to recover the correct number of peaks, their true shape, and their appropriate parameters. Finally the method is tested on measured Raman spectra collected from human embryonic stem cells and samples of red blood cells.
Collapse
Affiliation(s)
- H Georg Schulze
- The University of British Columbia, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | | | | | | | | |
Collapse
|
25
|
Bankapur A, Barkur S, Chidangil S, Mathur D. A micro-Raman study of live, single red blood cells (RBCs) treated with AgNO3 nanoparticles. PLoS One 2014; 9:e103493. [PMID: 25057913 PMCID: PMC4110031 DOI: 10.1371/journal.pone.0103493] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 07/02/2014] [Indexed: 11/19/2022] Open
Abstract
Silver nanoparticles (Ag NPs) are known to exhibit broad antimicrobial activity. However, such activity continues to raise concerns in the context of the interaction of such NPs with biomolecules. In a physiological environment NPs interact with individual biological cells either by penetrating through the cell membrane or by adhering to the membrane. We have explored the interaction of Ag NPs with single optically-trapped, live erythrocytes (red blood cells, RBCs) using Raman Tweezers spectroscopy. Our experiments reveal that Ag NPs induce modifications within an RBC that appear to be irreversible. In particular we are able to identify that the heme conformation in an RBC transforms from the usual R-state (oxy-state) to the T-state (deoxy-state). We rationalize our observations by proposing a model for the nanoparticle cytotoxicity pathway when the NP size is larger than the membrane pore size. We propose that the interaction of Ag NPs with the cell surface induces damage brought about by alteration of intracellular pH caused by the blockage of the cell membrane transport.
Collapse
Affiliation(s)
- Aseefhali Bankapur
- Centre for Atomic and Molecular Physics, Manipal University, Manipal, India
| | - Surekha Barkur
- Centre for Atomic and Molecular Physics, Manipal University, Manipal, India
| | - Santhosh Chidangil
- Centre for Atomic and Molecular Physics, Manipal University, Manipal, India
- * E-mail:
| | - Deepak Mathur
- Centre for Atomic and Molecular Physics, Manipal University, Manipal, India
- Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
26
|
Study of the molecular variation in pre-eclampsia placenta based on micro-Raman spectroscopy. Arch Gynecol Obstet 2014; 290:943-6. [PMID: 24866887 PMCID: PMC4186689 DOI: 10.1007/s00404-014-3282-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 05/05/2014] [Indexed: 11/22/2022]
Abstract
Purpose Study of the molecular variation in pre-eclampsia placenta based on micro-Raman spectroscopy. Methods Five pregnant women with pre-eclampsia from Nanfang hospital were selected as study group whose average age is 28.5 years and 38 ± 2 weeks gestation. The same period of healthy pregnant women, whose average age is 27.6 years and pregnant 39 ± 1 weeks, as control group (n = 5). The normal and pre-eclamptic placental tissues are detected by micro-Raman spectroscopy with the spectrum resolution of 1 cm−1. Results We find that the protein structure of α-helix, β-pleated sheet and β-turn is overlying in pre-eclamptic placenta, which lead to a disorder of protein structure. The Raman peaks assigned to tryptophan indole ring and phenylalanine in pre-eclamptic placental tissue are more higher than that in normal tissue. Conclusions Results suggest that the ordered structures of the main chain in protein molecules are reduced significantly, and the amino acid of side chains is damaged obviously. And a principal component analysis is used to classify the Raman spectra between normal and pre-eclamptic placental tissues. This study presents that Raman spectroscopy has a great potential on the mechanism research and diagnosis of placental lesions.
Collapse
|
27
|
Rotational dynamics of optically trapped human spermatozoa. ScientificWorldJournal 2014; 2014:154367. [PMID: 24600321 PMCID: PMC3926395 DOI: 10.1155/2014/154367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/21/2013] [Indexed: 11/27/2022] Open
Abstract
Introduction. Optical trapping is a laser-based method for probing the physiological and mechanical properties of cells in a noninvasive manner. As sperm motility is an important criterion for assessing the male fertility potential, this technique is used to study sperm cell motility behavior and rotational dynamics. Methods and Patients. An integrated optical system with near-infrared laser beam has been used to analyze rotational dynamics of live sperm cells from oligozoospermic and asthenozoospermic cases and compared with controls. Results. The linear, translational motion of the sperm is converted into rotational motion on being optically trapped, without causing any adverse effect on spermatozoa. The rotational speed of sperm cells from infertile men is observed to be significantly less as compared to controls. Conclusions. Distinguishing normal and abnormal sperm cells on the basis of beat frequency above 5.6 Hz may be an important step in modern reproductive biology to sort and select good quality spermatozoa. The application of laser-assisted technique in biology has the potential to be a valuable tool for assessment of sperm fertilization capacity for improving assisted reproductive technology.
Collapse
|
28
|
Rodrigues VRM, Mondal A, Dharmadhikari JA, Panigrahi S, Mathur D, Dharmadhikari AK. Enhancing the strength of an optical trap by truncation. PLoS One 2013; 8:e61310. [PMID: 23593458 PMCID: PMC3620420 DOI: 10.1371/journal.pone.0061310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/07/2013] [Indexed: 11/18/2022] Open
Abstract
Optical traps (tweezers) are beginning to be used with increasing efficacy in diverse studies in the biological and biomedical sciences. We report here results of a systematic study aimed at enhancing the efficiency with which dielectric (transparent) materials can be optically trapped. Specifically, we investigate how truncation of the incident laser beam affects the strength of an optical trap in the presence of a circular aperture. Apertures of various sizes have been used by us to alter the beam radius, thereby changing the effective numerical aperture and intensity profile. We observe significant enhancement of the radial and axial trap stiffness when an aperture is used to truncate the beam compared to when no aperture was used, keeping incident laser power constant. Enhancement in trap stiffness persists even when the beam intensity profile is modulated. The possibility of applying truncation to multiple traps is explored; to this end a wire mesh is utilized to produce multiple trapping that also alters the effective numerical aperture. The use of a mesh leads to reduction in trap stiffness compared to the case when no wire mesh is used. Our findings lead to a simple-to-implement and inexpensive method of significantly enhancing optical trapping efficiency under a wide range of circumstances.
Collapse
Affiliation(s)
| | - Argha Mondal
- Tata Institute of Fundamental Research, Mumbai, India
| | | | | | - Deepak Mathur
- Tata Institute of Fundamental Research, Mumbai, India
- Centre for Atomic and Molecular Physics, Manipal University, Manipal, India
| | | |
Collapse
|
29
|
Chan JW. Recent advances in laser tweezers Raman spectroscopy (LTRS) for label-free analysis of single cells. JOURNAL OF BIOPHOTONICS 2013; 6:36-48. [PMID: 23175434 DOI: 10.1002/jbio.201200143] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/15/2012] [Accepted: 10/28/2012] [Indexed: 05/19/2023]
Abstract
Laser tweezers Raman spectroscopy (LTRS), a technique that integrates optical tweezers with confocal Raman spectroscopy, is a variation of micro-Raman spectroscopy that enables the manipulation and biochemical analysis of single biological particles in suspension. This article provides an overview of the LTRS method, with an emphasis on highlighting recent advances over the past several years in the development of the technology and several new biological and biomedical applications that have been demonstrated. A perspective on the future developments of this powerful cytometric technology will also be presented.
Collapse
Affiliation(s)
- James W Chan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
30
|
Premasiri WR, Lee JC, Ziegler LD. Surface-enhanced Raman scattering of whole human blood, blood plasma, and red blood cells: cellular processes and bioanalytical sensing. J Phys Chem B 2012; 116:9376-86. [PMID: 22780445 DOI: 10.1021/jp304932g] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
SERS spectra of whole human blood, blood plasma, and red blood cells on Au nanoparticle SiO(2) substrates excited at 785 nm have been observed. For the sample preparation procedure employed here, the SERS spectrum of whole blood arises from the blood plasma component only. This is in contrast to the normal Raman spectrum of whole blood excited at 785 nm and open to ambient air, which is exclusively due to the scattering of oxyhemoglobin. The SERS spectrum of whole blood shows a storage time dependence that is not evident in the non-SERS Raman spectrum of whole blood. Hypoxanthine, a product of purine degradation, dominates the SERS spectrum of blood after ~10-20 h of storage at 8 °C. The corresponding SERS spectrum of plasma isolated from the stored blood shows the same temporal release of hypoxanthine. Thus, blood cellular components (red blood cells, white blood cells, and/or platelets) are releasing hypoxanthine into the plasma over this time interval. The SERS spectrum of red blood cells (RBCs) excited at 785 nm is reported for the first time and exhibits well-known heme group marker bands as well as other bands that may be attributed to cell membrane components or protein denaturation contributions. SERS, as well as normal Raman spectra, of oxy- and met-RBCs are reported and compared. These SERS results can have significant impact in the area of clinical diagnostics, blood supply management, and forensics.
Collapse
Affiliation(s)
- W R Premasiri
- Department of Chemistry, 590 Commonwealth Ave., Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
31
|
Ladiwala U, Basu H, Mathur D. Assembling neurospheres: dynamics of neural progenitor/stem cell aggregation probed using an optical trap. PLoS One 2012; 7:e38613. [PMID: 22693648 PMCID: PMC3367915 DOI: 10.1371/journal.pone.0038613] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/07/2012] [Indexed: 11/18/2022] Open
Abstract
Optical trapping (tweezing) has been used in conjunction with fluid flow technology to dissect the mechanics and spatio-temporal dynamics of how neural progenitor/stem cells (NSCs) adhere and aggregate. Hitherto unavailable information has been obtained on the most probable minimum time (∼5 s) and most probable minimum distance of approach (4–6 µm) required for irreversible adhesion of proximate cells to occur. Our experiments also allow us to study and quantify the spatial characteristics of filopodial- and membrane-mediated adhesion, and to probe the functional dynamics of NSCs to quantify a lower limit of the adhesive force by which NSCs aggregate (∼18 pN). Our findings, which we also validate by computational modeling, have important implications for the neurosphere assay: once aggregated, neurospheres cannot disassemble merely by being subjected to shaking or by thermal effects. Our findings provide quantitative affirmation to the notion that the neurosphere assay may not be a valid measure of clonality and “stemness”. Post-adhesion dynamics were also studied and oscillatory motion in filopodia-mediated adhesion was observed. Furthermore, we have also explored the effect of the removal of calcium ions: both filopodia-mediated as well as membrane-membrane adhesion were inhibited. On the other hand, F-actin disrupted the dynamics of such adhesion events such that filopodia-mediated adhesion was inhibited but not membrane-membrane adhesion.
Collapse
Affiliation(s)
- Uma Ladiwala
- UM-DAE Centre for Excellence in Basic Science, University of Mumbai, Kalina Campus, Mumbai, India
- * E-mail: (UL); (DM)
| | - Himanish Basu
- Tata Institute of Fundamental Research, Mumbai, India
| | - Deepak Mathur
- Tata Institute of Fundamental Research, Mumbai, India
- * E-mail: (UL); (DM)
| |
Collapse
|
32
|
Bankapur A, Krishnamurthy RS, Zachariah E, Santhosh C, Chougule B, Praveen B, Valiathan M, Mathur D. Micro-Raman spectroscopy of silver nanoparticle induced stress on optically-trapped stem cells. PLoS One 2012; 7:e35075. [PMID: 22514708 PMCID: PMC3325966 DOI: 10.1371/journal.pone.0035075] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 03/11/2012] [Indexed: 01/06/2023] Open
Abstract
We report here results of a single-cell Raman spectroscopy study of stress effects induced by silver nanoparticles in human mesenchymal stem cells (hMSCs). A high-sensitivity, high-resolution Raman Tweezers set-up has been used to monitor nanoparticle-induced biochemical changes in optically-trapped single cells. Our micro-Raman spectroscopic study reveals that hMSCs treated with silver nanoparticles undergo oxidative stress at doping levels in excess of 2 µg/ml, with results of a statistical analysis of Raman spectra suggesting that the induced stress becomes more dominant at nanoparticle concentration levels above 3 µg/ml.
Collapse
Affiliation(s)
- Aseefhali Bankapur
- Centre for Atomic and Molecular Physics, Manipal University, Manipal, India
| | | | - Elsa Zachariah
- Centre for Atomic and Molecular Physics, Manipal University, Manipal, India
| | - Chidangil Santhosh
- Centre for Atomic and Molecular Physics, Manipal University, Manipal, India
| | | | - Bhavishna Praveen
- Centre for Atomic and Molecular Physics, Manipal University, Manipal, India
| | - Manna Valiathan
- Department of Pathology, Kasturba Medical College, Manipal, India
| | - Deepak Mathur
- Centre for Atomic and Molecular Physics, Manipal University, Manipal, India
- Tata Institute of Fundamental Research, Mumbai, India
- * E-mail:
| |
Collapse
|
33
|
Li N, Li SX, Guo ZY, Zhuang ZF, Li R, Xiong K, Chen SJ, Liu SH. Micro-Raman spectroscopy study of the effect of Mid-Ultraviolet radiation on erythrocyte membrane. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 112:37-42. [PMID: 22561009 DOI: 10.1016/j.jphotobiol.2012.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 12/14/2022]
Abstract
Mid-Ultraviolet (UVB) has a significant influence on human health. In this study, human erythrocytes were exposed to UVB to investigate the effects of UVB radiation on erythrocytes membrane. And Micro-Raman spectroscopy was employed to detect the damage. Principal component analysis (PCA) was used to classify the control erythrocytes and the irradiated erythrocytes. Results showed that the erythrocytes membrane was damaged by Mid-Ultraviolet (UVB) radiation. The intensity of the Raman peaks at 1126 cm(-1) and 1082 cm(-1) were used to calculate the Longitudinal Order-Parameters in Chains (S(trans)) which can present the liquidity and ionic permeability of erythrocyte membrane. After UVB radiation for 30 min, both the liquidity and ionic permeability decreased. At the same time, the intensity of the peaks at 1302 cm(-1) (α-helix), 1254 cm(-1) (random coil), 1452 cm(-1) and 1430 cm(-1) (CH(2)/CH(3) stretch) have also changed which indicated the membrane protein also been damaged by UVB. In the whole process of radiation, the more UVB radiation dose the more damage on the erythrocyte membrane.
Collapse
Affiliation(s)
- N Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ock K, Jeon WI, Ganbold EO, Kim M, Park J, Seo JH, Cho K, Joo SW, Lee SY. Real-Time Monitoring of Glutathione-Triggered Thiopurine Anticancer Drug Release in Live Cells Investigated by Surface-Enhanced Raman Scattering. Anal Chem 2012; 84:2172-8. [DOI: 10.1021/ac2024188] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kwangsu Ock
- Department of Chemistry, Soongsil University, Seoul 156-743, Korea
| | - Won Il Jeon
- Laboratory of Pharmacology,
College of Veterinary Medicine and Research Institute for Veterinary
Science, Seoul National University, Seoul
151-742 Korea
| | | | - Mira Kim
- Department of Chemistry, Soongsil University, Seoul 156-743, Korea
| | - Jinho Park
- Department of Chemistry, Soongsil University, Seoul 156-743, Korea
| | - Ji Hye Seo
- Department of Chemistry, Soongsil University, Seoul 156-743, Korea
| | - Keunchang Cho
- Department of Chemistry, Soongsil University, Seoul 156-743, Korea
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 156-743, Korea
| | - So Yeong Lee
- Laboratory of Pharmacology,
College of Veterinary Medicine and Research Institute for Veterinary
Science, Seoul National University, Seoul
151-742 Korea
| |
Collapse
|
35
|
Abstract
Preeclampsia is associated with increased perinatal morbidity and mortality. There have been numerous efforts to determine preeclampsia biomarkers by means of biophysical, biochemical, and spectroscopic methods. In this study, the preeclampsia and control groups were compared via band component analysis and multivariate analysis using Raman spectroscopy as an alternative technique. The Raman spectra of serum samples were taken from nine preeclamptic, ten healthy pregnant women. The Band component analysis and principal component analysis-linear discriminant analysis were applied to all spectra after a sensitive preprocess step. Using linear discriminant analysis, it was found that Raman spectroscopy has a sensitivity of 78% and a specificity of 90% for the diagnosis of preeclampsia. Via the band component analysis, a significant difference in the spectra of preeclamptic patients was observed when compared to the control group. 19 Raman bands exhibited significant differences in intensity, while 11 of them decreased and eight of them increased. This difference seen in vibrational bands may be used in further studies to clarify the pathophysiology of preeclampsia.
Collapse
|