1
|
Shen Y, Huang B, Yao H, Shan G, Shao Y, Zhou X, Han L, Zhou C. In-vivo spectral recomposition of sunlight with glycosylated aggregation-induced emission antennas for boosting photosynthesis. J Colloid Interface Sci 2025; 688:784-795. [PMID: 40037015 DOI: 10.1016/j.jcis.2025.02.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
Efficient solar energy capture is crucial for boosting photosynthesis, but excess energy can lead to photodamage. Here, we developed a glycosylated antenna molecule TPyGal (4-(4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)styryl)-1-(2-((3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)ethyl)pyridin-1-ium bromide) featuring a robust electron donor-acceptor structure and aggregation-induced emission property, for in vivo spectral recomposition of solar energy to optimize photosynthesis. TPyGal demonstrated strong assembly with the cell membrane of photosynthetic algae and exhibited low biotoxicity. As a biocompatible membrane antenna, TPyGal efficiently redistributed ultraviolet and blue light into red light on the algal cell membrane. Such intracellular spectral recomposition could reduce energy waste and mitigate photodamage, which significantly improved light utilization. Consequently, algae assembled with TPyGal showed a substantial increase in photosynthetic rates and biomass production. Furthermore, TPyGal acted as both a fertilizer and an artificial antenna, effectively promoting the photosynthesis and growth of higher plants, such as mung bean sprouts. This work provides a promising strategy for efficient solar energy conversion and photosynthesis enhancement.
Collapse
Affiliation(s)
- Yihui Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Baojian Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Guogang Shan
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130022, China
| | - Yingying Shao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xin Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China.
| | - Chengcheng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
2
|
Ma G, Gao Q, Yuan L, Chen Y, Cai Z, Zhang L, Hu J, Wang Y, Wu S, Sun Y. Spirulina (Arthrospira) cultivation in photobioreactors: From biochemistry and physiology to scale up engineering. BIORESOURCE TECHNOLOGY 2025; 423:132259. [PMID: 39971103 DOI: 10.1016/j.biortech.2025.132259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/21/2025]
Abstract
Spirulina (Arthrospira) has been extensively applied in CO2 biofixation, wastewater purification, and value-added bioproducts preparation. Light availability plays a pivotal role in Spirulina photoautotrophic cultivation, which is primary determined by characteristics of incident light and distribution of light within photobioreactors (PBRs). To clarify the role of light in Spirulina photoautotrophic cultivation, this review first analyzes the processes of light delivery and conversion in suspended PBRs. Then, effects of key light characteristics, including light intensity, spectrum, and photoperiod, on Spirulina growth and intracellular biochemical components synthesis are comprehensively summarized. Recent advancements in innovative PBR designs aimed at enhancing light utilization efficiency and promoting Spirulina growth are also highlighted. Finally, potential future research directions in the field of Spirulina photoautotrophic cultivation are outlined. Overall, this work provides a theoretical foundation and technical guidance for improving Spirulina production and specific target products synthesis from prespectives of light conditions regulation and PBRs design.
Collapse
Affiliation(s)
- Guoyu Ma
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qiping Gao
- Tongwei Research Institute, Tongwei Agriculture Development Co., Ltd., Chengdu 610093, China
| | - Lu Yuan
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yu Chen
- Tongwei Research Institute, Tongwei Agriculture Development Co., Ltd., Chengdu 610093, China
| | - Zhongzhen Cai
- Tongwei Research Institute, Tongwei Agriculture Development Co., Ltd., Chengdu 610093, China
| | - Liang Zhang
- Tongwei Research Institute, Tongwei Agriculture Development Co., Ltd., Chengdu 610093, China
| | - Jun Hu
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yunjun Wang
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Shusong Wu
- College of Animal Science and Technology, Yuelushan Laboratory, Hunan Agricultural University, Changsha 410128, China
| | - Yahui Sun
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Gao Y, Zhou X, Huang H, Wang C, Xiao X, Wen J, Wu J, Zhou S, de Dios VR, Rodríguez LG, Yao Y, Liu J, Deng H. ORANGE proteins mediate adaptation to high light and resistance to Pseudomonas syringae in tomato by regulating chlorophylls and carotenoids accumulation. Int J Biol Macromol 2025; 306:141739. [PMID: 40049490 DOI: 10.1016/j.ijbiomac.2025.141739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Chlorophylls and carotenoids are crucial for photosynthesis and plant survival, with ORANGE (OR) protein being pivotal in pigment accumulation. Despite tomato being rich in carotenoids, the roles of OR proteins in tomato have been overlooked. Herein, we characterized two OR genes in tomato, SlOR and SlOR-like, which are highly expressed in stems, leaves, and flowers, with their proteins being localized to chloroplasts. Overexpression of SlOR in transgenic plants conferred enhanced growth and height, whereas co-silencing of SlOR and SlOR-like resulted in stunted growth, pale-green leaves due to diminished chlorophylls and carotenoids, and fewer thylakoid lamellae and layers. Under normal light, SlOR/SlOR-like-Ri transgenic plants exhibited compromised electron transport and photosynthetic rates; furthermore, high-light exposure exacerbated these effects, resulting in photooxidative stress, elevated reactive oxygen species (ROS) and reduced photosynthetic rates in SlOR/SlOR-like-Ri plants. Transcriptome analysis revealed that photosynthesis-related genes were up-regulated, while defense-related genes were significantly down-regulated in SlOR/SlOR-like-Ri lines relative to wild-type plants. Additionally, SlOR/SlOR-like-Ri plants also displayed enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000. Overall, our study highlights SlOR as a critical protein modulating the accumulation of chlorophylls and carotenoids in tomato, playing a crucial role in adaptation to high light conditions and pathogen resistance.
Collapse
Affiliation(s)
- Yongfeng Gao
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Xue Zhou
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Haitao Huang
- Mianyang Academy of Agricultural Sciences, 621023 Mianyang, China
| | - Cheng Wang
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Xiangxia Xiao
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Jing Wen
- Mianyang Academy of Agricultural Sciences, 621023 Mianyang, China
| | - Jiamin Wu
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Shan Zhou
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Víctor Resco de Dios
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Lucas Gutiérrez Rodríguez
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yinan Yao
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Jikai Liu
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Heng Deng
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| |
Collapse
|
4
|
Marques HM. Electron transfer in biological systems. J Biol Inorg Chem 2024; 29:641-683. [PMID: 39424709 PMCID: PMC11638306 DOI: 10.1007/s00775-024-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
5
|
Huang Y, Huang B, Shen Y, Ding Z, Yao H, Zhou X, Zhou C, Han L, Tang BZ. Nature-Inspired Artificial Aggregation-Induced Emission Antenna for Assembling with Algae to Promote Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39561288 DOI: 10.1021/acsami.4c14958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Inspired by the structure of chlorophyll assembled on the thylakoid membrane through its long hydrophobic chain, we designed cationic aggregation-induced emission (AIE) amphiphiles with two long hydrophobic chains to assemble with the electronegative cytomembrane of algae for efficiently converting natural ultraviolet light into usable blue light to promote photosynthesis. The photosynthesis efficiency of algae depended on the carbon chain length of the AIE amphiphile due to the difference in assembly capacity with the algal membrane. The AIE amphiphile with two hydrophobic chains of 12 carbon atoms effectively intercalated into the cytomembrane of algae, serving as an artificial membrane-embedded antenna to significantly improve light utilization by algae. This resulted in increased electron generation and a 98.6% increase in the electron transfer rate. Consequently, oxygen and ATP production in light-dependent reactions were boosted by about 100% and 64.5%, respectively, and the lipid yield increased by 45.7% in dark reactions. In addition, the AIE amphiphile also demonstrated a low biotoxicity. These results highlight the potential of AIE amphiphiles as membrane-embedded artificial antennas for optimizing natural photosynthesis.
Collapse
Affiliation(s)
- Yujin Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China
| | - Baojian Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Yihui Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China
| | - Zeyu Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China
| | - Xin Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Chengcheng Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| |
Collapse
|
6
|
Forde A, Maity S, Freixas VM, Fernandez-Alberti S, Neukirch AJ, Kleinekathöfer U, Tretiak S. Stabilization of Charge-Transfer Excited States in Biological Systems: A Computational Focus on the Special Pair in Photosystem II Reaction Centers. J Phys Chem Lett 2024; 15:4142-4150. [PMID: 38593451 DOI: 10.1021/acs.jpclett.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Charge-transfer (CT) excited states play an important role in many biological processes. However, many computational approaches often inadequately address the equilibration effects of nuclear and environmental degrees of freedom on these states. One prominent example of systems in which CT states are of utmost importance is reaction centers (RC) in photosystems. Here we use a multiscale approach combined with time-dependent density functional theory to explore the lowest CT excited state of the special pair PD1-PD2 in the Photosystem II-RC of a cyanobacterium. We find that the nonequilibrium CT excited state resides near the Soret band, making an exciton the lowest-energy excited state. However, accounting for nuclear and state-specific dielectric equilibration along the CT potential energy surface (PES), the CT state PD1--PD2+ stabilizes energetically below the excitonic state. This underscores the crucial role of state-specific solvation in mapping the PES of CT states, as demonstrated in a simplified dimer model.
Collapse
Affiliation(s)
- Aaron Forde
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sayan Maity
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Victor M Freixas
- Departamento de Ciencia y Tecnologiia, Univresidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | | | - Amanda J Neukirch
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
7
|
Gorbunov MY, Falkowski PG. Using picosecond fluorescence lifetime analysis to determine photosynthesis in the world's oceans. PHOTOSYNTHESIS RESEARCH 2024; 159:253-259. [PMID: 38019308 DOI: 10.1007/s11120-023-01060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
Phytoplankton in the ocean account for less than 1% of the global photosynthetic biomass, but contribute about 45% of the photosynthetically fixed carbon on Earth. This amazing production/biomass ratio implies a very high photosynthetic efficiency. But, how efficiently is the absorbed light used in marine photosynthesis? The introduction of picosecond and then femtosecond lasers for kinetic measurements in mid 1970s to 90 s was a revolution in basic photosynthesis research that vastly improved our understanding of the energy conversion processes in photosynthetic reactions. Until recently, the use of this technology in the ocean was not feasible due to the complexity of related instrumentation and the lack of picosecond lasers suitable for routine operation in the field. However, recent advances in solid-state laser technology and the development of compact data acquisition electronics led to the application of picosecond fluorescence lifetime analyses in the field. Here, we review the development of operational ultrasensitive picosecond fluorescence instruments to infer photosynthetic energy conversion processes in ocean ecosystems. This analysis revealed that, in spite of the high production/biomass ratio in marine phytoplankton, the photosynthetic energy conversion efficiency is exceptionally low-on average, ca. 50% of its maximum potential, suggesting that most of the contemporary open ocean surface waters are extremely nutrient deficient.
Collapse
Affiliation(s)
- Maxim Y Gorbunov
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
8
|
Nguyen HL, Do TN, Zhong K, Akhtar P, Jansen TLC, Knoester J, Caffarri S, Lambrev P, Tan HS. Inter-subunit energy transfer processes in a minimal plant photosystem II supercomplex. SCIENCE ADVANCES 2024; 10:eadh0911. [PMID: 38394196 PMCID: PMC10889429 DOI: 10.1126/sciadv.adh0911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Photosystem II (PSII) is an integral part of the photosynthesis machinery, in which several light-harvesting complexes rely on inter-complex excitonic energy transfer (EET) processes to channel energy to the reaction center. In this paper, we report on a direct observation of the inter-complex EET in a minimal PSII supercomplex from plants, containing the trimeric light-harvesting complex II (LHCII), the monomeric light-harvesting complex CP26, and the monomeric PSII core complex. Using two-dimensional (2D) electronic spectroscopy, we measure an inter-complex EET timescale of 50 picoseconds for excitations from the LHCII-CP26 peripheral antenna to the PSII core. The 2D electronic spectra also reveal that the transfer timescale is nearly constant over the pump spectrum of 600 to 700 nanometers. Structure-based calculations reveal the contribution of each antenna complex to the measured inter-complex EET time. These results provide a step in elucidating the full inter-complex energy transfer network of the PSII machinery.
Collapse
Affiliation(s)
- Hoang Long Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Thanh Nhut Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Kai Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Parveen Akhtar
- ELI-ALPS, ELI-HU Nonprofit Limited, Wolfgang Sandner utca 3, Szeged 6728, Hungary
- HUN-REN Biological Research Centre, Szeged, Temesvári körút 62, Szeged 6726, Hungary
| | - Thomas L. C. Jansen
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Jasper Knoester
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
- Faculty of Science, Leiden University, Einsteinweg 55, NL-2300 RA Leiden, Netherlands
| | - Stefano Caffarri
- Aix Marseille Université, CEA, CNRS, BIAM, LGBP, 13009 Marseille, France
| | - Petar Lambrev
- HUN-REN Biological Research Centre, Szeged, Temesvári körút 62, Szeged 6726, Hungary
| | - Howe-Siang Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
9
|
Krysiak S, Gotić M, Madej E, Moreno Maldonado AC, Goya GF, Spiridis N, Burda K. The effect of ultrafine WO 3 nanoparticles on the organization of thylakoids enriched in photosystem II and energy transfer in photosystem II complexes. Microsc Res Tech 2023; 86:1583-1598. [PMID: 37534550 DOI: 10.1002/jemt.24394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
In this work, a new approach to construct self-assembled hybrid systems based on natural PSII-enriched thylakoid membranes (PSII BBY) is demonstrated. Superfine m-WO3 NPs (≈1-2 nm) are introduced into PSII BBY. Transmission electron microscopy (TEM) measurements showed that even the highest concentrations of NPs used did not degrade the PSII BBY membranes. Using atomic force microscopy (AFM), it is shown that the organization of PSII BBY depends strongly on the concentration of NPs applied. This proved that the superfine NPs can easily penetrate the thylakoid membrane and interact with its components. These changes are also related to the modified energy transfer between the external light-harvesting antennas and the PSII reaction center, shown by absorption and fluorescence experiments. The biohybrid system shows stability at pH 6.5, the native operating environment of PSII, so a high rate of O2 evolution is expected. In addition, the light-induced water-splitting process can be further stimulated by the direct interaction of superfine WO3 NPs with the donor and acceptor sides of PSII. The water-splitting activity and stability of this colloidal system are under investigation. RESEARCH HIGHLIGHTS: The phenomenon of the self-organization of a biohybrid system composed of thylakoid membranes enriched in photosystem II and superfine WO3 nanoparticles is studied using AFM and TEM. A strong dependence of the organization of PSII complexes within PSII BBY membranes on the concentration of NPs applied is observed. This observation turns out to be crucial to understand the complexity of the mechanism of the action of WO3 NPs on modifications of energy transfer from external antenna complexes to the PSII reaction center.
Collapse
Affiliation(s)
- S Krysiak
- Faculty of Physics and Applied Computer Science, AGH - University of Krakow, Krakow, Poland
| | - M Gotić
- Division of Materials Physics, Ruđer Bošković Institute, Zagreb, Croatia
| | - E Madej
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - A C Moreno Maldonado
- Condensed Matter Physics Department and Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - G F Goya
- Condensed Matter Physics Department and Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - N Spiridis
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - K Burda
- Faculty of Physics and Applied Computer Science, AGH - University of Krakow, Krakow, Poland
| |
Collapse
|
10
|
Zhang H, Ou X, Chen W, Zeng Q, Yan Y, He M, Yan H. Comparative physicochemical, hormonal, transcriptomic and proteomic analyses provide new insights into the formation mechanism of two chemotypes of Pogostemon cablin. PLoS One 2023; 18:e0290402. [PMID: 37738267 PMCID: PMC10516424 DOI: 10.1371/journal.pone.0290402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/08/2023] [Indexed: 09/24/2023] Open
Abstract
Patchouli (Pogostemon cablin) is an aromatic plant, and its oil has diverse applications in medicine, food, and cosmetics. Patchouli alcohol is the principal bioactive constituent of its volatile oil. In China, patchouli is typically categorized into two types: patchoulol-type (PA-type) and pogostone-type (PO-type). The study evaluated physiological and biochemical indicators, phytohormone metabolites and conducted transcriptome and proteome analyses on both two chemotypes. The PA-type exhibited higher levels of chlorophyll a, b, and carotenoids than the PO-type. In total, 35 phytohormone metabolites representing cytokinin, abscisic acid, gibberellin, jasmonic acid, and their derivatives were identified using UPLC-MS/MS, 10 of which displayed significant differences, mainly belong to cytokinins and jasmonates. Transcriptome analysis identified 4,799 differentially expressed genes (DEGs), while proteome analysis identified 150 differentially expressed proteins (DEPs). Regarding the transcriptome results, the DEGs of the PO-type showed significant downregulation in the pathways of photosynthesis, photosynthesis-antenna protein, porphyrin and chlorophyll metabolism, carotenoid biosynthesis, sesquiterpene and triterpenoid biosynthesis, and starch and sucrose metabolism, but upregulation in the pathway of zeatin synthesis. A combination of transcriptome and proteome analyses revealed that the DEGs and DEPs of lipoxygenase (LOX2), β-glucosidase, and patchouli synthase (PTS) were collectively downregulated, while the DEGs and DEPs of Zeatin O-xylosyltransferase (ZOX1) and α-amylase (AMY) were jointly upregulated in the PO-type compared to the PA-type. Differential levels of phytohormones, variations in photosynthetic efficiency, and differential expression of genes in the sesquiterpene synthesis pathway may account for the morphological and major active component differences between the two chemotypes of patchouli. The findings of this study offer novel perspectives on the underlying mechanisms contributing to the formation of the two patchouli chemotypes.
Collapse
Affiliation(s)
- Hongyi Zhang
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China
- Guangdong Provincial Research Center on Good Agricultural Practice & Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal Materials, Guangzhou, China
| | - Xiaohua Ou
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenyi Chen
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Zeng
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yaling Yan
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mengling He
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China
- Guangdong Provincial Research Center on Good Agricultural Practice & Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal Materials, Guangzhou, China
| | - Hanjing Yan
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China
- Guangdong Provincial Research Center on Good Agricultural Practice & Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal Materials, Guangzhou, China
| |
Collapse
|
11
|
Cazzaniga S, Kim M, Pivato M, Perozeni F, Sardar S, D'Andrea C, Jin E, Ballottari M. Photosystem II monomeric antenna CP26 plays a key role in nonphotochemical quenching in Chlamydomonas. PLANT PHYSIOLOGY 2023; 193:1365-1380. [PMID: 37403662 DOI: 10.1093/plphys/kiad391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023]
Abstract
Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic photosynthetic organisms. Here, we investigated the function of the monomeric photosystem II (PSII) antenna protein CP26 in photoprotection and light harvesting in Chlamydomonas reinhardtii, a model organism for green algae. We used CRISPR/Cas9 genome editing and complementation to generate cp26 knockout mutants (named k6#) that did not negatively affect CP29 accumulation, which differed from previous cp26 mutants, allowing us to compare mutants specifically deprived of CP26, CP29, or both. The absence of CP26 partially affected PSII activity, causing reduced growth at low or medium light but not at high irradiances. However, the main phenotype observed in k6# mutants was a more than 70% reduction of NPQ compared to the wild type (Wt). This phenotype was fully rescued by genetic complementation and complemented strains accumulating different levels of CP26, demonstrating that ∼50% of CP26 content, compared to the Wt, was sufficient to restore the NPQ capacity. Our findings demonstrate a pivotal role for CP26 in NPQ induction, while CP29 is crucial for PSII activity. The genetic engineering of these 2 proteins could be a promising strategy to regulate the photosynthetic efficiency of microalgae under different light regimes.
Collapse
Affiliation(s)
- Stefano Cazzaniga
- Dipartimento di Biotecnologie, Università di Verona, Verona 37134, Italy
| | - Minjae Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Matteo Pivato
- Dipartimento di Biotecnologie, Università di Verona, Verona 37134, Italy
| | - Federico Perozeni
- Dipartimento di Biotecnologie, Università di Verona, Verona 37134, Italy
| | - Samim Sardar
- Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano 20134, Italy
| | - Cosimo D'Andrea
- Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano 20134, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milano 20133, Italy
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona, Verona 37134, Italy
| |
Collapse
|
12
|
Villadangos S, Munné-Bosch S. Acclimation to a combination of water deficit and nutrient deprivation through simultaneous increases in abscisic acid and bioactive jasmonates in the succulent plant Sempervivum tectorum L. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154040. [PMID: 37364405 DOI: 10.1016/j.jplph.2023.154040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Activation of hormonal responses defines the drought acclimation ability of plants and may condition their survival. However, aside ABA, little is known about the possible contribution of other phytohormones, such as jasmonates and salicylates, in the response of CAM plants to water deficit. Here, we aimed to study the physiological mechanisms underlying the stress tolerance of house leek (Sempervivum tectorum L.), a CAM plant adapted to survive harsh environments, to a combination of water deficit and nutrient deprivation. We exposed plants to the combination of these two abiotic stresses by withholding nutrient solution for 10 weeks and monitored their physiological response every two weeks by measuring various stress makers together with the accumulation of stress-related phytohormones and photoprotective molecules, such as tocopherols (vitamin E). Results showed that ABA content increased by 4.2-fold after four weeks of water deficit to keep later constant up to 10 weeks of stress, variations that occurred concomitantly with reductions in the relative leaf water content, which decreased by up to 20% only. The bioactive jasmonate, jasmonoyl-isoleucine was the other stress-related phytohormone that simultaneously increased under stress together with ABA. While contents of salicylic acid and the jasmonoyl-isoleucine precursors, 12-oxo-phytodienoic acid and jasmonic acid decreased with water deficit, those of jasmonoyl-isoleucine increased 3.6-fold at four weeks of stress. The contents of ABA and jasmonoyl-isoleucine correlated positively between them and with the content of α-tocopherol per unit of chlorophyll, thus suggesting a photoprotective activation role. It is concluded that S. tectorum not only withstands a combination of water deficit and nutrient deprivation for 10 weeks without any symptom of damage but also activates effective defense strategies through the simultaneous accumulation of ABA and the bioactive jasmonate form, jasmonoyl-isoleucine.
Collapse
Affiliation(s)
- Sabina Villadangos
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain; Institute of Research in Biodiversity (IRBio), Universitat de Barcelona, Avinguda Diagonal 643, 08028, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain; Institute of Research in Biodiversity (IRBio), Universitat de Barcelona, Avinguda Diagonal 643, 08028, Spain.
| |
Collapse
|
13
|
Caspy I, Fadeeva M, Mazor Y, Nelson N. Structure of Dunaliella photosystem II reveals conformational flexibility of stacked and unstacked supercomplexes. eLife 2023; 12:e81150. [PMID: 36799903 PMCID: PMC9949808 DOI: 10.7554/elife.81150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
Photosystem II (PSII) generates an oxidant whose redox potential is high enough to enable water oxidation , a substrate so abundant that it assures a practically unlimited electron source for life on earth . Our knowledge on the mechanism of water photooxidation was greatly advanced by high-resolution structures of prokaryotic PSII . Here, we show high-resolution cryogenic electron microscopy (cryo-EM) structures of eukaryotic PSII from the green alga Dunaliella salina at two distinct conformations. The conformers are also present in stacked PSII, exhibiting flexibility that may be relevant to the grana formation in chloroplasts of the green lineage. CP29, one of PSII associated light-harvesting antennae, plays a major role in distinguishing the two conformations of the supercomplex. We also show that the stacked PSII dimer, a form suggested to support the organisation of thylakoid membranes , can appear in many different orientations providing a flexible stacking mechanism for the arrangement of grana stacks in thylakoids. Our findings provide a structural basis for the heterogenous nature of the eukaryotic PSII on multiple levels.
Collapse
Affiliation(s)
- Ido Caspy
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
| | - Maria Fadeeva
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
| | - Yuval Mazor
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
- Biodesign Center for Applied Structural Discovery, Arizona State UniversityTempeUnited States
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
| |
Collapse
|
14
|
Phycobilisome light-harvesting efficiency in natural populations of the marine cyanobacteria Synechococcus increases with depth. Commun Biol 2022; 5:727. [PMID: 35869258 PMCID: PMC9307576 DOI: 10.1038/s42003-022-03677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Cyanobacteria of the genus Synechococcus play a key role as primary producers and drivers of the global carbon cycle in temperate and tropical oceans. Synechococcus use phycobilisomes as photosynthetic light-harvesting antennas. These contain phycoerythrin, a pigment-protein complex specialized for absorption of blue light, which penetrates deep into open ocean water. As light declines with depth, Synechococcus photo-acclimate by increasing both the density of photosynthetic membranes and the size of the phycobilisomes. This is achieved with the addition of phycoerythrin units, as demonstrated in laboratory studies. In this study, we probed Synechococcus populations in an oligotrophic water column habitat at increasing depths. We observed morphological changes and indications for an increase in phycobilin content with increasing depth, in summer stratified Synechococcus populations. Such an increase in antenna size is expected to come at the expense of decreased energy transfer efficiency through the antenna, since energy has a longer distance to travel. However, using fluorescence lifetime depth profile measurement approach, which is applied here for the first time, we found that light-harvesting quantum efficiency increased with depth in stratified water column. Calculated phycobilisome fluorescence quantum yields were 3.5% at 70 m and 0.7% at 130 m. Under these conditions, where heat dissipation is expected to be constant, lower fluorescence yields correspond to higher photochemical yields. During winter-mixing conditions, Synechococcus present an intermediate state of light harvesting, suggesting an acclimation of cells to the average light regime through the mixing depth (quantum yield of ~2%). Given this photo-acclimation strategy, the primary productivity attributed to marine Synechococcus should be reconsidered. Probing the population of the cyanobacterium Synechococcus in an oligotrophic water column habitat at increasing depths reveals that light-harvesting quantum efficiency increases with depth.
Collapse
|
15
|
Sipka G, Nagy L, Magyar M, Akhtar P, Shen JR, Holzwarth AR, Lambrev PH, Garab G. Light-induced reversible reorganizations in closed Type II reaction centre complexes: physiological roles and physical mechanisms. Open Biol 2022; 12:220297. [PMID: 36514981 PMCID: PMC9748786 DOI: 10.1098/rsob.220297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
The purpose of this review is to outline our understanding of the nature, mechanism and physiological significance of light-induced reversible reorganizations in closed Type II reaction centre (RC) complexes. In the so-called 'closed' state, purple bacterial RC (bRC) and photosystem II (PSII) RC complexes are incapable of generating additional stable charge separation. Yet, upon continued excitation they display well-discernible changes in their photophysical and photochemical parameters. Substantial stabilization of their charge-separated states has been thoroughly documented-uncovering light-induced reorganizations in closed RCs and revealing their physiological importance in gradually optimizing the operation of the photosynthetic machinery during the dark-to-light transition. A range of subtle light-induced conformational changes has indeed been detected experimentally in different laboratories using different bRC and PSII-containing preparations. In general, the presently available data strongly suggest similar structural dynamics of closed bRC and PSII RC complexes, and similar physical mechanisms, in which dielectric relaxation processes and structural memory effects of proteins are proposed to play important roles.
Collapse
Affiliation(s)
- G. Sipka
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - L. Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
- Institute of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1, 6720 Szeged, Hungary
| | - M. Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - P. Akhtar
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - J.-R. Shen
- Institute of Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, 700-8530 Okayama, Japan
- Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, People's Republic of China
| | - A. R. Holzwarth
- Max-Planck-Institute for Chemical Energy Conversion, 45470 Mülheim a.d. Ruhr, Germany
| | - P. H. Lambrev
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - G. Garab
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| |
Collapse
|
16
|
Tan YH, Poong SW, Yang CH, Lim PE, John B, Pai TW, Phang SM. Transcriptomic analysis reveals distinct mechanisms of adaptation of a polar picophytoplankter under ocean acidification conditions. MARINE ENVIRONMENTAL RESEARCH 2022; 182:105782. [PMID: 36308800 DOI: 10.1016/j.marenvres.2022.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Human emissions of carbon dioxide are causing irreversible changes in our oceans and impacting marine phytoplankton, including a group of small green algae known as picochlorophytes. Picochlorophytes grown in natural phytoplankton communities under future predicted levels of carbon dioxide have been demonstrated to thrive, along with redistribution of the cellular metabolome that enhances growth rate and photosynthesis. Here, using next-generation sequencing technology, we measured levels of transcripts in a picochlorophyte Chlorella, isolated from the sub-Antarctic and acclimated under high and current ambient CO2 levels, to better understand the molecular mechanisms involved with its ability to acclimate to elevated CO2. Compared to other phytoplankton taxa that induce broad transcriptomic responses involving multiple parts of their cellular metabolism, the changes observed in Chlorella focused on activating gene regulation involved in different sets of pathways such as light harvesting complex binding proteins, amino acid synthesis and RNA modification, while carbon metabolism was largely unaffected. Triggering a specific set of genes could be a unique strategy of small green phytoplankton under high CO2 in polar oceans.
Collapse
Affiliation(s)
- Yong-Hao Tan
- Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia; Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Sze-Wan Poong
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Cing-Han Yang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Phaik-Eem Lim
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia.
| | - Beardall John
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan; Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Siew-Moi Phang
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia; Department of Biotechnology, Faculty of Applied Science, UCSI University, Kuala Lumpur, Malaysia; The Chancellery, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Pitch GM, Matsushima LN, Kraemer Y, Dailing EA, Ayzner AL. Energy Transfer in Aqueous Light Harvesting Antennae Based on Brush-like Inter-Conjugated Polyelectrolyte Complexes. Macromolecules 2022; 55:10302-10311. [DOI: 10.1021/acs.macromol.2c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Gregory M. Pitch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| | - Levi N. Matsushima
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| | - Yannick Kraemer
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| | - Eric A. Dailing
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Alexander L. Ayzner
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California95064, United States
| |
Collapse
|
18
|
Gorai T, Lovitt JI, Umadevi D, McManus G, Gunnlaugsson T. Hierarchical supramolecular co-assembly formation employing multi-component light-harvesting charge transfer interactions giving rise to long-wavelength emitting luminescent microspheres. Chem Sci 2022; 13:7805-7813. [PMID: 35865882 PMCID: PMC9258320 DOI: 10.1039/d2sc02097a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Charge transfer (CT) interaction induced formation of a hierarchical supramolecular assembly has attracted attention due to its wide diversity of structural and functional characteristics. In the present work, we report the generation of green luminescent microspheres from the charge transfer interaction induced co-assembly of a bis-naphthyl dipicolinic amide (DPA) derivative with tetracyanobenzene (TCNB) for the first time. The properties of these self-assemblies were studied both in solution and the solid-state using spectroscopic and a variety of microscopy techniques. The X-ray crystal structure analysis showed a mixed stack arrangement of DPA and TCNB. The molecular orbital and energy level calculations confirm the charge transfer complex formation between DPA and TCNB. Furthermore, energy transfer was observed from the green luminescent CT complex to a red-emitting dye, pyronin Y, in the microsphere matrix, leading to the formation of a light-harvesting tri-component self-assembly.
Collapse
Affiliation(s)
- Tumpa Gorai
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
| | - June I Lovitt
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| | - Deivasigamani Umadevi
- Department of Chemistry, Indian Institute of Technology Palakkad (IITPKD) Palakkad-678557 Kerala India
| | - Gavin McManus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| |
Collapse
|
19
|
Yoneda Y, Arsenault EA, Yang SJ, Orcutt K, Iwai M, Fleming GR. The initial charge separation step in oxygenic photosynthesis. Nat Commun 2022; 13:2275. [PMID: 35477708 PMCID: PMC9046298 DOI: 10.1038/s41467-022-29983-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Photosystem II is crucial for life on Earth as it provides oxygen as a result of photoinduced electron transfer and water splitting reactions. The excited state dynamics of the photosystem II-reaction center (PSII-RC) has been a matter of vivid debate because the absorption spectra of the embedded chromophores significantly overlap and hence it is extremely difficult to distinguish transients. Here, we report the two-dimensional electronic-vibrational spectroscopic study of the PSII-RC. The simultaneous resolution along both the visible excitation and infrared detection axis is crucial in allowing for the character of the excitonic states and interplay between them to be clearly distinguished. In particular, this work demonstrates that the mixed exciton-charge transfer state, previously proposed to be responsible for the far-red light operation of photosynthesis, is characterized by the ChlD1+Phe radical pair and can be directly prepared upon photoexcitation. Further, we find that the initial electron acceptor in the PSII-RC is Phe, rather than PD1, regardless of excitation wavelength.
Collapse
Affiliation(s)
- Yusuke Yoneda
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
- Research Center of Integrative Molecular Systems, Institute for Molecular Science, National Institute of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, CA, 94720, United States
| | - Shiun-Jr Yang
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States.
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, CA, 94720, United States.
| |
Collapse
|
20
|
Yang D, Han J, Sang Y, Zhao T, Liu M, Duan P. Steering Triplet-Triplet Annihilation Upconversion through Enantioselective Self-Assembly in a Supramolecular Gel. J Am Chem Soc 2021; 143:13259-13265. [PMID: 34387996 DOI: 10.1021/jacs.1c05927] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research on chiral selection and recognition not only is of fundamental importance in resolving the origin of biological homochirality, but also is instructive in the fabrication of controlled molecular organization in supramolecular systems to modulate their chirality-related functional properties. Here we report an enantioselective assembly process between a chiral energy donor and two enantiomeric energy acceptors, which further results in chirality-controlled energy transfer and enantioselective triplet-triplet annihilation upconversion (TTA-UC). It is found that the chiral energy donor Pd(II) octaethylporphyrin derivative PdOEP-LG12 (RD) can selectively coassemble with the chiral energy acceptor LGAn (RA) with the same chiral scaffold but tends to form segregation with the energy acceptor DGAn (SA) with the opposite chiral scaffold in a thermodynamic equilibrium state. Thus, the coassembly of RA/RD shows more effective triplet-triplet energy transfer (TTET) and stronger upconverted luminescence and upconverted circularly polarized luminescence in comparison to the segregation of SA/RD. The establishment of such an enantioselective TTA-UC system highlights the applications of chirality-regulated triplet fusion in optoelectronic materials.
Collapse
Affiliation(s)
- Dong Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China.,Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianlei Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China
| | - Yutao Sang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tonghan Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Minghua Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China.,Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China
| |
Collapse
|
21
|
Pan X, Tokutsu R, Li A, Takizawa K, Song C, Murata K, Yamasaki T, Liu Z, Minagawa J, Li M. Structural basis of LhcbM5-mediated state transitions in green algae. NATURE PLANTS 2021; 7:1119-1131. [PMID: 34239095 DOI: 10.1038/s41477-021-00960-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/03/2021] [Indexed: 05/10/2023]
Abstract
In green algae and plants, state transitions serve as a short-term light-acclimation process in the regulation of the light-harvesting capacity of photosystems I and II (PSI and PSII, respectively). During the process, a portion of light-harvesting complex II (LHCII) is phosphorylated, dissociated from PSII and binds with PSI to form the supercomplex PSI-LHCI-LHCII. Here, we report high-resolution structures of PSI-LHCI-LHCII from Chlamydomonas reinhardtii, revealing the mechanism of assembly between the PSI-LHCI complex and two phosphorylated LHCII trimers containing all four types of LhcbM protein. Two specific LhcbM isoforms, namely LhcbM1 and LhcbM5, directly interact with the PSI core through their phosphorylated amino terminal regions. Furthermore, biochemical and functional studies on mutant strains lacking either LhcbM1 or LhcbM5 indicate that only LhcbM5 is indispensable in supercomplex formation. The results unravel the specific interactions and potential excitation energy transfer routes between green algal PSI and two phosphorylated LHCIIs.
Collapse
Affiliation(s)
- Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Science, Capital Normal University, Beijing, China
| | - Ryutaro Tokutsu
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Anjie Li
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kenji Takizawa
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Astrobiology Centre, National Institutes of Natural Sciences, Mitaka, Japan
| | - Chihong Song
- Exploratory Research Centre on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kazuyoshi Murata
- Exploratory Research Centre on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Tomohito Yamasaki
- Science and Technology Department, Natural Science Cluster, Kochi University, Kochi, Japan
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Jun Minagawa
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Perozeni F, Beghini G, Cazzaniga S, Ballottari M. Chlamydomonas reinhardtii LHCSR1 and LHCSR3 proteins involved in photoprotective non-photochemical quenching have different quenching efficiency and different carotenoid affinity. Sci Rep 2020; 10:21957. [PMID: 33319824 PMCID: PMC7738518 DOI: 10.1038/s41598-020-78985-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/02/2020] [Indexed: 11/09/2022] Open
Abstract
Microalgae are unicellular photosynthetic organisms considered as potential alternative sources for biomass, biofuels or high value products. However, their limited biomass productivity represents a bottleneck that needs to be overcome to meet the applicative potential of these organisms. One of the domestication targets for improving their productivity is the proper balance between photoprotection and light conversion for carbon fixation. In the model organism for green algae, Chlamydomonas reinhardtii, a photoprotective mechanism inducing thermal dissipation of absorbed light energy, called Non-photochemical quenching (NPQ), is activated even at relatively low irradiances, resulting in reduced photosynthetic efficiency. Two pigment binding proteins, LHCSR1 and LHCSR3, were previously reported as the main actors during NPQ induction in C. reinhardtii. While previous work characterized in detail the functional properties of LHCSR3, few information is available for the LHCSR1 subunit. Here, we investigated in vitro the functional properties of LHCSR1 and LHCSR3 subunits: despite high sequence identity, the latter resulted as a stronger quencher compared to the former, explaining its predominant role observed in vivo. Pigment analysis, deconvolution of absorption spectra and structural models of LHCSR1 and LHCR3 suggest that different quenching efficiency is related to a different occupancy of L2 carotenoid binding site.
Collapse
Affiliation(s)
- Federico Perozeni
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Giorgia Beghini
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Stefano Cazzaniga
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
23
|
Fenollosa E, Munné-Bosch S. Reproductive load modulates drought stress response but does not compromise recovery in an invasive plant during the Mediterranean summer. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:221-230. [PMID: 32771933 DOI: 10.1016/j.plaphy.2020.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/10/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Despite summer drought may challenge plant survival in Mediterranean-type ecosystems, the role of reproductive load on drought stress and recovery has been poorly studied in invasive plants, most particularly under natural field conditions. In this study, a highly plastic clonal invasive species, Carpobrotus edulis was used to explore a putative differential response to drought between reproductive (senescent) ramets and non-reproductive ramets. Furthermore, fruit removal was used to assess how alterations on the source-sink dynamics influence plant performance during drought stress and recovery. We examined the variations in chloroplast pigments, antioxidants, lipid peroxidation and cytokinins in leaves of non-reproductive and reproductive ramets (either with intact or fruit-removed ramets) in response to summer drought stress and recovery after rains under Mediterranean field conditions. Results showed that although both ramet types within a C. edulis patch recovered at the end of the summer, increased photoprotective investment was found in leaves from reproductive ramets, thus indicating an increased photoprotective demand associated with reproduction at the ramet level. This response was associated with differentiated cytokinin contents in leaves of reproductive ramets compared to those of non-reproductive ramets. Although leaf senescence was not reversed by the fruit removal, leaves recovered their chlorophyll content after rainfall during late summer in parallel with the accumulation of cytokinins. In conclusion, C. edulis shows a huge plasticity in drought stress responses with a marked compartmentation at the ramet level, which helps at least in part to an efficient recovery from unpredictable water shortage periods in the current frame of climate change.
Collapse
Affiliation(s)
- Erola Fenollosa
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institute of Research in Biodiversity (IRBio), University of Barcelona, Spain.
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institute of Research in Biodiversity (IRBio), University of Barcelona, Spain
| |
Collapse
|
24
|
Agostini A, Büchel C, Di Valentin M, Carbonera D. A distinctive pathway for triplet-triplet energy transfer photoprotection in fucoxanthin chlorophyll-binding proteins from Cyclotella meneghiniana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148310. [PMID: 32991847 DOI: 10.1016/j.bbabio.2020.148310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
Abstract
Fucoxanthin chlorophyll-binding proteins (FCPs) are the major light-harvesting complexes of diatoms. In this work, FCPs isolated from Cyclotella meneghiniana have been studied by means of optically detected magnetic resonance (ODMR) and time-resolved electron paramagnetic resonance (TR-EPR), with the aim to characterize the photoprotective mechanism based on triplet-triplet energy transfer (TTET). The spectroscopic properties of the chromophores carrying the triplet state have been interpreted on the basis of a delved analysis of the recently solved crystallographic structures of FCP. The results point toward a photoprotective role for two fucoxanthin molecules exposed to the exterior of the FCP monomers. This shows that FCP has adopted a structural strategy different from that of related light-harvesting complexes from plants and other microalgae, in which the photoprotective role is carried out by two highly conserved carotenoids in the interior of the complex.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
25
|
Croce R, van Amerongen H. Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. Science 2020; 369:369/6506/eaay2058. [PMID: 32820091 DOI: 10.1126/science.aay2058] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxygenic photosynthesis is the main process that drives life on earth. It starts with the harvesting of solar photons that, after transformation into electronic excitations, lead to charge separation in the reaction centers of photosystems I and II (PSI and PSII). These photosystems are large, modular pigment-protein complexes that work in series to fuel the formation of carbohydrates, concomitantly producing molecular oxygen. Recent advances in cryo-electron microscopy have enabled the determination of PSI and PSII structures in complex with light-harvesting components called "supercomplexes" from different organisms at near-atomic resolution. Here, we review the structural and spectroscopic aspects of PSI and PSII from plants and algae that directly relate to their light-harvesting properties, with special attention paid to the pathways and efficiency of excitation energy transfer and the regulatory aspects.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| | | |
Collapse
|
26
|
Saccon F, Durchan M, Kaňa R, Prášil O, Ruban AV, Polívka T. Spectroscopic Properties of Violaxanthin and Lutein Triplet States in LHCII are Independent of Carotenoid Composition. J Phys Chem B 2019; 123:9312-9320. [DOI: 10.1021/acs.jpcb.9b06293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Saccon
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS London, U.K
| | - Milan Durchan
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Radek Kaňa
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Ondřej Prášil
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Alexander V. Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS London, U.K
| | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
27
|
Yoneda Y, Nagasawa Y, Umena Y, Miyasaka H. β-Carotene Probes the Energy Transfer Pathway in the Photosystem II Core Complex. J Phys Chem Lett 2019; 10:3710-3714. [PMID: 31136182 DOI: 10.1021/acs.jpclett.9b01072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The dynamics of the intact photosystem II core complex (PSII-CC) has been investigated extensively to elucidate its excellent photofunction. However, it is significantly difficult to observe the primary photosynthetic processes in PSII-CC because a vast number of chlorophylls (Chl) in the core complex show similar spectral features. In the present work, the dynamics of the energy transfer (ET) from β-carotene (Bcr) in intact PSII-CC followed by charge separation (CS) at the reaction center (RC) with different excitation wavelengths were compared. Upon excitation at 510 nm, which selectively excites Bcr (Bcr651) inside of the D1-D2 RC, the pheophytin anion absorption band appeared within 9.6 ps. On the other hand, upon excitation at 490 nm, mainly exciting unspecified Bcr in the antenna complex, the anion band appeared after 20 ps. These excitation wavelength dependence experiments revealed a new ET pathway of PSII-CC, which indicates that the initial CS of PSII-CC is limited by ET to the RC.
Collapse
Affiliation(s)
- Yusuke Yoneda
- Graduate School of Engineering Sciences , Osaka University , Toyonaka , Osaka 560-8531 , Japan
| | - Yutaka Nagasawa
- College of Life Sciences , Ritsumeikan University , Kusatsu , Shiga 525-8577 , Japan
| | - Yasufumi Umena
- Research Institute for Interdisciplinary Science , Okayama University , Okayama , Okayama 700-8530 , Japan
| | - Hiroshi Miyasaka
- Graduate School of Engineering Sciences , Osaka University , Toyonaka , Osaka 560-8531 , Japan
| |
Collapse
|
28
|
Shi H, He S, He X, Lu S, Guo Z. An eukaryotic elongation factor 2 from Medicago falcata (MfEF2) confers cold tolerance. BMC PLANT BIOLOGY 2019; 19:218. [PMID: 31133003 PMCID: PMC6537394 DOI: 10.1186/s12870-019-1826-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/09/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND An eukaryotic translation elongation factor-2 (eEF-2) plays an important role in protein synthesis, however, investigation on its role in abiotic stress responses is limited. A cold responsive eEF2 named as MfEF2 was isolated from yellow-flowered alfalfa [Medicago sativa subsp. falcata (L.) Arcang, thereafter M. falcata], a forage legume with great cold tolerance, and transgenic tobacco (Nicotiana tabacum L.) plants overexpressing MfEF2 were analyzed in cold tolerance and proteomic profiling was conducted under low temperature in this study. RESULTS MfEF2 transcript was induced and peaked at 24 h and remained at the high level during cold treatment up to 96 h. Overexpression of MfEF2 in trasngenic tobacco plants resulted in enhanced cold tolerance. Compared to the wild type, transgenic plants showed higher survival rate after freezing treatment, higher levels of net photosynthetic rate (A), maximum photochemical efciency of photosystem (PS) II (Fv/Fm) and nonphotochemical quenching (NPQ) and lower levels of ion leakage and reactive oxygen species (ROS) production after chilling treatment. iTRAQ-based quantitative proteomic analysis identified 336 differentially expressed proteins (DEPs) from leaves of one transgenic line versus the wild type after chilling treatment for 48 h. GO and KEGG enrichment were conducted for analysis of the major biological process, cellular component, molecular function, and pathways of the DEPs involving in. It is interesting that many down-regulated DEPs were grouped into "photosynthesis" and "photosynthesis-antenna", such as subunits of PSI and PSII as well as light harvesting chlorophyll protein complex (LHC), while many up-regulated DEPs were grouped into "spliceosome". CONCLUSIONS The results suggest that MfEF2 confers cold tolerance through regulating hundreds of proteins synthesis under low temperature conditions. The elevated cold tolerance in MfEF2 transgenic plants was associated with downregulation of the subunits of PSI and PSII as well as LHC, which leads to reduced capacity for capturing sunlight and ROS production for protection of plants, and upregulation of proteins involving in splicesome, which promotes alternative splicing of pre-mRNA under low temperature.
Collapse
Affiliation(s)
- Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sijian He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642 China
| | - Xueying He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642 China
| | - Shaoyun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642 China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
29
|
Nwoba EG, Parlevliet DA, Laird DW, Alameh K, Moheimani NR. Light management technologies for increasing algal photobioreactor efficiency. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101433] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Koochak H, Puthiyaveetil S, Mullendore DL, Li M, Kirchhoff H. The structural and functional domains of plant thylakoid membranes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:412-429. [PMID: 30312499 DOI: 10.1111/tpj.14127] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 05/07/2023]
Abstract
In plants, the stacking of part of the photosynthetic thylakoid membrane generates two main subcompartments: the stacked grana core and unstacked stroma lamellae. However, a third distinct domain, the grana margin, has been postulated but its structural and functional identity remains elusive. Here, an optimized thylakoid fragmentation procedure combined with detailed ultrastructural, biochemical, and functional analyses reveals the distinct composition of grana margins. It is enriched with lipids, cytochrome b6 f complex, and ATPase while depleted in photosystems and light-harvesting complexes. A quantitative method is introduced that is based on Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE) and dot immunoblotting for quantifying various photosystem II (PSII) assembly forms in different thylakoid subcompartments. The results indicate that the grana margin functions as a degradation and disassembly zone for photodamaged PSII. In contrast, the stacked grana core region contains fully assembled and functional PSII holocomplexes. The stroma lamellae, finally, contain monomeric PSII as well as a significant fraction of dimeric holocomplexes that identify this membrane area as the PSII repair zone. This structural organization and the heterogeneous PSII distribution support the idea that the stacking of thylakoid membranes leads to a division of labor that establishes distinct membrane areas with specific functions.
Collapse
Affiliation(s)
- Haniyeh Koochak
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164-6340, USA
| | - Sujith Puthiyaveetil
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164-6340, USA
| | - Daniel L Mullendore
- Franceschi Microscopy and Imaging Center, Washington State University, Pullman, WA, 99164, USA
| | - Meng Li
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164-6340, USA
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, PO Box 646340, Pullman, WA, 99164-6340, USA
| |
Collapse
|
31
|
Hsieh ST, Zhang L, Ye DW, Huang X, Cheng YC. A theoretical study on the dynamics of light harvesting in the dimeric photosystem II core complex: regulation and robustness of energy transfer pathways. Faraday Discuss 2019; 216:94-115. [PMID: 31016302 DOI: 10.1039/c8fd00205c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Here we present our theoretical investigations into the light reaction in the dimeric photosystem II (PSII) core complex. An effective model for excitation energy transfer (EET) and primary charge separation (CS) in the PSII core complex was developed, with model parameters constructed based on molecular dynamics (MD) simulation data. Compared to experimental results, we demonstrated that this model faithfully reproduces the absorption spectra of the RC and core light-harvesting complexes (CP43 and CP47) as well as the full EET dynamics among the chromophores in the PSII core complex. We then applied master equation simulations and network analysis to investigate detailed EET plus CS dynamics in the system, allowing us to identify key EET pathways and produce a coarse-grained cluster model for the light reaction in the dimeric PSII core complex. We show that non-equilibrium energy transfer channels play important roles in the efficient light harvesting process and that multiple EET pathways exist between subunits of PSII to ensure the robustness of light harvesting in the system. Furthermore, we revealed that inter-monomer energy transfer dominated by the coupling between the two CLA625 molecules enables efficient energy exchange between two CP47s in the dimeric PSII core complex, which leads to significant energy pooling in the CP47 domain during the light reaction. Our study provides a blueprint for the design of light harvesting in the PSII core and show that a structure-based approach using molecular dynamics simulations and quantum chemistry calculations can be effectively utilized to elucidate the dynamics of light harvesting in complex photosynthetic systems.
Collapse
Affiliation(s)
- Shou-Ting Hsieh
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan.
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian CN 350002, China
| | - De-Wei Ye
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan.
| | - Xuhui Huang
- Department of Chemistry, Institute for Advance Study and School of Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| | - Yuan-Chung Cheng
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
32
|
Giovanardi M, Pantaleoni L, Ferroni L, Pagliano C, Albanese P, Baldisserotto C, Pancaldi S. In pea stipules a functional photosynthetic electron flow occurs despite a reduced dynamicity of LHCII association with photosystems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1025-1038. [DOI: 10.1016/j.bbabio.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
|
33
|
Ramanan C, Ferretti M, van Roon H, Novoderezhkin VI, van Grondelle R. Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII. Phys Chem Chem Phys 2018; 19:22877-22886. [PMID: 28812075 DOI: 10.1039/c7cp03038j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
LHCII, the major light harvesting antenna from plants, plays a dual role in photosynthesis. In low light it is a light-harvester, while in high light it is a quencher that protects the organism from photodamage. The switching mechanism between these two orthogonal conditions is mediated by protein dynamic disorder and photoprotective energy dissipation. The latter in particular is thought to occur in part via spectroscopically 'dark' states. We searched for such states in LHCII trimers from spinach, at both room temperature and at 77 K. Using 2D electronic spectroscopy, we explored coherent interactions between chlorophylls absorbing on the low-energy side of LHCII, which is the region that is responsible for both light-harvesting and photoprotection. 2D beating frequency maps allow us to identify four frequencies with strong excitonic character. In particular, our results show the presence of a low-lying state that is coupled to a low-energy excitonic state. We assign this to a mixed excitonic-charge transfer state involving the state with charge separation within the Chl a603-b609 heterodimer, borrowing some dipole strength from the Chl a602-a603 excited states. Such a state may play a role in photoprotection, in conjunction with specific and environmentally controlled realizations of protein dynamic disorder. Our identification and assignment of the coherences observed in the 2D frequency maps suggests that the structure of exciton states as well as a mixing of the excited and charge-transfer states is affected by coupling of these states to resonant vibrations in LHCII.
Collapse
Affiliation(s)
- Charusheela Ramanan
- Department of Physics and Astronomy and Institute for Lasers, Life, and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081HV, Amsterdam, The Netherlands.
| | - Marco Ferretti
- Department of Physics and Astronomy and Institute for Lasers, Life, and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081HV, Amsterdam, The Netherlands.
| | - Henny van Roon
- Department of Physics and Astronomy and Institute for Lasers, Life, and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081HV, Amsterdam, The Netherlands.
| | - Vladimir I Novoderezhkin
- A.N. Berlozersky Intitut of Physico-Chemical Biology, Moscow State University, Leninskie Gory 1, 119992, Moscow, Russia
| | - Rienk van Grondelle
- Department of Physics and Astronomy and Institute for Lasers, Life, and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081HV, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Liguori N, Xu P, van Stokkum IHM, van Oort B, Lu Y, Karcher D, Bock R, Croce R. Different carotenoid conformations have distinct functions in light-harvesting regulation in plants. Nat Commun 2017; 8:1994. [PMID: 29222488 PMCID: PMC5722816 DOI: 10.1038/s41467-017-02239-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/15/2017] [Indexed: 01/25/2023] Open
Abstract
To avoid photodamage plants regulate the amount of excitation energy in the membrane at the level of the light-harvesting complexes (LHCs). It has been proposed that the energy absorbed in excess is dissipated via protein conformational changes of individual LHCs. However, the exact quenching mechanism remains unclear. Here we study the mechanism of quenching in LHCs that bind a single carotenoid species and are constitutively in a dissipative conformation. Via femtosecond spectroscopy we resolve a number of carotenoid dark states, demonstrating that the carotenoid is bound to the complex in different conformations. Some of those states act as excitation energy donors for the chlorophylls, whereas others act as quenchers. Via in silico analysis we show that structural changes of carotenoids are expected in the LHC protein domains exposed to the chloroplast lumen, where acidification triggers photoprotection in vivo. We propose that structural changes of LHCs control the conformation of the carotenoids, thus permitting access to different dark states responsible for either light harvesting or photoprotection.
Collapse
Affiliation(s)
- Nicoletta Liguori
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Pengqi Xu
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Ivo H M van Stokkum
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Bart van Oort
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Yinghong Lu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Roberta Croce
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Xu P, Roy LM, Croce R. Functional organization of photosystem II antenna complexes: CP29 under the spotlight. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:815-822. [DOI: 10.1016/j.bbabio.2017.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 10/19/2022]
|
36
|
Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 2017; 543:355-365. [PMID: 28300093 DOI: 10.1038/nature22012] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/01/2017] [Indexed: 12/15/2022]
Abstract
Photosynthesis is the natural process that converts solar photons into energy-rich products that are needed to drive the biochemistry of life. Two ultrafast processes form the basis of photosynthesis: excitation energy transfer and charge separation. Under optimal conditions, every photon that is absorbed is used by the photosynthetic organism. Fundamental quantum mechanics phenomena, including delocalization, underlie the speed, efficiency and directionality of the charge-separation process. At least four design principles are active in natural photosynthesis, and these can be applied practically to stimulate the development of bio-inspired, human-made energy conversion systems.
Collapse
|
37
|
Giovanardi M, Poggioli M, Ferroni L, Lespinasse M, Baldisserotto C, Aro EM, Pancaldi S. Higher packing of thylakoid complexes ensures a preserved Photosystem II activity in mixotrophic Neochloris oleoabundans. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
38
|
Fenollosa E, Munné-Bosch S, Pintó-Marijuan M. Contrasting phenotypic plasticity in the photoprotective strategies of the invasive species Carpobrotus edulis and the coexisting native species Crithmum maritimum. PHYSIOLOGIA PLANTARUM 2017; 160:185-200. [PMID: 28058723 DOI: 10.1111/ppl.12542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/17/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
Photoprotective strategies vary greatly within the plant kingdom and reflect a plant's physiological status and capacity to cope with environment variations. The plasticity and intensity of these responses may determine plant success. Invasive species are reported to show increased vigor to displace native species. Describing the mechanisms that confer such vigor is essential to understanding the success of invasive species. We performed an experiment whereby two species were monitored: Carpobrotus edulis, an aggressive invasive species in the Mediterranean basin, and Crithmum maritimum, a coexisting native species in the Cap de Creus Natural Park (NE Spain). We analyzed their photoprotective responses to seasonal environmental dynamics by comparing the capacity of the invader to respond to the local environmental stresses throughout the year. Our study analyses ecophysiological markers and photoprotective strategies to gain an insight into the success of invaders. We found that both species showed completely different but effective photoprotective strategies: in summer, C. edulis took special advantage of the xanthophyll cycle, whereas the success of C. maritimum in summer stemmed from morphological changes and alterations on β-carotene content. Winter also presented differences between the species, as the native showed reduced Fv /Fm ratios. Our experimental design allowed us to introduce a new approach to compare phenotypic plasticity: the integrated phenotypic plasticity index (PPint ), defined as the maximum Euclidian distance between phenotypes, using a combination of different variables to describe them. This index revealed significantly greater phenotypic plasticity in the invasive species compared to the native species.
Collapse
Affiliation(s)
- Erola Fenollosa
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Marta Pintó-Marijuan
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Schweiggert RM, Carle R. Carotenoid deposition in plant and animal foods and its impact on bioavailability. Crit Rev Food Sci Nutr 2017; 57:1807-1830. [PMID: 26115350 DOI: 10.1080/10408398.2015.1012756] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Over the past decades, an enormous body of literature dealing with the natural deposition of carotenoids in plant- and animal-based foods has accumulated. Prominent examples are the large solid-crystalline aggregates in carrots and tomatoes or the lipid-dissolved forms in dairy products and egg yolk. Latest research has identified lipid-dissolved forms in a rare number of plant foods, such as tangerine tomatoes and peach palm fruit (Bactris gasipaes Kunth). In addition, liquid-crystalline forms were assumed in so-called tubular chromoplasts of numerous fruits, e.g., in papaya, mango, and bell pepper. The bioavailability of carotenoids from fresh and processed foods strongly depends on their genuine deposition form, since their effective absorption to the human organism requires their liberation from the food matrix and subsequent solubilization into mixed micelles in the small intestine. Consequently, a broad overview about the natural array of carotenoid deposition forms should be helpful to better understand and modulate their bioavailability from foods. Furthermore, naturally highly bioavailable forms may provide biomimetic models for the improved formulation of carotenoids in food supplements. Therefore, this review paper presents scientific evidence from human intervention studies associating carotenoid deposition forms with their bioavailability, thus suggesting novel technological and dietary strategies for their enhanced absorption.
Collapse
Affiliation(s)
- R M Schweiggert
- a Institute of Food Science and Biotechnology, Hohenheim University , Stuttgart , Germany
| | - R Carle
- a Institute of Food Science and Biotechnology, Hohenheim University , Stuttgart , Germany.,b Biological Science Department , King Abdulaziz University , Jeddah , Saudi Arabia
| |
Collapse
|
40
|
Murphy CD, Roodvoets MS, Austen EJ, Dolan A, Barnett A, Campbell DA. Photoinactivation of Photosystem II in Prochlorococcus and Synechococcus. PLoS One 2017; 12:e0168991. [PMID: 28129341 PMCID: PMC5271679 DOI: 10.1371/journal.pone.0168991] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/10/2016] [Indexed: 01/15/2023] Open
Abstract
The marine picocyanobacteria Synechococcus and Prochlorococcus numerically dominate open ocean phytoplankton. Although evolutionarily related they are ecologically distinct, with different strategies to harvest, manage and exploit light. We grew representative strains of Synechococcus and Prochlorococcus and tracked their susceptibility to photoinactivation of Photosystem II under a range of light levels. As expected blue light provoked more rapid photoinactivation than did an equivalent level of red light. The previous growth light level altered the susceptibility of Synechococcus, but not Prochlorococcus, to this photoinactivation. We resolved a simple linear pattern when we expressed the yield of photoinactivation on the basis of photons delivered to Photosystem II photochemistry, plotted versus excitation pressure upon Photosystem II, the balance between excitation and downstream metabolism. A high excitation pressure increases the generation of reactive oxygen species, and thus increases the yield of photoinactivation of Photosystem II. Blue photons, however, retained a higher baseline photoinactivation across a wide range of excitation pressures. Our experiments thus uncovered the relative influences of the direct photoinactivation of Photosystem II by blue photons which dominates under low to moderate blue light, and photoinactivation as a side effect of reactive oxygen species which dominates under higher excitation pressure. Synechococcus enjoyed a positive metabolic return upon the repair or the synthesis of a Photosystem II, across the range of light levels we tested. In contrast Prochlorococcus only enjoyed a positive return upon synthesis of a Photosystem II up to 400 μmol photons m-2 s-1. These differential cost-benefits probably underlie the distinct photoacclimation strategies of the species.
Collapse
Affiliation(s)
- Cole D. Murphy
- Biochemistry and Chemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Mitchell S. Roodvoets
- Biochemistry and Chemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Emily J. Austen
- Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Allison Dolan
- Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Audrey Barnett
- Michigan Technological University, Houghton, Michigan, United States of America
| | | |
Collapse
|
41
|
Kondo T, Chen WJ, Schlau-Cohen GS. Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems. Chem Rev 2017; 117:860-898. [DOI: 10.1021/acs.chemrev.6b00195] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Toru Kondo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Wei Jia Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
42
|
Liguori N, Natali A, Croce R. Engineering a pH-Regulated Switch in the Major Light-Harvesting Complex of Plants (LHCII): Proof of Principle. J Phys Chem B 2016; 120:12531-12535. [PMID: 27973840 DOI: 10.1021/acs.jpcb.6b11541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Under excess light, photosynthetic organisms employ feedback mechanisms to avoid photodamage. Photoprotection is triggered by acidification of the lumen of the photosynthetic membrane following saturation of the metabolic activity. A low pH triggers thermal dissipation of excess absorbed energy by the light-harvesting complexes (LHCs). LHCs are not able to sense pH variations, and their switch to a dissipative mode depends on stress-related proteins and allosteric cofactors. In green algae the trigger is the pigment-protein complex LHCSR3. Its C-terminus is responsible for a pH-driven conformational change from a light-harvesting to a quenched state. Here, we show that by replacing the C-terminus of the main LHC of plants with that of LHCSR3, it is possible to regulate its excited-state lifetime solely via protonation, demonstrating that the protein template of LHCs can be modified to activate reversible quenching mechanisms independent of external cofactors and triggers.
Collapse
Affiliation(s)
- Nicoletta Liguori
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam , De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Alberto Natali
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam , De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam , De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Chen HB, Chiu PY, Chen YN. Vibration-induced coherence enhancement of the performance of a biological quantum heat engine. Phys Rev E 2016; 94:052101. [PMID: 27967118 DOI: 10.1103/physreve.94.052101] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 11/07/2022]
Abstract
Photosynthesis has been a long-standing research interest due to its fundamental importance. Recently, studies on photosynthesis processes also have inspired attention from a thermodynamical aspect when considering photosynthetic apparatuses as biological quantum heat engines. Quantum coherence is shown to play a crucial role in enhancing the performance of these quantum heat engines. Based on the experimentally reported structure, we propose a quantum heat engine model with a non-Markovian vibrational mode. We show that one can obtain a performance enhancement easily for a wide range of parameters in the presence of the vibrational mode. Our results provide insights into the photosynthetic processes and a design principle mimicking natural organisms.
Collapse
Affiliation(s)
- Hong-Bin Chen
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
| | - Pin-Yi Chiu
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
| | - Yueh-Nan Chen
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan.,Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan
| |
Collapse
|
44
|
van Eerden FJ, van den Berg T, Frederix PWJM, de Jong DH, Periole X, Marrink SJ. Molecular Dynamics of Photosystem II Embedded in the Thylakoid Membrane. J Phys Chem B 2016; 121:3237-3249. [PMID: 27624992 DOI: 10.1021/acs.jpcb.6b06865] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photosystem II (PSII) is one of the key protein complexes in photosynthesis. We introduce a coarse grained model of PSII and present the analysis of 60 μs molecular dynamics simulations of PSII in both monomeric and dimeric form, embedded in a thylakoid membrane model that reflects its native lipid composition. We describe in detail the setup of the protein complex and the many natural cofactors and characterize their mobility. Overall we find that the protein subunits and cofactors are more flexible toward the periphery of the complex as well as near the PLQ exchange cavity and at the dimer interface. Of all cofactors, β-carotenes show the highest mobility. Some of the β-carotenes diffuse in and out of the protein complex via the thylakoid membrane. In contrast with the PSII dimer, the monomeric form adopts a tilted conformation in the membrane, with strong interactions between the soluble PsbO subunit and the glycolipid headgroups. Interestingly, the tilted conformation causes buckling of the membrane. Together, our results provide an unprecedented view of PSII dynamics on a microsecond time scale. Our data may be used as basis for the interpretation of experimental data as well as for theoretical models describing exciton energy transfer.
Collapse
Affiliation(s)
- Floris J van Eerden
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Tom van den Berg
- Department of Physics and Astronomy, Faculteit der Exacte Wetenschappen, Vrije Universiteit , De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Pim W J M Frederix
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Djurre H de Jong
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Xavier Periole
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
45
|
Structure and energy transfer pathways of the plant photosystem I-LHCI supercomplex. Curr Opin Struct Biol 2016; 39:46-53. [DOI: 10.1016/j.sbi.2016.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 11/19/2022]
|
46
|
Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures. Sci Rep 2016; 6:29940. [PMID: 27416900 PMCID: PMC4945916 DOI: 10.1038/srep29940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/27/2016] [Indexed: 11/09/2022] Open
Abstract
The intricate molecular processes underlying photosynthesis have long been studied using various analytic approaches. However, the three-dimensional (3D) dynamics of such photosynthetic processes remain unexplored due to technological limitations related to investigating intraorganellar mechanisms in vivo. By developing a system for high-speed 3D laser scanning confocal microscopy combined with high-sensitivity multiple-channel detection, we visualized excitation energy dynamics in thylakoid structures within chloroplasts of live Physcomitrella patens cells. Two distinct thylakoid structures in the chloroplast, namely the grana and stroma lamellae, were visualized three-dimensionally in live cells. The simultaneous detection of the shorter (than ~670 nm) and longer (than ~680 nm) wavelength regions of chlorophyll (Chl) fluorescence reveals different spatial characteristics-irregular and vertical structures, respectively. Spectroscopic analyses showed that the shorter and longer wavelength regions of Chl fluorescence are affected more by free light-harvesting antenna proteins and photosystem II supercomplexes, respectively. The high-speed 3D time-lapse imaging of the shorter and longer wavelength regions also reveals different structural dynamics-rapid and slow movements within 1.5 seconds, respectively. Such structural dynamics of the two wavelength regions of Chl fluorescence would indicate excitation energy dynamics between light-harvesting antenna proteins and photosystems, reflecting the energetically active nature of photosynthetic proteins in thylakoid membranes.
Collapse
|
47
|
Kreisbeck C, Aspuru-Guzik A. Efficiency of energy funneling in the photosystem II supercomplex of higher plants. Chem Sci 2016; 7:4174-4183. [PMID: 30155062 PMCID: PMC6014079 DOI: 10.1039/c5sc04296h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/24/2016] [Indexed: 01/16/2023] Open
Abstract
The investigation of energy transfer properties in photosynthetic multi-protein networks gives insight into their underlying design principles. Here, we discuss the excitonic energy transfer mechanisms of the photosystem II (PS-II) C2S2M2 supercomplex, which is the largest isolated functional unit of the photosynthetic apparatus of higher plants. Despite the lack of a definite energy gradient in C2S2M2, we show that the energy transfer is directed by relaxation to low energy states. C2S2M2 is not organized to form pathways with strict energetically downhill transfer, which has direct consequences for the transfer efficiency, transfer pathways and transfer limiting steps. The exciton dynamics is sensitive to small changes in the energetic layout which, for instance, are induced by the reorganization of vibrational coordinates. In order to incorporate the reorganization process in our numerical simulations, we go beyond rate equations and use the hierarchically coupled equation of motion approach (HEOM). While transfer from the peripheral antenna to the proteins in proximity to the reaction center occurs on a faster time scale, the final step of the energy transfer to the RC core is rather slow, and thus the limiting step in the transfer chain. Our findings suggest that the structure of the PS-II supercomplex guarantees photoprotection rather than optimized efficiency.
Collapse
Affiliation(s)
- Christoph Kreisbeck
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , MA , USA . ;
| | - Alán Aspuru-Guzik
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , MA , USA . ;
| |
Collapse
|
48
|
Challenges facing an understanding of the nature of low-energy excited states in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1627-1640. [PMID: 27372198 DOI: 10.1016/j.bbabio.2016.06.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 01/09/2023]
Abstract
While the majority of the photochemical states and pathways related to the biological capture of solar energy are now well understood and provide paradigms for artificial device design, additional low-energy states have been discovered in many systems with obscure origins and significance. However, as low-energy states are naively expected to be critical to function, these observations pose important challenges. A review of known properties of low energy states covering eight photochemical systems, and options for their interpretation, are presented. A concerted experimental and theoretical research strategy is suggested and outlined, this being aimed at providing a fully comprehensive understanding.
Collapse
|
49
|
Jurinovich S, Viani L, Prandi IG, Renger T, Mennucci B. Towards an ab initio description of the optical spectra of light-harvesting antennae: application to the CP29 complex of photosystem II. Phys Chem Chem Phys 2016; 17:14405-16. [PMID: 25872495 DOI: 10.1039/c4cp05647g] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light-harvesting pigment-protein complexes (PPC) represent the fundamental units through which the photosynthetic organisms absorb sunlight and funnel the energy to the reaction centre for carrying out the primary energy conversion reactions of photosynthesis. Here we apply a multiscale computational strategy to a specific PPC present in the photosystem II of plants and algae (CP29) to investigate in what detail should the environment effects due to protein and membrane/solvent be included for an accurate description of optical spectra. We find that a refinement of the crystal structure is needed before any meaningful quantum chemical calculations of pigment transition energies can be performed. For this purpose we apply classical molecular dynamics simulations of the PPC within its natural environment and we perform ab initio computations of the exciton Hamiltonian of the complex, including the environment either implicitly by the polarizable continuum model (PCM) or explicitly using the polarizable QM/MM methodology (MMPol). However, PCM essentially leads to an unspecific redshift of all transition energies, and MMPol is able to reveal site-specific changes in the optical properties of the pigments. Based on the latter and the excitonic couplings obtained within a polarizable QM/MM methodology, optical spectra are calculated, which are in good qualitative agreement with experimental data. A weakness of the approach is however found in the overestimation of the fluctuations of the excitonic parameters of the pigments along the MD trajectory. An explanation for such a finding in terms of the limits of the force fields commonly used for protein cofactors is presented and discussed.
Collapse
Affiliation(s)
- Sandro Jurinovich
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 3, I-56124 Pisa, Italy.
| | | | | | | | | |
Collapse
|
50
|
Abstract
The first step of photosynthesis in plants is the absorption of sunlight by pigments in the antenna complexes of photosystem II (PSII), followed by transfer of the nascent excitation energy to the reaction centers, where long-term storage as chemical energy is initiated. Quantum mechanical mechanisms must be invoked to explain the transport of excitation within individual antenna. However, it is unclear how these mechanisms influence transfer across assemblies of antenna and thus the photochemical yield at reaction centers in the functional thylakoid membrane. Here, we model light harvesting at the several-hundred-nanometer scale of the PSII membrane, while preserving the dominant quantum effects previously observed in individual complexes. We show that excitation moves diffusively through the antenna with a diffusion length of 50 nm until it reaches a reaction center, where charge separation serves as an energetic trap. The diffusion length is a single parameter that incorporates the enhancing effect of excited state delocalization on individual rates of energy transfer as well as the complex kinetics that arise due to energy transfer and loss by decay to the ground state. The diffusion length determines PSII's high quantum efficiency in ideal conditions, as well as how it is altered by the membrane morphology and the closure of reaction centers. We anticipate that the model will be useful in resolving the nonphotochemical quenching mechanisms that PSII employs in conditions of high light stress.
Collapse
|