1
|
TizMaghz A, Shojaei S, Tehrani P. The effect of combined low-level nd: YAG laser with mesenchymal stem cells in the healing of diabetic wounds: an experimental study. Arch Dermatol Res 2025; 317:317. [PMID: 39873794 DOI: 10.1007/s00403-024-03714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/02/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025]
Abstract
Although the role of low-level laser therapy (LLLT) and human adipose-derived stem cells (hADSC) in accelerating diabetic wound healing has been proven, their synergistic effect is still debated. This study aimed to evaluate the individual and combined effects of LLLT and hADSC on wound healing and on biomechanical parameters in type 2 diabetic rabbits. In this experimental study, 40 rabbits with type 2 diabetes (induced by streptozotocin (STZ)) were included. Rabbits were randomly assigned with equal ratios to 4 groups, including the control group (group A), hADSCs alone (group B), the laser alone (group C), and the combined group of hADSCs cells with laser (group D). 30 days after diabetes, two wounds were created on the back of each rabbit. Immediately after creating a wound, hADSC was injected into two parts of the wound. In the laser groups, the wound site was treated with a low-power 660 nm laser for 4 weeks daily for 20-30 s. The number of closed wounds in the treatment group was evaluated 7, 15 and 30 days after the treatment. On the 15th and 30th days, a standard sample of each healing wound was sent for biomechanical evaluation. Thirty days after treatment, the combined effect of LLLT + hADSCs was superior to their individual effects on wound healing and biomechanical parameters (mean bending stiffness, maximum force, high-stress load, and energy absorption), while their individual effects were similar. Fifteen days after treatment, the effect of LLLT alone was superior to hADSCs alone for wound healing and improvement of biomechanical parameters. LLLT and hADSCs, individually and in combination, were superior in diabetic wound healing and biomechanical parameters compared to the control group in type 2 diabetic rabbits. The combined effect of LLLT with hADSCs was superior to their individual effects.
Collapse
Affiliation(s)
- Ali TizMaghz
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Pedram Tehrani
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Khorsandi K, Fekrazad R. Skin wound healing in diabetic rat model using low-dose photodynamic therapy. Biotechnol Appl Biochem 2024; 71:681-690. [PMID: 38409884 DOI: 10.1002/bab.2568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/20/2024] [Indexed: 02/28/2024]
Abstract
Chronic wound is one of the major challenges in medicine and imposes a heavy financial burden on the healthcare of different countries. Diabetic foot ulcers as one of the important examples for chronic wounds can lead to lower limb amputation, disability, and death in diabetics. In this regard, novel technology with low side effects got attention in recent years. Low-dose photodynamic therapy (LDPDT) is one of the noninvasive techniques that can be considered for wound healing in diabetic wounds. In this experiment, we aim to study the effect of LDPDT on diabetic rats' wound healing and compare it to healthy rats. In this in vitro experimental study, 32 male rats were used. Rats in both normal and diabetic (streptozotocin injection) groups after being wounded (two wounds [0.8 × 0.8 cm]) on the back of each rat were randomly divided into four groups, including the control group (without treatment), radiation-only (660 nm-1 J/cm2) group, 5-ALA-only (1 µg/mL) group, and LDPDT-recipient group. The procedure has been done for 2 days, and at the end of Days 3, 7, 14, and 21, the wound sample was sent to the histopathology laboratory, and the wound size and tissue indices in these groups were evaluated by histology and microscopy techniques. The impact of low concentrations of 5-ALA and low irradiation energy density in both normal and diabetic rats were positive, which accelerated the wound-healing process as seen in the histology study. In diabetic rats treated with only radiation and LDPDT, the process of epithelial regeneration, collagen production, reduction of mast cells, and production of follicles was more as compared to the normal group. The results suggest that LDPDT can have a positive impact on the diabetic rat model wound healing.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- Department of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
3
|
Perrier Q, Moro C, Lablanche S. Diabetes in spotlight: current knowledge and perspectives of photobiomodulation utilization. Front Endocrinol (Lausanne) 2024; 15:1303638. [PMID: 38567306 PMCID: PMC10985212 DOI: 10.3389/fendo.2024.1303638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Diabetes is a global health concern characterized by chronic hyperglycemia resulting from insulinopenia and/or insulin resistance. The rising prevalence of diabetes and its associated complications (ulcers, periodontitis, healing of bone defect, neuropathy, retinopathy, cardiopathy and nephropathy) necessitate innovative therapeutic approaches. Photobiomodulation (PBM), involves exposing tissues and cells to low-energy light radiation, leading to biological effects, largely via mitochondrial activation. Methods This review evaluates preclinical and clinical studies exploring the potential of PBM in diabetes and its complications, as well all clinical trials, both planned and completed, available on ClinicalTrials database. Results This review highlights the variability in PBM parameters across studies, hindering consensus on optimal protocols. Standardization of treatment parameters and rigorous clinical trials are needed to unlock PBM's full therapeutic potential. 87 clinical trials were identified that investigated PBM in diabetes mellitus (with 5,837 patients planned to be treated with PBM). Clinical trials assessing PBM effects on diabetic neuropathy revealed pain reduction and potential quality of life improvement. Studies focusing on wound healing indicated encouraging results, with PBM enhancing angiogenesis, fibroblast proliferation, and collagen density. PBM's impact on diabetic retinopathy remains inconclusive however, requiring further investigation. In glycemic control, PBM exhibits positive effects on metabolic parameters, including glucose tolerance and insulin resistance. Conclusion Clinical studies have reported PBM-induced reductions in fasting and postprandial glycemia without an increased hypoglycemic risk. This impact of PBM may be related to its effects on the beta cells and islets in the pancreas. Notwithstanding challenges, PBM emerges as a promising adjunctive therapy for managing diabetic neuropathy, wound healing, and glycemic control. Further investigation into its impact on diabetic retinopathy and muscle recovery is warranted.
Collapse
Affiliation(s)
- Quentin Perrier
- Univ. Grenoble Alpes, INSERM U1055, Pharmacy Department, Grenoble Alpes University Hospital, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | - Cécile Moro
- Univ. Grenoble Alpes, CEA-Leti, Clinatec, Grenoble, France
| | - Sandrine Lablanche
- Univ. Grenoble Alpes, INSERM U1055, Diabetology and Endocrinology Department, Grenoble Alpes University Hospital, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| |
Collapse
|
4
|
Chen Y, Huang J, Xia S, Wang K, Rui Y. Evaluation of fusion performances of skin wound incisions under different defocus amounts in laser tissue welding. OPTICS & LASER TECHNOLOGY 2023; 165:109570. [DOI: 10.1016/j.optlastec.2023.109570] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
5
|
Omidi H, Sohrabi K, Amini A, Fathabady FF, Mostafavinia A, Ahmadi H, Mirzaei M, Moravej FG, Asghari M, Rezaei F, Gachkar L, Chien S, Bayat M. Application of combined photobiomodulation and curcumin-loaded iron oxide nanoparticles considerably enhanced repair in an infected, delayed-repair wound model in diabetic rats compared to either treatment alone. Photochem Photobiol Sci 2023; 22:1791-1807. [PMID: 37039961 DOI: 10.1007/s43630-023-00411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/20/2023] [Indexed: 04/12/2023]
Abstract
Herein, we attempted to evaluate the therapeutic potential of photobiomodulation (PBM) and curcumin-loaded iron nanoparticles (CUR), alone and in combination, on wound closure rate (WCR), microbial flora by measuring colony-forming units (CFUs), the stereological and biomechanical properties of repairing wounds in the maturation stage of the wound healing course in an ischemic infected delayed healing wound model (IIDHWM) of type I diabetic (TIDM) rats. There were four groups: group 1 was the control, group 2 received CUR, rats in group 3 were exposed to PBM (80 Hz, 890 nm, and 0.2 J/cm2), and rats in group 4 received both PBM and CUR (PBM + CUR). We found CFU was decreased in groups 2, 3, and 4 compared to group 1 (p = 0.000 for all). Groups 2, 3, and 4 showed a considerable escalation in WCR compared to group 1 (p = 0.000 for all). In terms of wound strength parameters, substantial increases in bending stiffness and high-stress load were observed in groups 2, 3, and 4 compared to group 1 (p = 0.000 for all). Stereological examinations revealed decreases in neutrophil and macrophage counts and increases in fibroblast counts in groups 2, 3, and 4compared to group 1 (p = 0.000 for all). Blood vessel counts were more dominant in the PBM and PBM + CUR groups over group 1 (p = 0.000 for all). CFU and wound strength as well as macrophage, neutrophil, and fibroblast counts were found to be improved in the PBM + CUR and PBM groups compared to the CUR group (ranging from p = 0.000 to p < 0.05). Better results were achieved in the PBM + CUR treatment over the PBM therapy. We determined therapy with PBM + CUR, PBM alone, and CUR alone substantially accelerated diabetic wound healing in an IIDHWM of TIDM rats compared to control group. Concomitantly, the PBM + CUR and PBM groups attained significantly enhanced results for WCR, stereological parameters, and wound strength than the CUR group, with the PBM + CUR results being superior to those of the PBM group.
Collapse
Affiliation(s)
- Hamidreza Omidi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaysan Sohrabi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences and Cognitive Neuroscience, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansooreh Mirzaei
- Department of Anatomy, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fahimeh Ghasemi Moravej
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadali Asghari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Latif Gachkar
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA.
| |
Collapse
|
6
|
Mostafavinia A, Amini A, Sajadi E, Ahmadi H, Rezaei F, Ghoreishi SK, Chien S, Bayat M. Photobiomodulation therapy was more effective than photobiomodulation plus arginine on accelerating wound healing in an animal model of delayed healing wound. Lasers Med Sci 2022; 37:403-415. [PMID: 33738614 DOI: 10.1007/s10103-021-03271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/10/2021] [Indexed: 10/21/2022]
Abstract
The combined and individual influences of photobiomodulation therapy (PBMT) and arginine on wound strength, stereological parameters, and gene expressions of some related growth factors in ischemic and delayed healing wounds in rats were analyzed. We divided 108 rats into six groups: control, lower energy density (LOW)-PBMT, 2% arginine ointment (Arg 2%), LOW-PBMT + Arg 2%, high energy density (HIGH)-PBMT, and HIGH-PBMT + Arg 2%. First, we generated an ischemic and delayed healing wound model in each rat. We examined wound strength, stereological parameters, and gene expressions of basic fibroblast growth factor (bFGF), vascular endothelial growth factor A (VEGF-A), and stromal cell-derived factor 1 (SDF-1) by quantitative real-time polymerase chain reaction (qRT-PCR). PBMT alone and PBMT + Arg 2% considerably increased wound strength compared to the control and Arg 2% groups during the inflammatory and proliferative steps of wound healing (p < 0.05). In these steps, PBMT alone significantly induced an anti-inflammatory effect and increased fibroblast counts; Arg 2% alone induced an inflammatory response (p < 0.05). Concurrently, PBMT and PBMT + Arg 2% significantly increased keratinocyte counts and volume of the new dermis (p < 0.05). At the remodeling step, the Arg 2% groups had significantly better wound strength than the other groups (p < 0.05). In this step, PBMT and PBMT + Arg 2% significantly decreased inflammation, and increased fibroblast counts, vascular length, and the volume of new epidermis and dermis compared to the control and Arg 2% groups (p < 0.05). In all cases of gene analysis, there were statistically better results in the PBMT and PBMT + Arg 2% groups compared with the Arg 2% and control groups (p < 0.05). The anti-inflammatory and repairing effects of PBMT on an ischemic and delayed healing wound model in rats were shown by significant improvements in wound strength, stereological parameters, and gene expressions of bFGF, VEGF-A, and SDF-1α.
Collapse
Affiliation(s)
- Atarodsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Ensieh Sajadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Fatemehalsadat Rezaei
- University of Kentucky College of Pharmacy, 789 South Limestone, Lexington, KY, 40536, USA
| | | | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and 6, Noveratech LLC of Louisville, Louisville, USA.
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.
- Price Institute of Surgical Research, University of Louisville, and 6, Noveratech LLC of Louisville, Louisville, USA.
| |
Collapse
|
7
|
Younis NS, Mohamed ME, El Semary NA. Green Synthesis of Silver Nanoparticles by the Cyanobacteria Synechocystis sp.: Characterization, Antimicrobial and Diabetic Wound-Healing Actions. Mar Drugs 2022; 20:56. [PMID: 35049911 PMCID: PMC8781738 DOI: 10.3390/md20010056] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Green nanotechnology is now accepted as an environmentally friendly and cost-effective advance with various biomedical applications. The cyanobacterium Synechocystis sp. is a unicellular spherical cyanobacterium with photo- and hetero-trophic capabilities. This study investigates the ability of this cyanobacterial species to produce silver nanoparticles (AgNPs) and the wound-healing properties of the produced nanoparticles in diabetic animals. METHODS UV-visible and FT-IR spectroscopy and and electron microscopy techniques investigated AgNPs' producibility by Synechocystis sp. when supplemented with silver ion source. The produced AgNPs were evaluated for their antimicrobial, anti-oxidative, anti-inflammatory, and diabetic wound healing along with their angiogenesis potential. RESULTS The cyanobacterium biosynthesized spherical AgNPs with a diameter range of 10 to 35 nm. The produced AgNPs exhibited wound-healing properties verified with increased contraction percentage, tensile strength and hydroxyproline level in incision diabetic wounded animals. AgNPs treatment decreased epithelialization period, amplified the wound closure percentage, and elevated collagen, hydroxyproline and hexosamine contents, which improved angiogenesis factors' contents (HIF-1α, TGF-β1 and VEGF) in excision wound models. AgNPs intensified catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities, and glutathione (GSH) and nitric oxide content and reduced malondialdehyde (MDA) level. IL-1β, IL-6, TNF-α, and NF-κB (the inflammatory mediators) were decreased with AgNPs' topical application. CONCLUSION Biosynthesized AgNPs via Synechocystis sp. exhibited antimicrobial, anti-oxidative, anti-inflammatory, and angiogenesis promoting effects in diabetic wounded animals.
Collapse
Affiliation(s)
- Nancy S. Younis
- Pharmaceutical Sciences Department, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Maged E. Mohamed
- Pharmaceutical Sciences Department, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Pharmacognosy Department, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Nermin A. El Semary
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt
| |
Collapse
|
8
|
Chang H, Zou Z, Li J, Shen Q, Liu L, An X, Yang S, Xing D. Photoactivation of mitochondrial reactive oxygen species-mediated Src and protein kinase C pathway enhances MHC class II-restricted T cell immunity to tumours. Cancer Lett 2021; 523:57-71. [PMID: 34563641 DOI: 10.1016/j.canlet.2021.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
High fluence low-level laser (HF-LLL), a mitochondria-targeted tumour phototherapy, results in oxidative damage and apoptosis of tumour cells, as well as damage to normal tissue. To circumvent this, the therapeutic effect of low fluence LLL (LFL), a non-invasive and drug-free therapeutic strategy, was identified for tumours and the underlying molecular mechanisms were investigated. We observed that LFL enhanced antigen-specific immune response of macrophages and dendritic cells by upregulating MHC class II, which was induced by mitochondrial reactive oxygen species (ROS)-activated signalling, suppressing tumour growth in both CD11c-DTR and C57BL/6 mice. Mechanistically, LFL upregulated MHC class II in an MHC class II transactivator (CIITA)-dependent manner. LFL-activated protein kinase C (PKC) promoted the nuclear translocation of CIITA, as inhibition of PKC attenuated the DNA-binding efficiency of CIITA to MHC class II promoter. CIITA mRNA and protein expression also improved after LFL treatment, characterised by direct binding of Src and STAT1, and subsequent activation of STAT1. Notably, scavenging of ROS downregulated LFL-induced Src and PKC activation and antagonised the effects of LFL treatment. Thus, LFL treatment altered the adaptive immune response via the mitochondrial ROS-activated signalling pathway to control the progress of neoplastic disease.
Collapse
Affiliation(s)
- Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Jie Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Lei Liu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
| | - Xiaorui An
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
9
|
Wadee AN, Aref MHF, Nassar AA, Aboughaleb IH, Fahmy SM. The influence of low- intensity laser irradiation versus hyperbaric oxygen therapy on transcutaneous oxygen tension in chronic diabetic foot ulcers: a controlled randomized trial. J Diabetes Metab Disord 2021; 20:1489-1497. [PMID: 34900800 PMCID: PMC8630261 DOI: 10.1007/s40200-021-00891-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVE Evaluation of the stage and severity of the chronic diabetic foot ulcer (CDFU) is vital to increase the healing rate and to select the suitable treatment. We aim to assess the influence of low-intensity laser irradiation (LILI) and hyperbaric oxygenation therapy (HBOT) to accelerate the CDFU healing thru the transcutaneous oxygen tension (TcPO2) measurements. MATERIALS AND METHODS Seventy-five diabetic patients (type 2) of both genders, their ages ranged from 40-65 years with CDFUs (duration of ulcer < 6 weeks). All patients were randomly assigned into LILI, HBOT, and the control group. Measurement of TcPO2 using transcutaneous oximetry was performed for all patients once in the baseline and consequently in the second, fourth, and sixth- weeks duration. LILI utilized by a 33-diode cluster contact applicator with output power 1440 mW, energy density (fluency) was adjusted for 4 J/Cm2 at 10 kHz, and for 8 min per session, three times per week for a total of consecutive 6 weeks. HBOT was pressurized up to 2.5 ATA and patients delivered 100% oxygen for 60 min per session for 30 sessions. The Control group received conventional wound care only, twice daily, with saline and apply a new bandage after cleaning. RESULTS MANOVA revealed a statistically insignificant difference in the control group, while statistically significant improvement in both the LILI and HBOT groups. The intergroup comparisons showed an insignificant statistical difference in the pre-test, while highly statistically significant differences for the three post-measures in favor of HBOT and LILI groups. The percentage of improvement of the HBOT group was higher than LILI. Post-hoc test using the least significant difference (LSD) revealed statistically significant differences of HBOT in favor of the LILI group. CONCLUSION Both LILI and HBOT may be used as adjunctive methods to improve TcPO2 that accelerate healing in CDFUs. HBOT may be favorable in the improvement of TcPO2 than LILI.
Collapse
Affiliation(s)
- Amir N. Wadee
- Department of Physical Therapy for Basic Science, Faculty of Physical Therapy, Cairo University and Modern University for Information and Technology, Cairo, Egypt
| | | | - Ayman A. Nassar
- Biomedical Engineering Researcher, Egyptian Armed Forces, Cairo, Egypt
| | | | - Siham M. Fahmy
- Head of HBOT and Foot Care Center at Kobri El Koba military Hospital, Cairo University and Modern University for Information and Technology, Cairo, Egypt
| |
Collapse
|
10
|
Development of plasma functionalized polypropylene wound dressing for betaine hydrochloride controlled drug delivery on diabetic wounds. Sci Rep 2021; 11:9641. [PMID: 33953292 PMCID: PMC8100292 DOI: 10.1038/s41598-021-89105-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes Mellitus is one of the most worrying issues among illnesses, and its chronic subsequences almost refer to inflammations and infections. The loading and local release of antioxidants to wounds may decrease inflammations. However, the low wettability of PolyPropylene (PP) restricts the drug from loading. So, to increase the adhesion of PP for loading an optimum amount of Betaine Hydrochloride (BET), plasma has been applied in two steps of functionalization and polymerization, which has been confirmed with FE-SEM, ATR-FTIR, and EDX. The new chemistry of the surface led to almost 80% of BET loaded. The drug-releasing ratio studied by HPLC approved the presence of a PEG-like layer, which was coated by polymerization of tetraglyme. To evaluate the wound healing potential of the application of PP meshes treated by plasma, 72 Wistar rats were subdivided into four groups. The skin injury site was removed and underwent biomechanical tests, stereological analysis, and RNA extraction. The results showed a significant improvement in the polymerized scaffold containing BET for skin injury. The present study suggests that the use of a modified PP mesh can induce tissue regeneration and accelerate wound healing at the skin injury site.
Collapse
|
11
|
Oyebode O, Houreld NN, Abrahamse H. Photobiomodulation in diabetic wound healing: A review of red and near-infrared wavelength applications. Cell Biochem Funct 2021; 39:596-612. [PMID: 33870502 DOI: 10.1002/cbf.3629] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
The development of a painless, non-invasive, and faster way to diabetic wound healing is at the forefront of research. The complexity associated with diabetic wounds makes it a cause for concern amongst diabetic patients and the world at large. Irradiation of cells generates a photobiomodulatory response on cells and tissues, directly causing alteration of cellular processes and inducing diabetic wound repair. Photobiomodulation therapy (PBMT) using red and near-infrared (NIR) wavelengths is being considered as a promising technique for speeding up the rate of diabetic wound healing, eradication of pain and reduction of inflammation through the alteration of diverse cellular and molecular processes. This review presents the extent to which the potential of red and NIR wavelengths have been harnessed in PBMT for diabetic wound healing. Important research challenges and gaps are identified and discussed, and future directions mapped out. This review thus provides useful insights and strategies into improvement of PBMT, including its acceptance within the global medical research community.
Collapse
Affiliation(s)
- Olajumoke Oyebode
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
12
|
Choi HMC, Cheung AKK, Ng MCH, Zheng Y, Jan YK, Cheing GLY. Indentation Stiffness Measurement by an Optical Coherence Tomography-Based Air-Jet Indentation System Can Reflect Type I Collagen Abundance and Organisation in Diabetic Wounds. Front Bioeng Biotechnol 2021; 9:648453. [PMID: 33748093 PMCID: PMC7969662 DOI: 10.3389/fbioe.2021.648453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
There is a lack of quantitative and non-invasive clinical biomechanical assessment tools for diabetic foot ulcers. Our previous study reported that the indentation stiffness measured by an optical coherence tomography-based air-jet indentation system in a non-contact and non-invasive manner may reflect the tensile properties of diabetic wounds. As the tensile properties are known to be contributed by type I collagen, this study was aimed to establish the correlations between the indentation stiffness, and type I collagen abundance and organisation, in order to further justify and characterise the in vivo indentation stiffness measurement in diabetic wounds. In a male streptozotocin-induced diabetic rat model, indentation stiffness, and type I collagen abundance and organisation of excisional wounds were quantified and examined using the optical coherence tomography-based air-jet indentation system and picrosirius red polarised light microscopy, respectively, on post-wounding days 3, 5, 7, 10, 14, and 21. The results showed significant negative correlations between indentation stiffness at the wound centre, and the collagen abundance and organisation. The correlations between the indentation stiffness, as well as collagen abundance and organisation of diabetic wounds suggest that the optical coherence tomography-based air-jet indentation system can potentially be used to quantitatively and non-invasively monitor diabetic wound healing in clinical settings, clinical research or preclinical research.
Collapse
Affiliation(s)
- Harry Ming Chun Choi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Alex Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Michelle Chun Har Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yongping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yih-Kuen Jan
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Gladys Lai Ying Cheing
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
13
|
Soleimani H, Amini A, Abdollahifar MA, Norouzian M, Kouhkheil R, Mostafavinia A, Ghoreishi SK, Bayat S, Chien S, Bayat M. Combined effects of photobiomodulation and curcumin on mast cells and wound strength in wound healing of streptozotocin-induced diabetes in rats. Lasers Med Sci 2021; 36:375-386. [PMID: 32696423 DOI: 10.1007/s10103-020-03053-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 06/02/2020] [Indexed: 12/24/2022]
Abstract
We investigated the probable involvement of mast cell degranulation and their numbers in the remodeling step of wound healing in a diabetic ischemic skin wound model treated with photobiomodulation plus curcumin. A total of 108 adult male Wistar rats were randomized into one healthy control and five diabetic groups. Type I diabetes was inflicted in 90 of the 108 rats. After 1 month, an excisional wound was generated in each of the 108 rats. There were one healthy group (group 1) and five diabetic groups as follows: group 2 was the untreated diabetic control group and group 3 rats were treated with sesame oil. Rats in group 4 were treated with photobiomodulation (890 nm, 890 ± 10 nm, 80 Hz, 0.2 J/cm2) and those in group 5 received curcumin dissolved in sesame oil. Group 6 rats were treated with photobiomodulation and curcumin. We conducted stereological and tensiometric tests on days 4, 7, and 15 after treatment. The results indicated that photobiomodulation significantly improved wound strength in the diabetic rats and significantly decreased the total numbers of mast cells. The diabetic control group had significantly reduced tensiometric properties of the healing wounds and a significant increase in the total numbers of mast cells. Photobiomodulation significantly improved the healing process in diabetic animals and significantly decreased the total number of mast cells. The increased numbers of mast cells in the diabetic control group negatively affected tensiometric properties of the ischemic skin wound.
Collapse
Affiliation(s)
- Hasan Soleimani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Kouhkheil
- Department of Anatomical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Atarodsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Sahar Bayat
- Illinois Institute of Technology, Chicago, IL, USA
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, Louisville, KY, USA.
- Noveratech LLC of Louisville, Louisville, KY, USA.
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Price Institute of Surgical Research, University of Louisville, Louisville, KY, USA.
- Noveratech LLC of Louisville, Louisville, KY, USA.
| |
Collapse
|
14
|
Vieira AR, Prinz MCO. Patient Centeredness in Orthognathic Surgery. Clin Pract 2021; 11:92-100. [PMID: 33562459 PMCID: PMC7930993 DOI: 10.3390/clinpract11010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 11/28/2022] Open
Abstract
Patient centeredness in planning treatment and research has become paramount. The goal of this report was to describe a complex case in which untreated chronic pain was not properly addressed to reflect on the need to establish alternative protocols for controlling chronic orofacial pain. When a female underwent orthognathic surgery to correct her occlusion, she not only ended up with a worse occlusion, she developed chronic orofacial pain that could not be treated by opioids and only improved after the use of neuropathic medication, and finally disappeared after the use of low-level laser therapy. There is a need to incorporate alternative nonpharmacological approaches to manage chronic pain. Further, what the patient’s goals are for their treatments should be given priority in case of elective procedures.
Collapse
|
15
|
Patel S, Pragati, Dwivedi SD, Yadav K, Kanwar JR, Singh MR, Singh D. Pathogenesis and Molecular Targets in Treatment of Diabetic Wounds. OBESITY AND DIABETES 2020:747-758. [DOI: 10.1007/978-3-030-53370-0_55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Kouhkheil R, Fridoni M, Abdollhifar MA, Amini A, Bayat S, Ghoreishi SK, Chien S, Kazemi M, Bayat M. Impact of Photobiomodulation and Condition Medium on Mast Cell Counts, Degranulation, and Wound Strength in Infected Skin Wound Healing of Diabetic Rats. Photobiomodul Photomed Laser Surg 2019; 37:706-714. [PMID: 31589095 DOI: 10.1089/photob.2019.4691] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Numerous people suffer from diabetes mellitus (DM) and resultant diabetic foot ulcers (DFU), which lack effective treatment. Photobiomodulation (PBM) has accelerated wound healing in diabetic animals and patients in some studies. However, there is scant information on the number and activation state of skin mast cells (MCs) in PBM-treated diabetic wounds. Objective: We intend to assess the influence of the number of MCs and degranulation in the remodeling step of an infected wound model on wound strength and its microbial flora in a type 1 DM (T1DM) rat model by administration of PBM, condition medium (CM) derived from human bone marrow mesenchymal stem cells (hBMMSCs), and the combination of PBM+CM. Methods: We prepared CM by culturing hBMMSCs. T1DM was induced in 72 rats and, after 1 month, we created one excisional wound in each rat. All wounds were infected with methicillin-resistant Staphylococcus aureus (MRSA). We divided the rats into four groups: (n = 18): (i) control; (ii) PBM; (iii) CM, and (iv) PBM+CM. On days 4, 7, and 15, we conducted microbiological, tensiometrical, and stereological analyses. The type of MCs (T1MCs, T2MCs, or T3MCs) and total number of MCs (TOMCs) were counted by light microscopy. Results: On day 15, the PBM+CM, PBM, and CM groups had significantly increased wound strength compared with the control group. There was a significant decrease in colony-forming units (CFU) at all time points in the PBM+CM and PBM groups. The PBM+CM and PBM groups had more stable MCs (T1MCs), less significant degranulated MCs (T2MCs), less significant disintegrated MCs (T3MCs), and less significant TOMCs compared with the control group at all time points. Conclusions: PBM+CM and PBM treatments significantly increased the healing process in an ischemic and MRSA-infected wound model of T1DM rats. PBM+CM and PBM significantly decreased both TOMCs and their degranulation, and significantly decreased CFU.
Collapse
Affiliation(s)
- Reza Kouhkheil
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammadjavad Fridoni
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Amin Abdollhifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sahar Bayat
- Illinois Institute of Technology, Chicago, Illinois
| | | | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, Louisville, Kentucky
- Noveratech LLC of Louisville, Louisville, Kentucky
| | - Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, Louisville, Kentucky
- Noveratech LLC of Louisville, Louisville, Kentucky
| |
Collapse
|
17
|
Wound Photobiomodulation Treatment Outcomes in Animal Models. J Vet Med 2019; 2019:6320515. [PMID: 31467931 PMCID: PMC6699315 DOI: 10.1155/2019/6320515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
The possibilities that photobiomodulation has brought on to the medical field are ever expanding and the scope it has reached is infinite. Determining how this relatively new treatment technique can be incorporated into the veterinary medical field is of interest to many medical professionals. In this review, we examine the treatment outcomes of low-level-laser therapy (LLLT) in different animal models to pinpoint any similarities between the studies. A search was conducted to identify LLLT studies using different animal models with an open or closed wound. The studies were compared to identify the laser parameters that resulted in positive treatment outcomes. The overall result of the studies examined indicated that daily laser exposure at a wavelength of a 600 or 800 nm range was the most beneficial across the rodent studies regardless of health status or wound type. More studies on rabbit, canine, and equine models are needed to explain the inconsistent results reviewed and find the correct treatment parameters for these species. Further research involving LLLT studies that focus on different factors including health status, treatment interval, wavelength, and energy density is needed to help validate our knowledge about the efficacy of using photobiomodulation in the veterinary medical field.
Collapse
|
18
|
Amini A, Soleimani H, Abdollhifar MA, Moradi A, Ghoreishi SK, Chien S, Bayat M. Stereological and gene expression examinations on the combined effects of photobiomodulation and curcumin on wound healing in type one diabetic rats. J Cell Biochem 2019; 120:17994-18004. [PMID: 31148250 DOI: 10.1002/jcb.29102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022]
Abstract
We examined the effects of photobiomodulation (PBM) independently and combined with curcumin on stereological parameters and basic fibroblast growth factor (bFGF), hypoxia-inducible factor-1α (HIF-1α), and stromal cell-derived factor-1α (SDF-1α) gene expressions in an excisional wound model of rats with type one diabetes mellitus (T1DM). T1DM was induced by an injection of streptozotocin (STZ) in each of the 90 male Wistar rats. One round excision was generated in the skin on the back of each of the 108 rats. The rats were divided into six groups (n = 18 per group): control (diabetic), untreated group; vehicle (diabetic) group, which received sesame oil; PBM (diabetic) group; curcumin (diabetic) group; PBM + curcumin (diabetic) group; and a healthy control group. On days 4, 7, and 15, we conducted both stereological and quantitative real-time PCR (qRT-PCR) analyses. The PBM and PBM + curcumin groups had significantly better inflammatory response modulation in terms of macrophages (P < .01), neutrophils (P < .001), and increased fibroblast values compared with the other groups at day 4 (P < .001), day 7 (P < .01), and day 15 (P < .001). PBM treatment resulted in increased bFGF gene expression on days 4 (P < .001) and 7 (P < .001), and SDF-1α gene expression on day 4 (P < .001). The curcumin group had increased bFGF (P < .001) expression on day 4. Both the PBM and PBM + curcumin groups significantly increased wound healing by modulation of the inflammatory response, and increased fibroblast values and angiogenesis. The PBM group increased bFGF and SDF-1α according to stereological and gene expression analyses compared with the other groups. The PBM and PBM + curcumin groups significantly increased the skin injury repair process to more rapidly reach the proliferation phase of the wound healing in T1DM rats.
Collapse
Affiliation(s)
- Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hasan Soleimani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollhifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Moradi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, Kentucky, USA
| | - Mohammad Bayat
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, Kentucky, USA.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Efficacy of Biophysical Energies on Healing of Diabetic Skin Wounds in Cell Studies and Animal Experimental Models: A Systematic Review. Int J Mol Sci 2019; 20:ijms20020368. [PMID: 30654555 PMCID: PMC6359711 DOI: 10.3390/ijms20020368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
We have systematically assessed published cell studies and animal experimental reports on the efficacy of selected biophysical energies (BPEs) in the treatment of diabetic foot ulcers. These BPEs include electrical stimulation (ES), pulsed electromagnetic field (PEMF), extracorporeal shockwave (ECSW), photo energies and ultrasound (US). Databases searched included CINAHL, MEDLINE and PubMed from 1966 to 2018. Studies reviewed include animal and cell studies on treatment with BPEs compared with sham, control or other BPEs. Information regarding the objective measures of tissue healing and data was extracted. Eighty-two studies were eventually selected for the critical appraisal: five on PEMF, four each on ES and ECSW, sixty-six for photo energies, and three about US. Based on the percentage of original wound size affected by the BPEs, both PEMF and low-level laser therapy (LLL) demonstrated a significant clinical benefit compared to the control or sham treatment, whereas the effect of US did not reveal a significance. Our results indicate potential benefits of selected BPEs in diabetic wound management. However, due to the heterogeneity of the current clinical trials, comprehensive studies using well-designed trials are warranted to confirm the results.
Collapse
|
20
|
Wound Healing Effect of Kaempferol in Diabetic and Nondiabetic Rats. J Surg Res 2019; 233:284-296. [DOI: 10.1016/j.jss.2018.08.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 06/06/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023]
|
21
|
Campos TM, dos Santos Traverzim MA, Sobral APT, Bussadori SK, Fernandes KSP, Motta LJ, Makabe S. Effect of LED therapy for the treatment nipple fissures: Study protocol for a randomized controlled trial. Medicine (Baltimore) 2018; 97:e12322. [PMID: 30313028 PMCID: PMC6203513 DOI: 10.1097/md.0000000000012322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Poor positioning of the child in relation to the breast and improper suckling are the main causes of nipple fissure. Treatment options for nipple fissures include drug therapy with antifungal and antibiotics, topical applications of lanolin, glycerin gel, creams and lotions, the milk itself, hot compresses, and silicone nipple shields. Studies involving light-emitting diode (LED) therapy have demonstrated anti-inflammatory properties, the enhancement of the wound repair process, and the control of pain. As it does not cause discomfort, is relatively inexpensive and may impede the discontinuation of breastfeeding, phototherapy could be a viable option for the treatment of nipple fissures. AIM The principal objective of the proposed study is to evaluate the effectiveness of LED therapy for the treatment of nipple fissures in postpartum mothers. MATERIALS AND METHODS One hundred patients treated with a medical diagnosis of bilateral nipple trauma classified as nipple fissures or cracks will participate in the study, randomized into 2 groups: The control group will receive orientation regarding breast care and adequate breastfeeding techniques. The experimental group will receive the same orientation and phototherapy sessions using a device developed especially for the treatment of nipple trauma. Both groups will be followed up for 6 consecutive weeks.
Collapse
Affiliation(s)
- Thalita Molinos Campos
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, UNINOVE
| | | | - Ana Paula Taboada Sobral
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, UNINOVE
| | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, UNINOVE
| | | | - Lara Jansiski Motta
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, UNINOVE
| | | |
Collapse
|
22
|
Photobiomodulation improved stereological parameters and sperm analysis factors in streptozotocin-induced type 1 diabetes mellitus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 186:81-87. [DOI: 10.1016/j.jphotobiol.2018.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023]
|
23
|
Bagheri M, Amini A, Abdollahifar MA, Ghoreishi SK, Piryaei A, Pouriran R, Chien S, Dadras S, Rezaei F, Bayat M. Effects of Photobiomodulation on Degranulation and Number of Mast Cells and Wound Strength in Skin Wound Healing of Streptozotocin-Induced Diabetic Rats. Photomed Laser Surg 2018; 36:415-423. [PMID: 30004319 DOI: 10.1089/pho.2018.4453] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A lack of effective treatments still exists for patients suffering from diabetes mellitus. Photobiomodulation is proved as a beneficial therapeutic modality for wounds. OBJECTIVE The aim of this study is to examine the effect of degranulation of mast cells and total number of mast cells in the remodeling step of an ischemic model of wound healing under the influence of photobiomodulation and conditioned medium (CM) from human bone marrow-derived mesenchymal stem cells (hBM-MSCs-CM), or CM, administered alone and or in combination. MATERIALS AND METHODS Initially, type 1 diabetes mellitus was induced in 72 male adult rats. Then, after a month, one incision was made on the back of each rat. Subsequently, the rats were divided into four groups. The first group was considered as the control (placebo) group, the second group received CM, the third group received photobiomodulation, and the fourth group received photobiomodulation+CM. On days 4, 7, and 15, samples were extracted from the wound for histological and tensiometric examinations. The total number of mast cells, including the three types of mast cells, was counted by the stereological methods. The tensiometric properties of the repairing tissue were examined. RESULTS The administration of photobiomodulation and CM, alone or in combination, significantly increased the tensiometric properties within the healing wounds. Histologically, photobiomodulation+CM, CM, and photobiomodulation groups showed a significant decrease in the three types of mast cells and in the total number of mast cells compared with the control group on day 15. CONCLUSIONS We conclude that photobiomodulation and CM alone and or in combination significantly accelerated the healing process in a rat with a diabetic and ischemic wound, and significantly decreased the total number of mast cells and degranulation of mast cells. We suggest that the increased number of type 2 mast cells in the control group adversely affected the tensiometric properties of wounds in this group.
Collapse
Affiliation(s)
- Mohammad Bagheri
- 1 School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- 2 Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- 2 Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Abbas Piryaei
- 2 Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran .,4 Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- 1 School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- 5 Price Institute of Surgical Research, University of Louisville , and Noveratech LLC of Louisville, Louisville, Kentucky; supplied in part by NIH grant DK105692
| | - Sara Dadras
- 2 Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Bayat
- 7 Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran .,8 Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, Kentucky
| |
Collapse
|
24
|
Kouhkheil R, Fridoni M, Piryaei A, Taheri S, Chirani AS, Anarkooli IJ, Nejatbakhsh R, Shafikhani S, Schuger LA, Reddy VB, Ghoreishi SK, Jalalifirouzkouhi R, Chien S, Bayat M. The effect of combined pulsed wave low‐level laser therapy and mesenchymal stem cell‐conditioned medium on the healing of an infected wound with methicillin‐resistant Staphylococcal aureus in diabetic rats. J Cell Biochem 2018; 119:5788-5797. [DOI: 10.1002/jcb.26759] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/25/2018] [Indexed: 01/08/2023]
Abstract
AbstractThis study aims to investigate the combined effects of Pulsed wave low‐level laser therapy (PW LLLT) and human bone marrow mesenchymal stem cell‐conditioned medium (hBM‐MSC‐CM) on the microbial flora and tensiometrical properties of an infected wound model with methicillin‐resistant staphylococcal aureus (MRSA) in an experimental model for Type 1 diabetes mellitus (TIDM). TIDM was induced in rats by streptozotocin (STZ). One full‐thickness excision was made on the backs of the rats. Next, the rats were divided into the following groups: Group 1 was the control (placebo) group; Group 2 received hBM‐MSCs‐CM four times; Group 3 were laser PWLLLT (890 nm, 80 Hz, 0.2 J/cm2); and Group 4 received hBM‐MSCs‐CM +LASER. Wounds were infected with MRSA. Microbiological examinations were performed on days 4, 7, and 15. Tensiometerical examinations were carried out on the 15th day. One‐way analysis of variance showed that laser and CM alone and/or in combination significantly increases the tensiomerical properties of the repaired wounds compared with control wounds. A combination of PW laser and CM was statistically more effective than other treated groups. Two‐way analysis of variance showed that laser and CM alone and/or in combination significantly decreases the colony‐forming units (CFUs) compared with the control group. The application of hBM‐MSC‐CM and PWlaser alone and/or together significantly accelerates the wound‐healing process in MRSA‐infected cutaneous wounds in TI DM in rats. Additionally, a combined application of hBM‐MSC‐CM and PWlaser demonstrates a synergistic effect on the wound‐healing process in MRSA‐infected cutaneous wounds in Type I DM rats.
Collapse
Affiliation(s)
- Reza Kouhkheil
- Department of Biology and Anatomical Sciences, School of Medicine Zanjan University of Medical Sciences Zanjan Iran
| | - Mohammadjavad Fridoni
- Department of Biology and Anatomical Sciences, School of Medicine Zanjan University of Medical Sciences Zanjan Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Soudabeh Taheri
- Department of Medical Microbiology, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Alireza S. Chirani
- Department of Medical Microbiology, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Iraj J. Anarkooli
- Department of Biology and Anatomical Sciences, School of Medicine Zanjan University of Medical Sciences Zanjan Iran
| | - Reza Nejatbakhsh
- Department of Biology and Anatomical Sciences, School of Medicine Zanjan University of Medical Sciences Zanjan Iran
| | - Sasha Shafikhani
- Department of Medicine, Division of Hematology/Oncology Rush University Medical Center Chicago Illinois
- Department of Immunology/Microbiology Cancer Center Chicago Illinois
| | - Lucia A. Schuger
- Department of Pathology The University of Chicago Chicago Illinois
| | - Vijaya B. Reddy
- Pathology Department Rush University Medical Center Chicago Illinois
| | | | | | - Sufan Chien
- Noveratech LLC of Louisville Louisville Kentucky
- Department of Surgery University of Louisville Louisville Kentucky
| | - Mohammad Bayat
- Cellular and Molecular Biology Research Center, and Department of Biology and Anatomical Sciences, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
25
|
Amini A, Pouriran R, Abdollahifar MA, Abbaszadeh HA, Ghoreishi SK, Chien S, Bayat M. Stereological and molecular studies on the combined effects of photobiomodulation and human bone marrow mesenchymal stem cell conditioned medium on wound healing in diabetic rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2018; 182:42-51. [PMID: 29604553 DOI: 10.1016/j.jphotobiol.2018.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/27/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022]
Abstract
We investigated the effects of conditioned medium (CM) from human bone marrow mesenchymal stem cells (h BMMSC)s and pulse wave photobiomodulation (PW PBM), applied alone or in combination, on the stereological parameters and gene expression of some growth factors, during wound healing in a streptozotocin (STZ)-induced rat model of type one diabetes mellitus (T1DM). T1DM was induced in 72 rats and two incisions were made in each animal. The rats were assigned to one of four groups: a control (placebo) group, a Laser group (890 nm, 80 Hz, 0.2 J/cm2); a CM group, and a combined CM + Laser group. On post-surgical days 4, 7, and 15, skin samples were extracted for stereology and reverse transcription PCR (RT-PCR) analyses of gene expression of basic fibroblast growth factor (bFGF), hypoxia-inducible factor (HIF-1α), and stromal cell-derived factor-1α (SDF-1α). The stereological examinations of the proximal and distal wounds revealed significantly enhanced healing in all the treated groups, compared to the control group. The extent of healing was significantly greater in the CM + Laser group than in the other treatment groups. The RT-PCR results also indicated greater gene expression in the CM + Laser and Laser groups than in the CM and control groups. Application of CM and PW PBM, alone or in combination accelerated the process of wound healing in T1DM rats. The results of combined application of CM and PW PBM, indicated a synergistic effect, and the combination treatment was statistically more effective than single applications of CM or PW PBM.
Collapse
Affiliation(s)
- Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Hearing Disorder Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Sufan Chien
- Noveratech LLC of Louisville, KY, Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Mohammad Bayat
- Noveratech LLC of Louisville, KY, Price Institute of Surgical Research, Department of Surgery, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
26
|
Fekrazad R, Sarrafzadeh A, Kalhori KA, Khan I, Arany PR, Giubellino A. Improved Wound Remodeling Correlates with Modulated TGF-beta Expression in Skin Diabetic Wounds Following Combined Red and Infrared Photobiomodulation Treatments. Photochem Photobiol 2018; 94:775-779. [DOI: 10.1111/php.12914] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/04/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Reza Fekrazad
- Laser Research Center in Medical Sciences; AJA University of Medical Sciences; Tehran Iran
| | - Arash Sarrafzadeh
- Oral and Maxillofacial Department; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | | | - Imran Khan
- National Institutes of Health; Bethesda MD USA
| | - Praveen R. Arany
- National Institutes of Health; Bethesda MD USA
- Oral Biology and Biomedical Engineering; University at Buffalo; Buffalo NY USA
| | - Alessio Giubellino
- National Institutes of Health; Bethesda MD USA
- Department of Laboratory Medicine and Pathology; University of Minnesota; Minneapolis MN USA
| |
Collapse
|
27
|
Soleimani H, Amini A, Taheri S, Sajadi E, Shafikhani S, Schuger LA, Reddy VB, Ghoreishi SK, Pouriran R, Chien S, Bayat M. The effect of combined photobiomodulation and curcumin on skin wound healing in type I diabetes in rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2018; 181:23-30. [PMID: 29486459 DOI: 10.1016/j.jphotobiol.2018.02.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/25/2018] [Accepted: 02/19/2018] [Indexed: 01/08/2023]
Abstract
The purpose of the present scientific study was to analyze the effects of combined pulsed wave Photobiomodulation (PW PBM) and Curcumin on the microbial flora; in addition, the tensiometrical wounds properties for type one diabetes mellitus (TIDM) in an experimental animal model. TIDM induction was performed in thirty rats. In the entire animals, one full-thickness excision was implemented on their backs. Randomly, the divisions of rats into 5 groups took place. The primary group was considered as the control group and did not receive any treatment. The secondary group (placebo) received sesame oil by gastric gavage. The third group received PWPBM (890 nm, 80 Hz, 0.2 J/cm2). The fourth group received curcumin (40 mg/kg, which was dissolved in sesame oil) by gastric gavage. Eventually, the fifth group received PW PBM + curcumin. Precisely, on day 7, microbiological examinations, and on the 15th day microbiological and tensiometrical examinations were conducted. The data were analyzed by statistical tests. PW PBM, significantly exacerbated tensiometrical properties of the TIDM repairing wound. PW PBM, curcumin, and PWPBM + curcumin significantly decreased colony forming units compared to the control and the placebo groups indeed. It was remarkably attained that PW PBM significantly accelerated the process of wound healing in the STZ-induced TIDM. The PW PBM was statistically more compelling compared to the curcumin and PWPBM + curcumin. PW PBM, curcumin, and PWPBM + curcumin significantly decreased colony forming units compared to the control and placebo groups.
Collapse
Affiliation(s)
- Hasan Soleimani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudabeh Taheri
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ensieh Sajadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sasha Shafikhani
- Rush University Medical Center, Department of Medicine, Division of Hematology/Oncology, Department of Immunology/Microbiology, Cancer Center,1735 W. Harrison, Cohn Research Building, Room 612, Chicago, IL 60612-3806, USA.
| | - Lucia A Schuger
- Department of Pathology, The University of Chicago, 5841 S. Maryland Avenue, MC 1089, Room J-541-D, Chicago, IL 60637, USA.
| | - Vijaya B Reddy
- Dermatopathology, Cytopathology, Rush University Medical Center, Pathology Department, 1653 W. Congress Pkwy., 570 Jelke, Chicago, IL 60612, USA.
| | | | - Ramin Pouriran
- School of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Noveratech LLC of Louisville, KY, USA; Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Mohammad Bayat
- Cellular and Molecular Biology Research Center, and Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Po Box: 19395/4719, Tehran 1985717443, Iran.
| |
Collapse
|
28
|
Should open excisions and sutured incisions be treated differently? A review and meta-analysis of animal wound models following low-level laser therapy. Lasers Med Sci 2018; 33:1351-1362. [PMID: 29603108 DOI: 10.1007/s10103-018-2496-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/23/2018] [Indexed: 12/20/2022]
Abstract
Although low-level laser therapy (LLLT) was discovered already in the 1960s of the twentieth century, it took almost 40 years to be widely used in clinical dermatology/surgery. It has been demonstrated that LLLT is able to increase collagen production/wound stiffness and/or improve wound contraction. In this review, we investigated whether open and sutured wounds should be treated with different LLLT parameters. A PubMed search was performed to identify controlled studies with LLLT applied to wounded animals (sutured incisions-tensile strength measurement and open excisions-area measurement). Final score random effects meta-analyses were conducted. Nineteen studies were included. The overall result of the tensile strength analysis (eight studies) was significantly in favor of LLLT (SMD = 1.06, 95% CI 0.66-1.46), and better results were seen with 30-79 mW/cm2 infrared laser (SMD = 1.44, 95% CI 0.67-2.21) and 139-281 mW/cm2 red laser (SMD = 1.52, 95% CI 0.54-2.49). The overall result of the wound contraction analysis (11 studies) was significantly in favor of LLLT (SMD = 0.99, 95% CI 0.38-1.59), and the best results were seen with 53-300 mW/cm2 infrared laser (SMD = 1.18, 95% CI 0.41-1.94) and 25-90 mW/cm2 red laser (SMD = 1.6, 95% CI 0.27-2.93). Whereas 1-15 mW/cm2 red laser had a moderately positive effect on sutured wounds, 2-4 mW/cm2 red laser did not accelerate healing of open wounds. LLLT appears effective in the treatment of sutured and open wounds. Statistical heterogeneity indicates that the tensile strength development of sutured wounds is more dependent on laser power density compared to the contraction rate of open wounds.
Collapse
|
29
|
Mostafavinia A, Razavi S, Abdollahifar M, Amini A, Ghorishi SK, Rezaei F, Pouriran R, Bayat M. Evaluation of the Effects of Photobiomodulation on Bone Healing in Healthy and Streptozotocin-Induced Diabetes in Rats. Photomed Laser Surg 2017; 35:537-545. [DOI: 10.1089/pho.2016.4224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ataroalsadat Mostafavinia
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Razavi
- School of medicine, Islamic Azad University, Tehran, Iran
| | - Mohammadamin Abdollahifar
- Department of Anatomical sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Anatomical sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemehalsadat Rezaei
- Celluar and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Bayat
- Celluar and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Asghari M, Kanonisabet A, Safakhah M, Azimzadeh Z, Mostafavinia A, Taheri S, Amini A, Ghorishi SK, JalaliFiroozkohi R, Bayat S, Bayat M. The effect of combined photobiomodulation and metformin on open skin wound healing in a non-genetic model of type II diabetes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2017; 169:63-69. [PMID: 28282557 DOI: 10.1016/j.jphotobiol.2017.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/02/2017] [Indexed: 12/28/2022]
Abstract
This study intended to examine the combined influences of photobiomodulation (PBM) and metformin on the microbial flora and biomechanical parameters of wounds in a non-genetic model of type II diabetes mellitus (TII DM). We induced a non-genetic model of TII DM in 20 rats by feeding them a 10% fructose solution for 2weeks followed by an injection of streptozotocin (STZ, 40mg/kg). After 21days from the injection of STZ, we induced one full-thickness skin wound in each of the diabetic rats. We randomly divided the rats into four groups: i) placebo; ii) pulsed wave laser (890nm, 80Hz, 0.324J/cm2); iii) metformin; and iv) laser+metformin. Rats received daily intraperitoneal injections of metformin (50mg/kg). On days 7and 15 we inspected the microbial flora of each wound. On day 15 we obtained a standard sample from each healing wound for biomechanical analyses. PBM significantly decreased colony-forming units (CFUs) 7days after wound infliction compared to the placebo group (LSD test, p=0.012). Metformin significantly enhanced the biomechanical property (stress high load) of the wounds compared to the placebo group (LSD test, p=0.028). We observed the same significant result for PBM compared to the placebo group (LSD test, p=0.047). PBM significantly accelerated the wound healing process and significantly reduced CFUs of bacteria in a non-genetic rat model of TII DM.
Collapse
Affiliation(s)
- Mohammadali Asghari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Kanonisabet
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mandanad Safakhah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Azimzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ataroalsadat Mostafavinia
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudabeh Taheri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | | - Mohammad Bayat
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Loreti EH, Pascoal VLW, Nogueira BV, Silva IV, Pedrosa DF. Use of laser therapy in the healing process: a literature review. Photomed Laser Surg 2016; 33:104-16. [PMID: 25692728 DOI: 10.1089/pho.2014.3772] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The purpose of this work was to conduct a literature search on the use of laser therapy in the tissue repair process, addressing different lasers and parameters used by the authors. METHODS We conducted a literature review of electronic databases to search for articles that investigate the effects of laser therapy on wound healing in rats, mice, and humans with specific diseases, published from January 2008 to March 2013. RESULTS In the 31 articles selected, the most frequently used type of laser was gallium-aluminium-arsenium (GaAIAs) in male rats. We noted that the protocol for laser application differed from author to author, making it difficult to compare results regarding the choice of parameters and treatment protocol. CONCLUSIONS Laser therapy had a positive effect on the healing process of cutaneous lesions in rats, which was not observed in humans.
Collapse
Affiliation(s)
- Eduardo Henrique Loreti
- 1 Departamento de Educação Integrada em Saúde, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo , Maruípe, Vitória, ES, Brazil
| | | | | | | | | |
Collapse
|
32
|
Shin SH, Kim KH, Choi NR, Kim IR, Park BS, Kim YD, Kim UK, Kim CH. Effect of low-level laser therapy on bisphosphonate-treated osteoblasts. Maxillofac Plast Reconstr Surg 2016; 38:48. [PMID: 27995121 PMCID: PMC5122599 DOI: 10.1186/s40902-016-0095-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/31/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND This study investigates the effect of alendronate-treated osteoblasts, as well as the effect of low-level laser therapy (LLLT) on the alendronate-treated osteoblasts. Bisphosphonate decreases the osteoblastic activity. Various treatment modalities are used to enhance the bisphosphonate-treated osteoblasts; however, there were no cell culture studies conducted using a low-level laser. METHODS Human fetal osteoblastic (hFOB 1.19) cells were treated with 50 μM alendronate. Then, they were irradiated with a 1.2 J/cm2 low-level Ga-Al-As laser (λ = 808 ± 3 nm, 80 mW, and 80 mA; spot size, 1 cm2; NDLux, Seoul, Korea). The cell survivability was measured with the MTT assay. The three cytokines of osteoblasts, receptor activator of nuclear factor κB ligand (RANKL), osteoprotegerin (OPG), and macrophage colony-stimulating factor (M-CSF) were analyzed. RESULTS In the cells treated with alendronate at concentrations of 50 μM and higher, cell survivability significantly decreased after 48 h (p < 0.05). After the applications of low-level laser on alendronate-treated cells, cell survivability significantly increased at 72 h (p < 0.05). The expressions of OPG, RANKL, and M-CSF have decreased via the alendronate. The RANKL and M-CSF expressions have increased, but the OPG was not significantly affected by the LLLT. CONCLUSIONS The LLLT does not affect the OPG expression in the hFOB cell line, but it may increase the RANKL and M-CSF expressions, thereby resulting in positive effects on osteoclastogenesis and bone remodeling.
Collapse
Affiliation(s)
- Sang-Hun Shin
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Beomeo, Mulgeum, Yangsan, 626-770 Republic of Korea
| | - Ki-Hyun Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Beomeo, Mulgeum, Yangsan, 626-770 Republic of Korea
| | - Na-Rae Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Beomeo, Mulgeum, Yangsan, 626-770 Republic of Korea
| | - In-Ryoung Kim
- Department of Oral Anatomy and Cell Biology, School of Dentistry, Pusan National University, Beomeo, Mulgeum, Yangsan, 626-770 Republic of Korea
| | - Bong-Soo Park
- Department of Oral Anatomy and Cell Biology, School of Dentistry, Pusan National University, Beomeo, Mulgeum, Yangsan, 626-770 Republic of Korea
| | - Yong-Deok Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Beomeo, Mulgeum, Yangsan, 626-770 Republic of Korea
| | - Uk-Kyu Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Beomeo, Mulgeum, Yangsan, 626-770 Republic of Korea
| | - Cheol-Hun Kim
- Department of Oral and Maxillofacial Surgery, Dentistry, Dong-A Medical Center, 602-715 Pusan, Republic of Korea
| |
Collapse
|
33
|
Pouriran R, Piryaei A, Mostafavinia A, Zandpazandi S, Hendudari F, Amini A, Bayat M. The Effect of Combined Pulsed Wave Low-Level Laser Therapy and Human Bone Marrow Mesenchymal Stem Cell-Conditioned Medium on Open Skin Wound Healing in Diabetic Rats. Photomed Laser Surg 2016; 34:345-54. [PMID: 27227981 DOI: 10.1089/pho.2015.4020] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The nobility of this scientific study was to investigate the combined effects of pulsed wave low-level laser therapy (PWLLLT) and human bone marrow mesenchymal stem cell-conditioned medium (hBM-MSC-CM) on the biomechanical parameters of wounds in an experimental model for diabetes mellitus (DM). BACKGROUND DATA PWLLLT exhibited biostimulatory effects on wounds in diabetic animals. Secretomes can be administered into wounds by the use of BM-MSC-CM. MATERIALS AND METHODS Type I DM was induced in rats by streptozotocin (STZ). Two wounds were made on proximal and distal parts in the dorsal region of each rat. Rats were divided into four groups. The first group was considered as the control group. The second group received hBM-MSC-CM. The third group received PWLLLT. The fourth group received hBM-MSC-CM+LASER. hBM-MSC-CM was administrated twice intraperitoneally. The proximal wounds in the third and fourth groups were treated with a pulsed laser by 890 nm wavelength, 80 Hz frequency, and 0.2 J/cm(2) energy densities. On the 15th day, a standard sample from each healing wound was submitted for biomechanical examination. The data were analyzed by analysis of variance test. RESULTS PWLLLT and hBM-MSC-CM, alone or in combination, significantly increased biomechanical parameters within the healing wounds. However, PWLLLT was statistically more effective compared with the hBM-MSC-CM. In the third and fourth groups, the numbers of wound closures were significantly enhanced in proximal part, contrary to the control ones. CONCLUSIONS It was magnificently attained that PWLLLT significantly accelerated the wound healing process in the experimental model for STZ-induced type I DM rats.
Collapse
Affiliation(s)
- Ramin Pouriran
- 1 School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Abbas Piryaei
- 2 Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
- 3 Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Ataroalsadat Mostafavinia
- 2 Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Sara Zandpazandi
- 1 School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Farzane Hendudari
- 2 Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Abdollah Amini
- 2 Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mohammad Bayat
- 2 Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| |
Collapse
|
34
|
Khan MS, Bhaisare ML, Gopal J, Wu HF. Highly efficient gold nanorods assisted laser phototherapy for rapid treatment on mice wound infected by pathogenic bacteria. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2015.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Najar A, Fridoni M, Rezaei F, Bayat S, Bayat M. Supraphysiologic glucocorticoid administration increased biomechanical bone strength of rats' vertebral body. Lab Anim Res 2015; 31:180-187. [PMID: 26755921 PMCID: PMC4707146 DOI: 10.5625/lar.2015.31.4.180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/08/2015] [Accepted: 11/18/2015] [Indexed: 11/21/2022] Open
Abstract
The aim of this study is to assess the effects of different glucocorticoid administration protocols on biomechanical properties of the first lumbar vertebral body in rats. We divided 40 male rats into the following groups: control, dexamethasone (7 mg/week), dexamethasone (0.7 mg/week), methylprednisolone (7 mg/kg/week), methylprednisolone (5 mg/kg twice weekly), dexamethasone (7 mg/kg three times per week), dexamethasone (0.7 mg/kg three times per week, and low-level laser treated rats. Lumbar vertebrae in rats were exposed to the pulsed laser. We conducted a biomechanical test to examine the mechanical properties of vertebral body in rats' lumbar bone. Supraphysiologic glucocorticoid administration protocols did not impair the biomechanical properties of rats' vertebral bodies compared to control and laser-treated rats. Supraphysiologic glucocorticoid administration caused an anabolic effect on the vertebral bodies.
Collapse
Affiliation(s)
- Azam Najar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadjavad Fridoni
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemesadat Rezaei
- Celluar and Molecular Biology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Bayat
- School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Bayat
- Celluar and Molecular Biology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
In vivo systemic chlorogenic acid therapy under diabetic conditions: Wound healing effects and cytotoxicity/genotoxicity profile. Food Chem Toxicol 2015; 81:54-61. [DOI: 10.1016/j.fct.2015.04.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 01/26/2023]
|
37
|
Cotler HB, Chow RT, Hamblin MR, Carroll J. The Use of Low Level Laser Therapy (LLLT) For Musculoskeletal Pain. MOJ ORTHOPEDICS & RHEUMATOLOGY 2015; 2:00068. [PMID: 26858986 PMCID: PMC4743666 DOI: 10.15406/mojor.2015.02.00068] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pain is the most common reason for physician consultation in the United States. One out of three Americans is affected by chronic pain annually. The number one reason for missed work or school days is musculoskeletal pain. Currently accepted therapies consist of non-steroidal anti-inflammatory drugs, steroid injections, opiate pain medications and surgery, each of which carries their own specific risk profiles. What is needed are effective treatments for pain which have an acceptably low risk-profile. For over forty years, low level laser (light) therapy (LLLT) and LED (light emitting diode) therapy (also known as photobiomodulation) has been shown to reduce inflammation and edema, induce analgesia, and promote healing in a range of musculoskeletal pathologies. The purpose of this paper is to review the use of LLLT for pain, the biochemical mechanisms of action, the dose response curves, and how LLLT may be employed by orthopedic surgeons to improve outcomes and reduce adverse events. With the predicted epidemic of chronic pain in developed countries, it is imperative to validate cost-effective and safe techniques for managing painful conditions which would allow people to live active and productive lives. Moreover the acceptance of LLLT (which is currently being used by many specialties around the world) into the armamentarium of the American health care provider would allow for additional treatment options for patients. A new cost-effective therapy for pain could elevate quality of life while reducing financial strains.
Collapse
Affiliation(s)
| | - Roberta T Chow
- Brain and Spine Research Institute, University of Sydney, Australia
| | - Michael R Hamblin
- Wellman Center for Photo medicine, Massachusetts General Hospital, USA
- Department of Dermatology, Harvard Medical School, USA
- Division of Health Sciences and Technology, USA
| | | |
Collapse
|
38
|
Freidouni M, Nejati H, Salimi M, Bayat M, Amini A, Noruzian M, Asgharie MA, Rezaian M. Evaluating glucocorticoid administration on biomechanical properties of rats' tibial diaphysis. IRANIAN RED CRESCENT MEDICAL JOURNAL 2015; 17:e19389. [PMID: 26019900 PMCID: PMC4441779 DOI: 10.5812/ircmj.19389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/28/2014] [Accepted: 10/20/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND Osteoporosis is a disease, which causes bone loss and fractures. Although glucocorticoids effectively suppress inflammation, their chronic use is accompanied by bone loss with a tendency toward secondary osteoporosis. OBJECTIVES This study took into consideration the importance of cortical bone in the entire bone's mechanical competence. Hence, the aim of this study was to assess the effects of different protocols of glucocorticoid administration on the biomechanical properties of tibial bone diaphysis in rats compared to control and low-level laser-treated rats. MATERIALS AND METHODS This experimental study was conducted at Shahid Beheshti University of Medical Sciences, Tehran, Iran. We used systematic random sampling to divide 40 adult male rats into 8 groups with 5 rats in each group. Groups were as follows: 1) control, 2) dexamethasone (7 mg/week), 3) dexamethasone (0.7 mg/week), 4) methylprednisolone (7 mg/kg/week), 5) methylprednisolone (5 mg/kg twice weekly), 6) dexamethasone (7 mg/kg three times per week), 7) dexamethasone (0.7 mg/kg thrice per week), and 8) low-level laser-treated rats. The study periods were 4-7 weeks. At the end of the treatment periods, we examined the mechanical properties of tibial bone diaphysis. Data were analyzed by statistical analyses. RESULTS Glucocorticoid-treated rats showed weight loss and considerable mortality (21%). The biomechanical properties (maximum force) of glucocorticoid-treated rats in groups 4 (62 ± 2.9), 6 (63 ± 5.1), and 7 (60 ± 5.3) were comparable with the control (46 ± 1.5) and low-level laser-treated (57 ± 3.2) rats. CONCLUSIONS In contrast to the findings in humans and certain other species, glucocorticoid administration caused anabolic effect on the cortical bone of tibia diaphysis bone in rats.
Collapse
Affiliation(s)
- Mohammadjavad Freidouni
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Hossein Nejati
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Maryam Salimi
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Mohsen Noruzian
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Mohammad Ali Asgharie
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Milad Rezaian
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
39
|
Dancáková L, Vasilenko T, Kováč I, Jakubčová K, Hollý M, Revajová V, Sabol F, Tomori Z, Iversen M, Gál P, Bjordal JM. Low-level laser therapy with 810 nm wavelength improves skin wound healing in rats with streptozotocin-induced diabetes. Photomed Laser Surg 2014; 32:198-204. [PMID: 24661084 DOI: 10.1089/pho.2013.3586] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE The aim of present study was to evaluate whether low-level laser therapy (LLLT) can reverse the impaired wound healing process in diabetic rats. BACKGROUND DATA Impaired wound healing in diabetic patients represents a major health problem. Recent studies have indicated that LLLT may improve wound healing in diabetic rats, but the optimal treatment parameters are still unknown. MATERIALS AND METHODS Male Sprague-Dawley rats (n=21) were randomly divided into three groups: a healthy control group, a diabetic sham-treated group, and a diabetic LLLT-treated group. Diabetes mellitus was then induced by streptozotocin administration to the two diabetic groups. One 4 cm long full thickness skin incision and one full thickness circular excision (diameter=4 mm) were performed on the back of each rat. An infrared 810 nm laser with an output of 30 mW, a power density of 30 mW/cm(2), and a spot size of 1 cm(2) was used to irradiate each wound for 30 sec (daily dose of 0.9 J/cm(2)/wound/day). RESULTS In diabetic rats, the histology of LLLT-treated excisions revealed a similar healing response to that in nondiabetic controls, with significantly more mature granulation tissue than in the sham-treated diabetic control group. LLLT reduced the loss of tensile strength, and increased the incision wound stiffness significantly compared with sham-irradiated rats, but this did not achieve the same level as in the nondiabetic controls. CONCLUSIONS Our study demonstrates that infrared LLLT can improve wound healing in diabetic rats. Nevertheless, further research needs to be performed to evaluate the exact underlying mechanism and to further optimize LLLT parameters for clinical use.
Collapse
Affiliation(s)
- Ludmila Dancáková
- 1 Department of Pathological Anatomy, University of Veterinary Medicine and Pharmacy , Košice, Slovak Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sharifian Z, Bayat M, Alidoust M, Farahani RM, Bayat M, Rezaie F, Bayat H. Histological and gene expression analysis of the effects of pulsed low-level laser therapy on wound healing of streptozotocin-induced diabetic rats. Lasers Med Sci 2013; 29:1227-35. [PMID: 24362922 DOI: 10.1007/s10103-013-1500-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/22/2013] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus (DM) is associated with poor wound healing. Studies have shown accelerated wound healing following pulsed low-level laser therapy (LLLT) in non-diabetic animals. The present study aims to evaluate the effect of pulsed LLLT on wound healing in streptozotocin-induced diabetic (STZ-D) rats. We divided 48 rats into two groups of non-diabetic and diabetic. Type 1 DM was induced in the diabetic rat group by injections of STZ. Two, full-thickness skin incisions were made on the dorsal region of each rat. One month after the STZ injection, wounds of the non-diabetic and diabetic rats were submitted to a pulsed, infrared 890-nm laser with an 80-Hz frequency and 0.2 J/cm(2) for each wound point. Control wounds did not receive LLLT. Animals were sacrificed on days 4, 7, and 15 post-injury for histomorphometry and reverse transcription polymerase chain reaction (RT-PCR) analyses of basic fibroblast growth factor (bFGF) gene expression. Pulsed LLLT significantly increased the numbers of macrophages, fibroblasts, and blood vessel sections compared to the corresponding control groups. Semi-quantitative analysis of bFGF gene expression at 48 h post-injury revealed a significant increase in gene expression in both non-diabetic and diabetic rats following LLLT (the ANOVA test). Pulsed LLLT at 0.2 J/cm(2) accelerated the wound healing process in both non-diabetic and diabetic rats as measured by histological characteristics and semi-quantitative bFGF gene expression.
Collapse
Affiliation(s)
- Zanelabedien Sharifian
- Department of Anatomy, Medical Faculty, Isfahan University of Medical Sciences, Isfahan, Iran,
| | | | | | | | | | | | | |
Collapse
|
41
|
Hochman B, Pinfildi CE, Nishioka MA, Furtado F, Bonatti S, Monteiro PKP, Antunes AS, Quieregatto PR, Liebano RE, Chadi G, Ferreira LM. Low-level laser therapy and light-emitting diode effects in the secretion of neuropeptides SP and CGRP in rat skin. Lasers Med Sci 2013; 29:1203-8. [DOI: 10.1007/s10103-013-1494-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 11/05/2013] [Indexed: 02/01/2023]
|
42
|
Aparecida Da Silva A, Leal-Junior ECP, Alves ACA, Rambo CS, Dos Santos SA, Vieira RP, De Carvalho PDTC. Wound-healing effects of low-level laser therapy in diabetic rats involve the modulation of MMP-2 and MMP-9 and the redistribution of collagen types I and III. J COSMET LASER THER 2013; 15:210-216. [PMID: 23463906 DOI: 10.3109/14764172.2012.761345] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study aimed to determine if LLLT restores the balance between mRNA expression of matrix metalloproteinases (MMP-2 and MMP-9) and also the balance between collagen types I and III during the healing process of diabetic wounds. One hundred and twenty male Wistar rats were distributed in Control (untreated non-diabetic rats: UND); Laser (laser treated in non-diabetic rats: LTND); Diabetic (diabetic rats non-laser treated rats: UD); and Diabetic+ Laser (diabetic rats laser treated: DLT) groups. The diabetes model using streptozotocin efficiently induced diabetes, as demonstrated through increased levels of blood glucose. Diode laser (50 mW, 660 nm, 4 J/cm(2), 80 s) was applied a single time after scare induction. Twenty-four hours after LLLT application, rats were euthanized, the scarred areas were collected for MMP-2 and MMP-9 mRNA analysis and also for histological analysis (inflammation and types I and III collagen). The results demonstrated that scare in untreated diabetic rats significantly increased the MMP-2 and MMP-9 expression compared with that in non-diabetic rats (p < 0.05), while LLLT significantly reduced MMP-2 and MMP-9 expression compared with that in untreated diabetic rats (p < 0.05). To conclude, the results also showed that LLLT was able to alter the expression of MMP-9 as well as accelerate the production of collagen and increase the total percentage of collagen type III in diabetic animals.
Collapse
Affiliation(s)
- Andreia Aparecida Da Silva
- Graduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Lee JY, Kim IR, Park BS, Kim YD, Chung IK, Song JM, Shin SH. Effect of low-level laser therapy on oral keratinocytes exposed to bisphosphonate. Lasers Med Sci 2013; 30:635-43. [PMID: 23835780 DOI: 10.1007/s10103-013-1382-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/23/2013] [Indexed: 10/26/2022]
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a side effect of bisphosphonate therapy. However, its pathophysiology is not yet fully elucidated, and effective treatment of BRONJ remains unclear. The aim of this study is to investigate the effects of alendronate on oral keratinocytes and of low-level laser therapy (LLLT) on alendronate-treated keratinocytes, specifically by evaluating their viability, apoptosis, and wound healing function after irradiation. Oral keratinocyte cells (HaCaT) were exposed to 25 μM alendronate. Then, laser irradiation was performed with a low-level Ga-Al-As laser (λ = 808 ± 3 nm, 80 mW, and 80 mA; NDLux, Seoul, Korea) using 1.2 J/cm(2) energy dose. Viability was analyzed using MTT assay. Apoptosis was measured by Hoechst staining, caspase assay. Changes in secretion of IL-8, VEGF, and collagen type I were studied by ELISA and immunofluorescence microscopy. Scratch wound assays were also performed to measure cellular migration. Our results show that alendronate inhibits keratinocyte viability, expression of IL-8, VEGF, and collagen type I which are intimately related to healing events and cell migration while promoting apoptosis. Our results serve to demonstrate the utility of LLLT in partially overcoming the inhibitory effects of this bisphosphonate. From these results, the authors believe that the present study will provide an experimental basis for a fuller explanation of the clinical effects of LLLT as a BRONJ treatment modality.
Collapse
Affiliation(s)
- Jae-Yeol Lee
- Department of Oral and Maxillofacial Surgery, Pusan National University Hospital, Busan, South Korea,
| | | | | | | | | | | | | |
Collapse
|
44
|
Ridner SH, Poage-Hooper E, Kanar C, Doersam JK, Bond SM, Dietrich MS. A pilot randomized trial evaluating low-level laser therapy as an alternative treatment to manual lymphatic drainage for breast cancer-related lymphedema. Oncol Nurs Forum 2013; 40:383-93. [PMID: 23803270 PMCID: PMC3887507 DOI: 10.1188/13.onf.383-393] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE/OBJECTIVES To examine the impact of advanced practice nurse (APN)-administered low-level laser therapy (LLLT) as both a stand-alone and complementary treatment for arm volume, symptoms, and quality of life (QOL) in women with breast cancer-related lymphedema. DESIGN A three-group, pilot, randomized clinical trial. SETTING A private rehabilitation practice in the southeastern United States. SAMPLE 46 breast cancer survivors with treatment-related lymphedema. METHODS Patients were screened for eligibility and then randomized to either manual lymphatic drainage (MLD) for 40 minutes, LLLT for 20 minutes, or 20 minutes of MLD followed by 20 minutes of LLLT. Compression bandaging was applied after each treatment. Data were collected pretreatment, daily, weekly, and at the end of treatment. MAIN RESEARCH VARIABLES Independent variables consisted of three types of APN-administered lymphedema treatment. Outcome variables included limb volume, extracellular fluid, psychological and physical symptoms, and QOL. FINDINGS No statistically significant between-group differences were found in volume reduction; however, all groups had clinically and statistically significant reduction in volume. No group differences were noted in psychological and physical symptoms or QOL; however, treatment-related improvements were noted in symptom burden within all groups. Skin improvement was noted in each group that received LLLT. CONCLUSIONS LLLT with bandaging may offer a time-saving therapeutic option to conventional MLD. Alternatively, compression bandaging alone could account for the demonstrated volume reduction. IMPLICATIONS FOR NURSING APNs can effectively treat lymphedema. APNs in private healthcare practices can serve as valuable research collaborators. KNOWLEDGE TRANSLATION Lasers may provide effective, less burdensome treatment for lymphedema. APNs with lymphedema certification can effectively treat this patient population with the use of LLLT. In addition, bioelectrical impedance and tape measurements can be used to assess lymphedema.
Collapse
Affiliation(s)
- Sheila H Ridner
- School of Nursing, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Firat ET, Dağ A, Günay A, Kaya B, Karadede Mİ, Kanay BE, Ketani A, Evliyaoğlu O, Uysal E. The Effects of Low-Level Laser Therapy on Palatal Mucoperiosteal Wound Healing and Oxidative Stress Status in Experimental Diabetic Rats. Photomed Laser Surg 2013; 31:315-21. [DOI: 10.1089/pho.2012.3406] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ela Tules Firat
- Department of Periodontology, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey
| | - Ahmet Dağ
- Department of Periodontology, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey
| | - Ahmet Günay
- Department of Periodontology, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey
| | - Beyza Kaya
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey
| | - Mehmet İrfan Karadede
- Department of Orthodontics, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey
| | - Berna Ersöz Kanay
- Department of Surgery, Faculty of Veterinary Medicine, Dicle University, Diyarbakir, Turkey
| | - Aydin Ketani
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakir, Turkey
| | - Osman Evliyaoğlu
- Department of Biochemistry, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | - Ersin Uysal
- Department of Computer Technology Programs, Diyarbakir Vocational School, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
46
|
Esmaeelinejad M, Bayat M. Effect of low-level laser therapy on the release of interleukin-6 and basic fibroblast growth factor from cultured human skin fibroblasts in normal and high glucose mediums. J COSMET LASER THER 2013; 15:310-7. [PMID: 23656570 DOI: 10.3109/14764172.2013.803366] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION This study evaluated the effects of low-level laser therapy (LLLT) on human skin fibroblasts (HSFs) that have been cultured in high glucose concentration media. MATERIALS AND METHODS HSFs were cultured under physiological glucose condition medium, and then cultured in high glucose concentration medium (15 mM/L) for 1 or 2 weeks prior to LLLT. Experimental HSFs were irradiated with three energy densities (0.5, 1, and 2 J/cm(2)) once daily for three consecutive days. Release of interleukin-6 (IL-6) and basic fibroblast growth factor (bFGF) was evaluated using the enzyme-linked immunosorbent assay (ELISA) method. RESULTS Statistical analysis showed three doses of 0.5 (p = 0.049), 1 (p = 0.027), and 2 J/cm(2) (p = 0.004) stimulated the release of IL-6 in HSFs cultured in high glucose concentration medium compared with that of non-irradiated HSFs that were cultured in the same medium. LLLT with 2 J/cm(2) induced the release of bFGF from HSFs cultured in high glucose concentration medium for 1 or 2 weeks (both p = 0.04). CONCLUSION Our study showed that LLLT stimulated the release of IL-6 and bFGF from HSFs cultured in high glucose concentration medium. LLLT was more effective in releasing IL-6 and bFGF while HSFs which were cultured in physiologic glucose concentration medium during laser irradiation.
Collapse
Affiliation(s)
- Mohammad Esmaeelinejad
- Oral and Maxillofacial Surgery Department, Dental Faculty, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | | |
Collapse
|
47
|
Fathabadie FF, Bayat M, Amini A, Bayat M, Rezaie F. Effects of pulsed infra-red low level-laser irradiation on mast cells number and degranulation in open skin wound healing of healthy and streptozotocin-induced diabetic rats. J COSMET LASER THER 2013; 15:294-304. [DOI: 10.3109/14764172.2013.764435] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Esmaeelinejad M, Bayat M, Darbandi H, Bayat M, Mosaffa N. The effects of low-level laser irradiation on cellular viability and proliferation of human skin fibroblasts cultured in high glucose mediums. Lasers Med Sci 2013; 29:121-9. [PMID: 23455657 DOI: 10.1007/s10103-013-1289-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 02/18/2013] [Indexed: 01/31/2023]
Abstract
Delayed wound healing is one of the most challenging complications of diabetes mellitus (DM) in clinical medicine. This study has aimed to evaluate the effects of low-level laser therapy (LLLT) on human skin fibroblasts (HSFs) cultured in a high glucose concentration. HSFs were cultured either in a concentration of physiologic glucose (5.5 mM/l) or high glucose media (11.1 and 15 mM/l) for either 1 or 2 weeks after which they were subsequently cultured in either the physiologic glucose or high concentration glucose media during laser irradiation. LLLT was carried out with a helium-neon (He-Ne) laser unit at energy densities of 0.5, 1, and 2 J/cm(2), and power density of 0.66 mW/cm(2) on 3 consecutive days. HSFs' viability and proliferation rate were evaluated with the dimethylthiazol-diphenyltetrazolium bromide (MTT) assay. The LLLT at densities of 0.5 and 1 J/cm(2) had stimulatory effects on the viability and proliferation rate of HSFs cultured in physiologic glucose (5.5 mM/l) medium compared to their control cultures (p = 0.002 and p = 0.046, respectively). All three doses of 0.5, 1, and 2 J/cm(2) had stimulatory effects on the proliferation rate of HSFs cultured in high glucose concentrations when compared to their control cultures (p = 0.042, p = 0.000, and p = 0.000, respectively). This study showed that HSFs originally cultured for 2 weeks in high glucose concentration followed by culture in physiologic glucose during laser irradiation showed enhanced cell viability and proliferation. Thus, LLLT had a stimulatory effect on these HSFs.
Collapse
|
49
|
Shining light on nanotechnology to help repair and regeneration. Biotechnol Adv 2012; 31:607-31. [PMID: 22951919 DOI: 10.1016/j.biotechadv.2012.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/10/2012] [Accepted: 08/11/2012] [Indexed: 12/27/2022]
Abstract
Phototherapy can be used in two completely different but complementary therapeutic applications. While low level laser (or light) therapy (LLLT) uses red or near-infrared light alone to reduce inflammation, pain and stimulate tissue repair and regeneration, photodynamic therapy (PDT) uses the combination of light plus non-toxic dyes (called photosensitizers) to produce reactive oxygen species that can kill infectious microorganisms and cancer cells or destroy unwanted tissue (neo-vascularization in the choroid, atherosclerotic plaques in the arteries). The recent development of nanotechnology applied to medicine (nanomedicine) has opened a new front of advancement in the field of phototherapy and has provided hope for the development of nanoscale drug delivery platforms for effective killing of pathological cells and to promote repair and regeneration. Despite the well-known beneficial effects of phototherapy and nanomaterials in producing the killing of unwanted cells and promoting repair and regeneration, there are few reports that combine all three elements i.e. phototherapy, nanotechnology and, tissue repair and regeneration. However, these areas in all possible binary combinations have been addressed by many workers. The present review aims at highlighting the combined multi-model applications of phototherapy, nanotechnology and, reparative and regeneration medicine and outlines current strategies, future applications and limitations of nanoscale-assisted phototherapy for the management of cancers, microbial infections and other diseases, and to promote tissue repair and regeneration.
Collapse
|
50
|
Androsov NS, Matiakin GG, Melenchuk IP, Shumaeva OD, Sushchikhina MA. [Short-term results of radiotherapy of cancer of the tongue and mouth floor mucosa using 60Co and 252Cf]. Lasers Med Sci 1986; 31:3-7. [PMID: 3724383 DOI: 10.1007/s10103-023-03786-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
The authors presented the immediate and 3-year results of interstitial and combined therapy of 90 patients with cancer of the tongue and oral fundus mucosa. 60Co- and 252Cf-sources were employed in interstitial radiotherapy. There were no significant differences in therapeutic efficacy using different radiation sources. Some methodological aspects of administration of interstitial radiotherapy, radiation reactions and complications were covered.
Collapse
|