1
|
Liu D, Qin L, Zeng H, Liang Y, Liang Y, Chen Y, Huang H, Chen W. Ecotoxicological risk assessment of N-nitrosamines to Selenastrum capricornutum in surface waters: Insights into toxicity mechanisms and environmental Implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118179. [PMID: 40253879 DOI: 10.1016/j.ecoenv.2025.118179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/23/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
N-nitrosamines, one of the most common nitrogen-containing organic compounds in freshwater systems such as rivers or reservoirs, are toxic and carcinogenic to human. However, the aquatic hazard of these compounds to algae which is ubiquitous in surface water is still unclear. In this study, nine N-nitrosamines were investigated in the Pearl River Delta, China, with the total concentrations ranged from 27.0 to 727.6 ng/L. After that, four frequently detected N-nitrosamines-N-nitrosodiethylamine, N-nitroso-di-n-propylamine, N-nitrosopyrrolidine, and N-nitrosodibutylamine-were selected to explore their toxic mechanisms when individually or in combination exposed to Selenastrum capricornutum. The results revealed that the four N-nitrosamines and their mixtures all inhibited algal growth, with toxicity ranking as follows: N-nitrosodiethylamine > N-nitroso-di-n-propylamine > N-nitrosodibutylamine > N-nitrosopyrrolidine. Exposure to N-nitrosamines significantly altered the activities of superoxide dismutase and catalase and increased malondialdehyde levels. Additionally, total protein and photosynthetic pigment contents were significantly inhibited, especially under high-concentration exposure, leading to severe impairment of algal photosynthesis and growth. Toxicity modelling indicated that the quaternary mixture exhibited an additive effect on algal toxicity, with an inhibition of 15.6 % at environmental concentrations. However, risk quotients modeled using ECOSAR were significantly overestimated compared to experimental toxicity data. Risk assessments based on measured levels of N-nitrosamines in Pearl River Delta freshwater systems indicated that the risk quotients were all below 0.1. Nevertheless, the ecological risks posed by N-nitrosamines in mixture forms were slightly higher. This study represents the first systematic investigation into the hazardous effects of N-nitrosamines on algae and provides a scientific evaluation of their potential risks to freshwater ecosystems using experimental data.
Collapse
Affiliation(s)
- Decai Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen 361021, China
| | - Litang Qin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Honghu Zeng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, University of Technology, Guilin 541004, China.
| | - Yi Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Yanpeng Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Yingjie Chen
- School of Environmental Studies, South China Normal University, Guangzhou 510006, China
| | - Huanfang Huang
- South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China
| | - Wenwen Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, University of Technology, Guilin 541004, China
| |
Collapse
|
2
|
Mohi Ud Din A, Mao HT, Khan A, Raza MA, Ahmed M, Yuan M, Zhang ZW, Yuan S, Zhang HY, Liu ZH, Su YQ, Chen YE. Photosystems and antioxidative system of rye, wheat and triticale under Pb stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114356. [PMID: 36508799 DOI: 10.1016/j.ecoenv.2022.114356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Lead (Pb2+) pollution in the soil sub-ecosystem has been a continuously growing problem due to economic development and ever-increasing anthropogenic activities across the world. In this study, the photosynthetic performance and antioxidant capacity of Triticeae cereals (rye, wheat and triticale) were compared to assess the activities of antioxidants, the degree of oxidative damage, photochemical efficiency and the levels of photosynthetic proteins under Pb stress (0.5 mM, 1 mM and 2 mM Pb (NO3)2). Compared with triticale, Pb treatments imposed severe oxidative damage in rye and wheat. In addition, the highest activity of major antioxidant enzymes (SOD, POD, CAT, and GPX) was also found to be elevated. Triticale accumulated the highest Pb contents in roots. The concentration of mineral ions (Mg, Ca, and K) was also high in its leaves, compared with rye and wheat. Consistently, triticale showed higher photosynthetic activity under Pb stress. Immunoblotting of proteins revealed that rye and wheat have significantly lower levels of D1 (photosystem II subunit A, PsbA) and D2 (photosystem II subunit D, PsbD) proteins, while no obvious decrease was noticed in triticale. The amount of light-harvesting complex II b6 (Lhcb6; CP24) and light-harvesting complex II b5 (Lhcb5; CP26) was significantly increased in rye and wheat. However, the increase in PsbS (photosystem II subunit S) protein only occurred in wheat and triticale exposed to Pb treatment. Taken together, these findings demonstrate that triticale shows higher antioxidant capacity and photosynthetic efficiency than wheat and rye under Pb stress, suggesting that triticale has high tolerance to Pb and could be used as a heavy metal-tolerant plant.
Collapse
Affiliation(s)
- Atta Mohi Ud Din
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; National Research Center of Intercropping, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hao-Tian Mao
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Ahsin Khan
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Muhammad Ali Raza
- National Research Center of Intercropping, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Mukhtar Ahmed
- Department of Agronomy, PMAS Arid Agricultural University, Rawalpindi 46300, Pakistan
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huai-Yu Zhang
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Zheng-Hui Liu
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan-Qiu Su
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China.
| |
Collapse
|
3
|
Su Q, Zheng J, Xi J, Yang J, Wang L, Xiong D. Evaluation of the acute toxic response induced by triazophos to the non-target green algae Chlorella pyrenoidosa. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105036. [PMID: 35249646 DOI: 10.1016/j.pestbp.2022.105036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Residues of triazophos in aquatic ecosystems due to extensive use for controlling pests in agriculture has became worldwide concern, while the toxic response of triazophos on the non-target green algae in aquatic environment is not well studied. Therefore, the acute (96 h) toxic effects of 1 and 10 mg/L triazophos on green algae Chlorella pyrenoidosa were evaluated in present study. The results showed that the growth was notably inhibited when treated with triazophos and the 96 h-EC50 (median inhibition concentration) were 12.79 mg/L. The content of photosynthetic pigments (including chl a, chl b, total-chl and carotinoids) clearly decreased under two treatments after 48 h and 96 h with exception for the values at 48 h exposure in 1 mg/L treatment. In addition, the transcript abundance of photosynthesis-related genes (psbA, psbC and rbcL) showed obvious decrease in above two treatments after exposure 96 h to triazophos. In response to 10 mg/L triazophos treatment, the morphology of thylakoid chloroplast of algal cells were obviously damaged. It was also found that starch granules increased with down-regulation of atpB gene expression in 10 mg/L treatment, which suggests that triazophos may inhibit the energy metabolism of C. pyrenoidosa. Moreover, the algal growth inhibition was along with the increase of intracellular reactive oxygen species (ROS), activity of antioxidant enzymes and malondialdehyde content indicating oxidative damage and lipid peroxidation in the algal cells. Our findings reveal that triazophos has potential toxicity and environmental risks to one of the primary producers green algae.
Collapse
Affiliation(s)
- Qi Su
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juan Zheng
- Shaanxi Environmental Investigation and Assessment Center, Xi'an, Shaanxi 710054, China
| | - Jiejun Xi
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Lixin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Dongmei Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Can Ceylon Leadwort ( Plumbago zeylanica L.) Acclimate to Lead Toxicity?-Studies of Photosynthetic Apparatus Efficiency. Int J Mol Sci 2020; 21:ijms21051866. [PMID: 32182862 PMCID: PMC7084747 DOI: 10.3390/ijms21051866] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022] Open
Abstract
Ceylon leadwort (Plumbago zeylanica) is ornamental plant known for its pharmacological properties arising from the abundant production of various secondary metabolites. It often grows in lead polluted areas. The aim of presented study was to evaluate the survival strategy of P. zeylanica to lead toxicity via photosynthetic apparatus acclimatization. Shoots of P. zeylanica were cultivated on media with different Pb concentrations (0.0, 0.05, and 0.1 g Pb∙l−1). After a four-week culture, the efficiency of the photosynthetic apparatus of plants was evaluated by Chl a fluorescence measurement, photosynthetic pigment, and Lhcb1, PsbA, PsbO, and RuBisCo protein accumulation, antioxidant enzymes activity, and chloroplast ultrastructure observation. Plants from lower Pb concentration revealed no changes in photosynthetic pigments content and light-harvesting complex (LHCII) size, as well as no limitation on the donor side of Photosystem II Reaction Centre (PSII RC). However, the activity and content of antioxidant enzymes indicated a high risk of limitation on the acceptor side of Photosystem I. In turn, plants from 0.1 g Pb∙l−1 showed a significant decrease in pigments content, LHCII size, the amount of active PSII RC, oxygen-evolving complex activity, and significant remodeling of chloroplast ultrastructure indicated limitation of PSII RC donor side. Obtained results indicate that P. zeylanica plants acclimate to lead toxicity by Pb accumulation in roots and, depending on Pb concentration, by adjusting their photosynthetic apparatus via the activation of alternative (cyclic and pseudocyclic) electron transport pathways.
Collapse
|
5
|
Liu R, Deng Y, Zhang W, Zhang L, Wang Z, Li B, Diao J, Zhou Z. Enantioselective mechanism of toxic effects of triticonazole against Chlorella pyrenoidosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109691. [PMID: 31563746 DOI: 10.1016/j.ecoenv.2019.109691] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The rational use and the environmental safety of chiral pesticides have attracted significant research interest. Here, enantioselective toxic effects and the selective toxic mechanism of triticonazole (TRZ) against the aquatic microalgae Chlorella pyrenoidosa were studied. The 96h-EC50 values of rac-, (R)-(-)-, and (S)-(+)-TRZ were 1.939, 0.853, and 22.002 mg/L, respectively. At a concentration of 1 mg/L, the contents of photosynthetic pigments of C. pyrenoidosa exposed to (R)-(-)-TRZ were lower than if exposed to S-(+)-form and racemate. Transmission electron microscopic images showed that the R-(-)-form compromised the integrity of cells and disrupted the chloroplast structure. R-(-)-TRZ stimulated vast reactive oxygen species (ROS) and significantly increased superoxide dismutase (SOD) and catalase (CAT) activities, as well as malondialdehyde (MDA) content. For lipid accumulation experiments, nicotinamide adenine dinucleotide (NADH) and triacylglycerol (TAG) accumulations in algal cells treated with R-(-)-TRZ were 171.50% and 280.76%, respectively, compared with the control group. This far exceeded levels of algal cells treated with S-(+)- and rac-TRZ. Based on these data, R-(-)-TRZ was concluded to selectively affect the photosynthetic system, antioxidant system, and lipid synthesis of algal cells, thus causing enantioselective toxic effects of TRZ against C. pyrenoidosa, which indicating that the use of racemate may cause unpredictable environmental harm. Therefore, to reduce the hidden dangers of chiral pesticides for the ecological environment, the environmental risk of TRZ should be evaluated at the stereoselective level.
Collapse
Affiliation(s)
- Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yue Deng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Wenjun Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Luyao Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Bingyan Li
- College of Agronomy, Shanxi Agricultural University, Mingxian South Road 1, Shanxi, 030800, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China.
| |
Collapse
|
6
|
Pollastri S, Jorba I, Hawkins TJ, Llusià J, Michelozzi M, Navajas D, Peñuelas J, Hussey PJ, Knight MR, Loreto F. Leaves of isoprene-emitting tobacco plants maintain PSII stability at high temperatures. THE NEW PHYTOLOGIST 2019; 223:1307-1318. [PMID: 30980545 DOI: 10.1111/nph.15847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/07/2019] [Indexed: 05/13/2023]
Abstract
At high temperatures, isoprene-emitting plants display a higher photosynthetic rate and a lower nonphotochemical quenching (NPQ) compared with nonemitting plants. The mechanism of this phenomenon, which may be very important under current climate warming, is still elusive. NPQ was dissected into its components, and chlorophyll fluorescence lifetime imaging microscopy (FLIM) was used to analyse the dynamics of excited chlorophyll relaxation in isoprene-emitting and nonemitting plants. Thylakoid membrane stiffness was also measured using atomic force microscope (AFM) to identify a possible mode of action of isoprene in improving photochemical efficiency and photosynthetic stability. We show that, when compared with nonemitters, isoprene-emitting tobacco plants exposed at high temperatures display a reduced increase of the NPQ energy-dependent component (qE) and stable (1) chlorophyll fluorescence lifetime; (2) amplitude of the fluorescence decay components; and (3) thylakoid membrane stiffness. Our study shows for the first time that isoprene maintains PSII stability at high temperatures by preventing the modifications of the surrounding environment, namely providing a more steady and homogeneous distribution of the light-absorbing centres and a stable thylakoid membrane stiffness. Isoprene photoprotects leaves with a mechanism alternative to NPQ, enabling plants to maintain a high photosynthetic rate at rising temperatures.
Collapse
Affiliation(s)
- Susanna Pollastri
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
- Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
| | - Ignasi Jorba
- University of Barcelona and Institute for Bioengineering of Catalonia - The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Timothy J Hawkins
- Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
| | - Joan Llusià
- CSIC, Global Ecology Unit CREAF-CSIC-Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - Daniel Navajas
- University of Barcelona and Institute for Bioengineering of Catalonia - The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
| | - Marc R Knight
- Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Piazzale Aldo Moro 7, 00185, Rome, Italy
- Department of Biology, University of Naples Federico II, via Cinthia, 80126, Naples, Italy
| |
Collapse
|
7
|
El-Banna MF, Mosa A, Gao B, Yin X, Wang H, Ahmad Z. Scavenging effect of oxidized biochar against the phytotoxicity of lead ions on hydroponically grown chicory: An anatomical and ultrastructural investigation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:363-374. [PMID: 30550966 DOI: 10.1016/j.ecoenv.2018.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 05/11/2023]
Abstract
To evaluate the scavenging effect of functionalized biochar against the phytotoxicity of Pb2+, original biochar (O-B) was chemically oxidized with either HNO3 or KMnO4 to serve as biofilters (O-BF, HNO3-BF and KMnO4-BF) to hydroponically grown chicory (Cichorium intybus L. var. intybus). Plants subjected to Pb-stress showed various deteriorations in cell organelles including visible alterations in chloroplasts, malformations in plant cells, abnormalities in the mitochondrial system, inward invagination of cell walls, distortions in the plasma membrane, oversized vacuoles and irregular increase in plastoglobuli formation. In addition, disorganization in xylem and phloem tissues and numerous variations in the stomatal number, density and dimensions as well as stomata movement were noticeable in the abaxial leaf surface. Pb-stressed plants showed increments in root diameter, vascular cylinder and metaxylem vessels as well as an obvious increase in the thickness of cortex, intercellular aerenchyma and endodermis layer. Furthermore, a noticeable disturbance in macro-and micronutrient concentrations was recorded in Pb-stressed plants due to the defect in their water status. O-BF showed a limited scavenging effect against the phytotoxicity of Pb2+. However, oxidized biochar filters (particularly KMnO4-BF) recorded a noticeable safeguard effect due to their high affinity to Pb2+ ions. The higher sorption capacity of KMnO4-BF reduced the concentration of Pb in leaf tissues compared to the unequipped filtration treatment (117 vs. 19 µg g-1). In conclusion, data of this hydroponic study provides baseline information regarding the detoxification mechanisms of functionalized biochar against the phytotoxicity of trace elements.
Collapse
Affiliation(s)
- Mostafa F El-Banna
- Agricultural Botany Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States.
| | - Xianqiang Yin
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongyu Wang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States; School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zahoor Ahmad
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States; Department of Soil Science, University of Haripur, Haripur 22620, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
8
|
Santos RW, Schmidt ÉC, Vieira IC, Costa GB, Rover T, Simioni C, Barufi JB, Soares CHL, Bouzon ZL. The effect of different concentrations of copper and lead on the morphology and physiology of Hypnea musciformis cultivated in vitro: a comparative analysis. PROTOPLASMA 2015; 252:1203-1215. [PMID: 25563715 DOI: 10.1007/s00709-014-0751-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Copper and lead, as remnants of industrial activities and urban effluents, have heavily contaminated many aquatic environments. Therefore, this study aimed to determine their effects on the physiological, biochemical, and cell organization responses of Hypnea musciformis under laboratory conditions during a 7-day experimental period. To accomplish this, segments of H. musciformis were exposed to photosynthetic active radiation at 80 μmol photons m(-2) s(-1), Cu (0.05 and 0.1 mg kg(-1)), and Pb (3.5 and 7 mg kg(-1)). Various intracellular abnormalities resulted from exposure to Cu and Pb, including a decrease in phycobiliproteins. Moreover, carotenoid and flavonoid contents, as well as phenolic compounds, were decreased, an apparent reflection of chemical antioxidant defense against reactive oxygen species. Treatment with Cu and Pb also caused an increase in the number of floridean starch grains, probably as a defense against nutrient deprivation. Compared to plants treated with lead, those treated with copper showed higher metabolic and ultrastructural alterations. These results suggest that H. musciformis more readily internalizes copper through transcellular absorption. Finally, as a result of ultrastructural damage and metabolic changes observed in plants exposed to different concentrations of Cu and Pb, a significant reduction in growth rates was observed. Nevertheless, the results indicated different susceptibility of H. musciformis to different concentrations of Cu and Pb.
Collapse
Affiliation(s)
- Rodrigo W Santos
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88049-900, CP 476, Florianópolis, SC, Brazil,
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wioleta W, Anna D, Ilona B, Kamila K, Elżbieta R. Lead induced changes in phosphorylation of PSII proteins in low light grown pea plants. Biometals 2015; 28:151-62. [PMID: 25491575 DOI: 10.1007/s10534-014-9811-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/29/2014] [Indexed: 11/30/2022]
Abstract
Light-intensity and redox-state induced thylakoid proteins phosphorylation involved in structural changes and in regulation of protein turnover. The presence of heavy metal ions triggers a wide range of cellular responses including changes in plant growth and photosynthesis. Plants have evolved a number of mechanisms to protect photosynthetic apparatus. We have characterized the effect of lead on PSII protein phosphorylation in pea (Pisum sativum L.) plants grown in low light conditions. Pb ions affected only slightly photochemical efficiency of PSII and had no effect on organization of thylakoid complexes. Lead activated strongly phosphorylation of PSII core D1 protein and dephosphorylation of this protein did not proceed in far red light. D1 protein was also not degraded in this conditions. However, phosphorylation of LHCII proteins was not affected by lead. These results indicate that Pb(2+) stimulate the phosphorylation of PSII core proteins and by disturbing the disassembly of supercomplexes play a role in PSII repair mechanism. LHCII phosphorylation could control the distribution of energy between the photosystems in low light conditions. This demonstrates that plants may respond to heavy metals by induction different pathways responsible for protein protection under stress conditions.
Collapse
Affiliation(s)
- Wasilewska Wioleta
- Department of Molecular Plant Physiology, Faculty of Biology, Warsaw University, Miecznikowa 1, 02096, Warsaw, Poland
| | | | | | | | | |
Collapse
|
10
|
Photosynthetic responses of Oryza sativa L. seedlings to cadmium stress: physiological, biochemical and ultrastructural analyses. Biometals 2014; 27:389-401. [DOI: 10.1007/s10534-014-9720-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|