1
|
Bownik A, Pawlik-Skowrońska B. Responses of RTgill-W1 cells to cyanobacterial metabolites microcystin-LR, anabaenopeptin-A, cylindrospermopsin, their binary and ternary mixtures. Toxicon 2024; 249:108059. [PMID: 39117156 DOI: 10.1016/j.toxicon.2024.108059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The aim of our study was to investigate the effects of cyanobacterial metabolites: microcystin-LR (MC-LR) anabaenopeptin-A (ANA-A), cylindrospermopsin (CYL), their binary and ternary mixtures on rainbow trout (Oncorhynchus mykiss) gill (RTgill-W1) cell line. We determined the following cell parameters: Hoechst and propidium iodide (PI) double staining, intracellular ATP level with luminometric assay, glutathione level with ThiolTracker Violet®- glutathione detection reagent and cytoskeletal F-actin fluorescence. The results showed that although reduction of Hoechst fluorescence was observed in both binary and ternary combinations of cyanobacterial metabolites, the mixture of MC-LR + ANA-A + CYL was the most potent inhibitor (EC50 = 148 nM). PI fluorescence and ATP levels were more increased in the cells exposed to the mixtures than those exposed to the individual metabolites with synergistic toxic changes suggesting apoptosis as the mechanism of cell death. Reduced glutathione level was also decreased in cells exposed both to single metabolites and their mixtures with the highest decrease and synergistic effects at 334 nM MC-LR+334 nM ANA-A+ 334 nM CYL suggesting induction oxidative stress by the tested compounds. Reduction of F-actin fluorescence was found in the cells from all of the groups exposed to individual metabolites and their mixtures, however the highest level of inhibition showed the binary MC-LR + CYL and the ternary MC-LR + ANA-A + CYL with synergistic interactions. The study suggests that in natural conditions fish gill cells may be very sensitive to individual cyanobacterial metabolites and more prone to their binary and ternary mixtures.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| | - Barbara Pawlik-Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
2
|
Sun Z, Liu K, Liang C, Wen L, Wu J, Liu X, Li X. Diosmetin as a promising natural therapeutic agent: In vivo, in vitro mechanisms, and clinical studies. Phytother Res 2024; 38:3660-3694. [PMID: 38748620 DOI: 10.1002/ptr.8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 07/12/2024]
Abstract
Diosmetin, a natural occurring flavonoid, is primarily found in citrus fruits, beans, and other plants. Diosmetin demonstrates a variety of pharmacological activities, including anticancer, antioxidant, anti-inflammatory, antibacterial, metabolic regulation, cardiovascular function improvement, estrogenic effects, and others. The process of literature search was done using PubMed, Web of Science and ClinicalTrials databases with search terms containing Diosmetin, content, anticancer, anti-inflammatory, antioxidant, pharmacological activity, pharmacokinetics, in vivo, and in vitro. The aim of this review is to summarize the in vivo, in vitro and clinical studies of Diosmetin over the last decade, focusing on studies related to its anticancer, anti-inflammatory, and antioxidant activities. It is found that DIO has significant therapeutic effects on skin and cardiovascular system diseases, and its research in pharmacokinetics and toxicology is summarized. It provides the latest information for researchers and points out the limitations of current research and areas that should be strengthened in future research, so as to facilitate the relevant scientific research and clinical application of DIO.
Collapse
Affiliation(s)
- Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Huang Q, Pan X, Zhu W, Zhao W, Xu H, Hu K. Natural Products for the Immunotherapy of Glioma. Nutrients 2023; 15:2795. [PMID: 37375698 DOI: 10.3390/nu15122795] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Glioma immunotherapy has attracted increasing attention since the immune system plays a vital role in suppressing tumor growth. Immunotherapy strategies are already being tested in clinical trials, such as immune checkpoint inhibitors (ICIs), vaccines, chimeric antigen receptor T-cell (CAR-T cell) therapy, and virus therapy. However, the clinical application of these immunotherapies is limited due to their tremendous side effects and slight efficacy caused by glioma heterogeneity, antigen escape, and the presence of glioma immunosuppressive microenvironment (GIME). Natural products have emerged as a promising and safe strategy for glioma therapy since most of them possess excellent antitumor effects and immunoregulatory properties by reversing GIME. This review summarizes the status of current immunotherapy strategies for glioma, including their obstacles. Then we discuss the recent advancement of natural products for glioma immunotherapy. Additionally, perspectives on the challenges and opportunities of natural compounds for modulating the glioma microenvironment are also illustrated.
Collapse
Affiliation(s)
- Qi Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xier Pan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenhao Zhu
- Department of Anaesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wen Zhao
- Department of Anaesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hongzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
4
|
Abdelrahman RE, Khalaf AAA, Elhady MA, Ibrahim MA, Hassanen EI, Noshy PA. Antioxidant and antiapoptotic effects of quercetin against ochratoxin A-induced nephrotoxicity in broiler chickens. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103982. [PMID: 36179809 DOI: 10.1016/j.etap.2022.103982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The mycotoxin ochratoxin A (OTA) is produced by the fungi Aspergillus and Penicillium. The flavonoid quercetin (QUE) is distinguished by its antioxidant, anti-inflammatory, and antiapoptotic properties. This study was designed to determine whether QUE can protect broiler chickens against OTA-induced nephrotoxicity. Forty broiler chicks were randomly divided into four equal groups: control, OTA, QUE, and OTA + QUE. For 6 weeks, OTA (0.5 mg/kg) and/or QUE (0.5 g/kg) were added to the diet of chickens. The results demonstrated that OTA exposure increased serum levels of creatinine, uric acid, and blood urea nitrogen. OTA exposure also increased renal malondialdehyde content but decreased renal antioxidants. OTA-exposed chickens exhibited multiple pathological kidney lesions. Moreover, OTA exposure induced apoptosis in renal tissue, which was manifested by the up-regulation of proapoptotic genes and down-regulation of antiapoptotic genes via the suppression of the PI3K/AKT pathway. In addition, coadministration of QUE and OTA mitigated most of these nephrotoxic effects.
Collapse
Affiliation(s)
- Rehab E Abdelrahman
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdel Azeim A Khalaf
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed A Elhady
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Metabolism, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Peter A Noshy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
5
|
Rasouli H, Nayeri FD, Khodarahmi R. May phytophenolics alleviate aflatoxins-induced health challenges? A holistic insight on current landscape and future prospects. Front Nutr 2022; 9:981984. [PMID: 36386916 PMCID: PMC9649842 DOI: 10.3389/fnut.2022.981984] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
The future GCC-connected environmental risk factors expedited the progression of nCDs. Indeed, the emergence of AFs is becoming a global food security concern. AFs are lethal carcinogenic mycotoxins, causing damage to the liver, kidney, and gastrointestinal organs. Long-term exposure to AFs leads to liver cancer. Almost a variety of food commodities, crops, spices, herbaceous materials, nuts, and processed foods can be contaminated with AFs. In this regard, the primary sections of this review aim to cover influencing factors in the occurrence of AFs, the role of AFs in progression of nCDs, links between GCC/nCDs and exposure to AFs, frequency of AFs-based academic investigations, and world distribution of AFs. Next, the current trends in the application of PPs to alleviate AFs toxicity are discussed. Nearly, more than 20,000 published records indexed in scientific databases have been screened to find recent trends on AFs and application of PPs in AFs therapy. Accordingly, shifts in world climate, improper infrastructures for production/storage of food commodities, inconsistency of global polices on AFs permissible concentration in food/feed, and lack of the public awareness are accounting for a considerable proportion of AFs damages. AFs exhibited their toxic effects by triggering the progression of inflammation and oxidative/nitrosative stress, in turn, leading to the onset of nCDs. PPs could decrease AFs-associated oxidative stress, genotoxic, mutagenic, and carcinogenic effects by improving cellular antioxidant balance, regulation of signaling pathways, alleviating inflammatory responses, and modification of gene expression profile in a dose/time-reliant fashion. The administration of PPs alone displayed lower biological properties compared to co-treatment of these metabolites with AFs. This issue might highlight the therapeutic application of PPs than their preventative content. Flavonoids such as quercetin and oxidized tea phenolics, curcumin and resveratrol were the most studied anti-AFs PPs. Our literature review clearly disclosed that considering PPs in antioxidant therapies to alleviate complications of AFs requires improvement in their bioavailability, pharmacokinetics, tissue clearance, and off-target mode of action. Due to the emergencies in the elimination of AFs in food/feedstuffs, further large-scale clinical assessment of PPs to decrease the consequences of AFs is highly required.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Dehghan Nayeri
- Department of Biotechnology, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Hagiwara H, Watanabe M, Fujioka Y, Kadosaka T, Koizumi T, Koya T, Nakao M, Kamada R, Temma T, Okada K, Moreno JA, Kwon O, Sabe H, Ohba Y, Anzai T. Stimulation of the mitochondrial calcium uniporter mitigates chronic heart failure-associated ventricular arrhythmia in mice. Heart Rhythm 2022; 19:1725-1735. [PMID: 35660475 PMCID: PMC10746330 DOI: 10.1016/j.hrthm.2022.05.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/02/2022] [Accepted: 05/24/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND An aberrant increase in the diastolic calcium concentration ([Ca2+]i) level is a hallmark of heart failure (HF) and the cause of delayed afterdepolarization and ventricular arrhythmia (VA). Although mitochondria play a role in regulating [Ca2+]i, whether they can compensate for the [Ca2+]i abnormality in ventricular myocytes is unknown. OBJECTIVE The purpose of this study was to investigate whether enhanced Ca2+ uptake of mitochondria may compensate for an abnormal increase in the [Ca2+]i of ventricular myocytes in HF to effectively mitigate VA. METHODS We used a HF mouse model in which myocardial infarction was induced by permanent left anterior descending coronary artery ligation. The mitochondrial Ca2+ uniporter was stimulated by kaempferol. Ca2+ dynamics and membrane potential were measured using an epifluorescence microscope, a confocal microscope, and the perforated patch-clamp technique. VA was induced in Langendorff-perfused hearts, and hemodynamic parameters were measured using a microtip transducer catheter. RESULTS Protein expression of the mitochondrial Ca2+ uniporter, as assessed by its subunit expression, did not change between HF and sham mice. Treatment of cardiomyocytes with kaempferol, isolated from HF mice 28 days after coronary ligation, reduced the appearance of aberrant diastolic [Ca2+]i waves and sparks and spontaneous action potentials. Kaempferol effectively reduced VA occurring in Langendorff-perfused hearts. Intravenous administration of kaempferol did not markedly affect left ventricular hemodynamic parameters. CONCLUSION The effects of kaempferol in HF of mice implied that mitochondria may have the potential to compensate for abnormal [Ca2+]i. Mechanisms involved in mitochondrial Ca2+ uptake may provide novel targets for treatment of HF-associated VA.
Collapse
Affiliation(s)
- Hikaru Hagiwara
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Watanabe
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takahide Kadosaka
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Koizumi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Koya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Motoki Nakao
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rui Kamada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Temma
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazufumi Okada
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Jose Antonio Moreno
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California
| | - Hisakata Sabe
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
He WS, Wu Y, Ren MJ, Yu ZY, Zhao XS. Diosmetin inhibits apoptosis and activates AMPK-induced autophagy in myocardial damage under hypoxia environment. Kaohsiung J Med Sci 2021; 38:139-148. [PMID: 34713558 DOI: 10.1002/kjm2.12462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 01/01/2023] Open
Abstract
Inhibition of hypoxia-induced cardiomyocyte apoptosis is considered as an important treatment method for ischemic heart diseases, but related drugs are still insufficient. The present study aims to explore the protective function and mechanism of the key Chinese medicine monomer diosmetin (DIOS) on the injury of cardiomyocytes induced by hypoxia. Here, AC16 and HCM-a cells were treated with 40 μM of DIOS under hypoxic environment and a hypoxic rat model was built to study the role of DIOS. The viability and autophagy of cardiomyocytes were increased, but the apoptosis of cells was suppressed by 40 μM DIOS, under hypoxic environment. Intriguingly, 10 mM 3-methyladenine, an inhibitor of autophagy, reversed the effect of DIOS on autophagy and apoptosis of the cardiomyocytes under hypoxia. Furthermore, DIOS induced AMP-activated protein kinase (AMPK) activation and Compound C (5 μM), an AMPK inhibitor, attenuated the inhibition of DIOS on the apoptosis of cardiomyocytes under hypoxia environment. In isoprenaline-induced hypoxic rats, it was verified that DIOS inhibited apoptosis, accelerated autophagy, and activated AMPKα pathway in vivo. Our findings indicated that DIOS alleviated hypoxia-induced myocardial apoptosis via inducing the activation of AMPK-induced autophagy. In summary, the study suggested that DIOS inhibited the apoptosis and induced the autophagy of hypoxia-induced cardiomyocytes through AMPK activation.
Collapse
Affiliation(s)
- Wen-Shuai He
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yun Wu
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Mao-Jia Ren
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhong-Yu Yu
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Xing-Sheng Zhao
- Department of Cardiology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
8
|
Ochratoxin A-Induced Nephrotoxicity: Up-to-Date Evidence. Int J Mol Sci 2021; 22:ijms222011237. [PMID: 34681895 PMCID: PMC8539333 DOI: 10.3390/ijms222011237] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin widely found in various foods and feeds that have a deleterious effect on humans and animals. It has been shown that OTA causes multiorgan toxicity, and the kidney is the main target of OTA among them. This present article aims to review recent and latest intracellular molecular interactions and signaling pathways of OTA-induced nephrotoxicity. Pyroptosis, lipotoxicity, organic anionic membrane transporter, autophagy, the ubiquitin-proteasome system, and histone acetyltransferase have been involved in the renal toxicity caused by OTA. Meanwhile, the literature reviewed the alternative or method against OTA toxicity by reducing ROS production, oxidative stress, activating the Nrf2 pathway, through using nanoparticles, a natural flavonoid, and metal supplement. The present review discloses the molecular mechanism of OTA-induced nephrotoxicity, providing opinions and strategies against OTA toxicity.
Collapse
|
9
|
Vissenaekens H, Criel H, Grootaert C, Raes K, Smagghe G, Van Camp J. Flavonoids and cellular stress: a complex interplay affecting human health. Crit Rev Food Sci Nutr 2021; 62:8535-8566. [PMID: 34098806 DOI: 10.1080/10408398.2021.1929822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Flavonoid consumption has beneficial effects on human health, however, clinical evidence remains often inconclusive due to high interindividual variability. Although this high interindividual variability has been consistently observed in flavonoid research, the potential underlying reasons are still poorly studied. Especially the knowledge on the impact of health status on flavonoid responsiveness is limited and merits more investigation. Here, we aim to highlight the bidirectional interplay between flavonoids and cellular stress. First, the state-of-the-art concerning inflammatory stress and mitochondrial dysfunction is reviewed and a comprehensive overview of recent in vitro studies investigating the impact of flavonoids on cellular stress, induced by tumor necrosis factor α, lipopolysaccharide and mitochondrial stressors, is given. Second, we critically discuss the influence of cellular stress on flavonoid uptake, accumulation, metabolism and cell responses, which has, to our knowledge, never been extensively reviewed before. Next, we advocate the innovative insight that stratification of the general population based on health status can reveal subpopulations that benefit more from flavonoid consumption. Finally, suggestions are given for the development of future cell models that simulate the physiological micro-environment, including interindividual variability, since more mechanistic research is needed to establish scientific-based personalized food recommendations for specific subpopulations.
Collapse
Affiliation(s)
- Hanne Vissenaekens
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Hanne Criel
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Katleen Raes
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - John Van Camp
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
J. Hashim F, Vichitphan S, Boonsiri P, Vichitphan K. Neuroprotective Assessment of Moringa oleifera Leaves Extract against Oxidative-Stress-Induced Cytotoxicity in SHSY5Y Neuroblastoma Cells. PLANTS 2021; 10:plants10050889. [PMID: 33925070 PMCID: PMC8146478 DOI: 10.3390/plants10050889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 01/20/2023]
Abstract
The current trend worldwide is searching plant extracts towards prevention of neurodegenerative disorders. This study aimed to investigate the neuroprotective effect of Alpinia galanga leaves (ALE), Alpinia galanga rhizomes (ARE), Vitis vinifera seeds (VSE), Moringa oleifera leaves (MLE), Panax ginseng leaves (PLE) and Panax ginseng rhizomes (PRE) ethanolic extracts on human neuroblastoma (SHSY5Y) cells. The 1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging of VSE and MLE were 81% and 58%, respectively. Ferric-reducing antioxidant power (FRAP) of ALE and MLE (33.57 ± 0.20 and 26.76 ± 0.30 μmol Fe(ΙΙ)/g dry wt., respectively) were higher than for the other extracts. Liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) revealed MLE active compounds. Intracellular study by nitro-blue tetrazolium (NBT) test showed that MLE and VSE had high O2− scavenging (0.83 ± 0.09 vs. 0.98 ± 0.08 mg/mL, respectively). MLE had the highest ROS scavenging followed by PRE (0.71 ± 0.08 vs. 0.83 ± 0.08 mg/mL, respectively), by 2,7-dichlorodihydrofluorescein diacetate (DCFHDA) assay. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity and neuroprotection tests on SHSY5Y showed that PRE had a better neuroprotective effect but higher cytotoxicity compared to MLE (viable cells 51% vs. 44%, IC50 1.92 ± 0.04 vs. 2.7 ± 0.2 mg/mL, respectively). In conclusion, among the studied plants, MLE has potential for developing as a neuroprotective agent.
Collapse
Affiliation(s)
- Farah J. Hashim
- Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad 10071, Iraq
| | - Sukanda Vichitphan
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand;
- Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharee Boonsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Kanit Vichitphan
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand;
- Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +668-685-22929
| |
Collapse
|
11
|
Wang Y, Liu XJ, Chen JB, Cao JP, Li X, Sun CD. Citrus flavonoids and their antioxidant evaluation. Crit Rev Food Sci Nutr 2021; 62:3833-3854. [PMID: 33435726 DOI: 10.1080/10408398.2020.1870035] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The antioxidant ability is the link and bridge connecting a variety of biological activities. Citrus flavonoids play an essential role in regulating oxidative stress and are an important source of daily intake of antioxidant supplements. Many studies have shown that citrus flavonoids promote health through antioxidation. In this review, the biosynthesis, composition and distribution of citrus flavonoids were concluded. The detection methods of antioxidant capacity of citrus flavonoids were divided into four categories: chemical, cellular, animal and clinical antioxidant capacity evaluation systems. The modeling methods, applicable scenarios, and their relative merits were compared based on these four systems. The antioxidant functions of citrus flavonoids under different evaluation systems were also discussed, especially the regulation of the Nrf2-antioxidases pathway. Some shortcomings in the current research were pointed out, and some suggestions for progress were put forward.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Xiao-Juan Liu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jie-Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jin-Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Chong-De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Niaz K, Shah SZA, Khan F, Bule M. Ochratoxin A-induced genotoxic and epigenetic mechanisms lead to Alzheimer disease: its modulation with strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44673-44700. [PMID: 32424756 DOI: 10.1007/s11356-020-08991-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Ochratoxin A (OTA) is a naturally occurring mycotoxin mostly found in food items including grains and coffee beans. It induces DNA single-strand breaks and has been considered to be carcinogenic. It is recognized as a serious threat to reproductive health both in males and females. OTA is highly nephrotoxic and carcinogenic, and its potency changes evidently between species and sexes. There is a close association between OTA, mutagenicity, carcinogenicity, and genotoxicity, but the underlying mechanisms are not clear. Reports regarding genotoxic effects in relation to OTA which leads to the induction of DNA adduct formation, protein synthesis inhibition, perturbation of cellular energy production, initiation of oxidative stress, induction of apoptosis, influences on mitosis, induction of cell cycle arrest, and interference with cytokine pathways. All these mechanisms are associated with nephrotoxicity, hepatotoxicity, teratotoxicity, immunological toxicity, and neurotoxicity. OTA administration activates various mechanisms such as p38 MAPK, JNKs, and ERKs dysfunctions, BDNF disruption, TH overexpression, caspase-3 and 9 activation, and ERK-1/2 phosphorylation which ultimately lead to Alzheimer disease (AD) progression. The current review will focus on OTA in terms of recent discoveries in the field of molecular biology. The main aim is to investigate the underlying mechanisms of OTA in regard to genotoxicity and epigenetic modulations that lead to AD. Also, we will highlight the strategies for the purpose of attenuating the hazards posed by OTA exposure.
Collapse
Affiliation(s)
- Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Syed Zahid Ali Shah
- Department of Pathology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Fazlullah Khan
- The Institute of Pharmaceutical Sciences (TIPS), School of Pharmacy, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, 1417614411, Iran
| | - Mohammed Bule
- Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Oromia, Ethiopia
| |
Collapse
|
13
|
Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
14
|
Inhibition of TGF-β Signaling in Gliomas by the Flavonoid Diosmetin Isolated from Dracocephalum peregrinum L. Molecules 2020; 25:molecules25010192. [PMID: 31906574 PMCID: PMC6982745 DOI: 10.3390/molecules25010192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/28/2019] [Accepted: 01/01/2020] [Indexed: 01/11/2023] Open
Abstract
Background: Dracocephalum peregrinum L., a traditional Kazakh medicine, has good expectorant, anti-cough, and to some degree, anti-asthmatic effects. Diosmetin (3',5,7-trihydroxy-4'-methoxyflavone), a natural flavonoid found in traditional Chinese herbs, is the main flavonoid in D. peregrinum L. and has been used in various medicinal products because of its anticancer, antimicrobial, antioxidant, estrogenic, and anti-inflammatory effects. The present study aimed to investigate the effects of diosmetin on the proliferation, invasion, and migration of glioma cells, as well as the possible underlying mechanisms. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), scratch wound, and Transwell assays were used to demonstrate the effects of diosmetin in glioma. Protein levels of Bcl-2, Bax, cleaved caspase-3, transforming growth factor-β (TGF-β), E-cadherin, and phosphorylated and unphosphorylated smad2 and smad3 were determined by Western blots. U251 glioma cell development and progression were measured in vivo in a mouse model. Results: Diosmetin inhibited U251 cell proliferation, migration, and invasion in vitro, the TGF-β signaling pathway, and Bcl-2 expression. In contrast, there was a significant increase in E-cadherin, Bax, and cleaved caspase-3 expression. Furthermore, it effectively reduced the tumorigenicity of glioma cells and promoted apoptosis in vivo. Conclusion: The results of this study suggest that diosmetin suppresses the growth of glioma cells in vitro and in vivo, possibly by activating E-cadherin expression and inhibiting the TGF-β signaling pathway.
Collapse
|
15
|
Zheng Y, Zhang R, Shi W, Li L, Liu H, Chen Z, Wu L. Metabolism and pharmacological activities of the natural health-benefiting compound diosmin. Food Funct 2020; 11:8472-8492. [DOI: 10.1039/d0fo01598a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diosmin is a famous natural flavonoid for treating chronic venous insufficiency and varicose veins.
Collapse
Affiliation(s)
- Yizhou Zheng
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Rui Zhang
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Weimei Shi
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Linfu Li
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Hai Liu
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Zhixi Chen
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| | - Longhuo Wu
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- China
| |
Collapse
|
16
|
Rong X, Sun-Waterhouse D, Wang D, Jiang Y, Li F, Chen Y, Zhao S, Li D. The Significance of Regulatory MicroRNAs: Their Roles in Toxicodynamics of Mycotoxins and in the Protection Offered by Dietary Therapeutics Against Mycotoxin-Induced Toxicity. Compr Rev Food Sci Food Saf 2018; 18:48-66. [DOI: 10.1111/1541-4337.12412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/11/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Rong
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- School of Chemical Sciences; The Univ. of Auckland; Private Bag Auckland 92019 New Zealand
| | - Dan Wang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- Shandong Inst. of Pomology; Taian Shandong 271000 P. R. China
| | - Yang Jiang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Yilun Chen
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Shancang Zhao
- Central Laboratory of Shandong Academy of Agricultural Sciences; Key Laboratory of Test Technology on Food Quality and Safety of Shandong Province; Jinan Shandong 250100 P. R. China
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| |
Collapse
|
17
|
Interaction of 2'R-ochratoxin A with Serum Albumins: Binding Site, Effects of Site Markers, Thermodynamics, Species Differences of Albumin-binding, and Influence of Albumin on Its Toxicity in MDCK Cells. Toxins (Basel) 2018; 10:toxins10090353. [PMID: 30200461 PMCID: PMC6162703 DOI: 10.3390/toxins10090353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/17/2018] [Accepted: 08/27/2018] [Indexed: 01/02/2023] Open
Abstract
Ochratoxin A (OTA) is a nephrotoxic mycotoxin. Roasting of OTA-contaminated coffee results in the formation of 2′R-ochratoxin A (2′R-OTA), which appears in the blood of coffee drinkers. Human serum albumin (HSA) binds 2′R-OTA (and OTA) with high affinity; therefore, albumin may influence the tissue uptake and elimination of ochratoxins. We aimed to investigate the binding site of 2′R-OTA (verses OTA) in HSA and the displacing effects of site markers to explore which molecules can interfere with its albumin-binding. Affinity of 2′R-OTA toward albumins from various species (human, bovine, porcine and rat) was tested to evaluate the interspecies differences regarding 2′R-OTA-albumin interaction. Thermodynamic studies were performed to give a deeper insight into the molecular background of the complex formation. Besides fluorescence spectroscopic and modeling studies, effects of HSA, and fetal bovine serum on the cytotoxicity of 2′R-OTA and OTA were tested in MDCK kidney cell line in order to demonstrate the influence of albumin-binding on the cellular uptake of ochratoxins. Site markers displaced more effectively 2′R-OTA than OTA from HSA. Fluorescence and binding constants of 2′R-OTA-albumin and OTA-albumin complexes showed different tendencies. Albumin significantly decreased the cytotoxicity of ochratoxins. 2′R-OTA, even at sub-toxic concentrations, increased the toxic action of OTA.
Collapse
|
18
|
Baldissera MD, Souza CF, Zeppenfeld CC, Descovi S, da Silva AS, Baldisserotto B. Changes in the cerebral phosphotransfer network impair energetic homeostasis in an aflatoxin B 1-contaminated diet. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1051-1059. [PMID: 29546539 DOI: 10.1007/s10695-018-0493-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
The phosphotransfer network system, through the enzymes creatine kinase (CK), adenylate kinase (AK), and pyruvate kinase (PK), contributes to efficient intracellular energetic communication between cellular adenosine triphosphate (ATP) consumption and production in tissues with high energetic demand, such as cerebral tissue. Thus, the aim of this study was to evaluate whether aflatoxin B1 (AFB1) intoxication in diet negatively affects the cerebral phosphotransfer network related to impairment of cerebral ATP levels in silver catfish (Rhamdia quelen). Brain cytosolic CK activity decreased in animals fed with a diet contaminated with AFB1 on days 14 and 21 post-feeding, while mitochondrial CK activity increased, when compared to the control group (basal diet). Also, cerebral AK and PK activity decreased in animals fed with a diet contaminated with AFB1 on days 14 and 21 post-feeding, similarly to the results observed for cerebral ATP levels. Based on this evidence, inhibition of cerebral cytosolic CK activity is compensated by stimulation of mitochondrial CK activity in an attempt to prevent impairment of communication between sites of ATP generation and ATP utilization. The inhibition of cerebral AK and PK activity leads to impairment of cerebral energy homeostasis, decreasing the brain's ATP availability. Moreover, the absence of a reciprocal compensatory mechanism between these enzymes contributes to cerebral energetic imbalance, which may contribute to disease pathophysiology.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Carla Cristina Zeppenfeld
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sharine Descovi
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aleksandro S da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
19
|
Abstract
Ajwa dates (Phoenix dactylifera), cultivated particularly in Al-Madina Al-Monawarh in Saudi Arabia, and considered as a rich source of natural antioxidants such as anthocyanins, carotenoids and phenolics. It is believed that Ajwa dates have a wide range of protective effects. For this reason, this work aimed to investigate the ameliorative effect of Ajwa dates aqueous extract against ochratoxin A (OTA)-induced testicular lesions in rats. Rats were divided into four groups and treated for 28 days. Group I served as normal control, group II (OTA exposed) treated orally with 289 μg/kg/day. Group III (Ajwa dates aqueous extract) treated orally with 1 g/kg/day. The last group served as the protective group (pretreated with Ajwa dates extract, then OTA). Histological studies revealed that OTA induced lesions in the testicular structure included proliferation of sertoli cells, impairment of some spermatogenesis stages and accumulation of premeiotic germinal cells. However, pretreatment with Ajwa dates extract prevented all the testicular damage and improved spermatogenesis, as well as remarkably enhanced the testicular structure. In conclusion, Ajwa dates aqueous extract has a powerful protective effect and ameliorative influence against OTA- induced testicular damage and may be used to treat sexual impairment and male infertility.
Collapse
Affiliation(s)
- Suzan Bakr Abdu
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Poór M, Boda G, Mohos V, Kuzma M, Bálint M, Hetényi C, Bencsik T. Pharmacokinetic interaction of diosmetin and silibinin with other drugs: Inhibition of CYP2C9-mediated biotransformation and displacement from serum albumin. Biomed Pharmacother 2018; 102:912-921. [DOI: 10.1016/j.biopha.2018.03.146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 01/05/2023] Open
|
21
|
Effects of curcumin on performance, antioxidation, intestinal barrier and mitochondrial function in ducks fed corn contaminated with ochratoxin A. Animal 2018; 13:42-52. [PMID: 29644962 DOI: 10.1017/s1751731118000678] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Curcumin has been attributed with antioxidant, anti-inflammatory, antibacterial activities, and has shown highly protective effects against enteropathogenic bacteria and mycotoxins. Ochratoxin A (OTA) is one of the major intestinal pathogenic mycotoxins. The possible effect of curcumin on the alleviation of enterotoxicity induced by OTA is unknown. The effects of dietary curcumin supplementation on OTA-induced oxidative stress, intestinal barrier and mitochondrial dysfunctions were examined in young ducks. A total of 540 mixed-sex 1-day-old White Pekin ducklings with initial BW (43.4±0.1 g) were randomly assigned into controls (fed only the basal diet), a group fed an OTA-contaminated diet (2 mg/kg feed), and a group fed the same OTA-contaminated feed plus 400 mg/kg of curcumin. Each treatment consisted of six replicates, each containing 30 ducklings and treatment lasted for 21 days. There was a significant decrease in average daily gain (ADG) and increased feed : gain caused by OTA (P<0.05); curcumin co-treatment prevented the decrease in BW and ADG compared with the OTA group (P<0.05). Histopathological and ultrastructural examination showed clear signs of enterotoxicity caused by OTA, but these changes were largely prevented by curcumin supplementation. Curcumin decreased the concentrations of interleukin-1β, tumor necrosis factor-α and malondialdehyde, and increased the activity of glutathione peroxidase induced by OTA in the jejunal mucosa of ducks (P<0.05). Additionally, curcumin increased jejunal mucosa occludin and tight junction protein 1 mRNA and protein levels, and decreased those of ρ-associated protein kinase 1 (P<0.05). Notably, curcumin inhibited the increased expression of apoptosis-related genes, and downregulated mitochondrial transcription factors A, B1 and B2 caused by OTA without any effects on RNA polymerase mitochondrial (P<0.05). These results indicated that curcumin could protect ducks from OTA-induced impairment of intestinal barrier function and mitochondrial integrity.
Collapse
|
22
|
Ahmad Z, Hassan SS, Azim S. A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase. Curr Med Chem 2017; 24:3894-3906. [PMID: 28831918 PMCID: PMC5738703 DOI: 10.2174/0929867324666170823125330] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 01/01/1970] [Accepted: 08/18/2017] [Indexed: 12/25/2022]
Abstract
For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phy-tochemicals is based on tradition or word of mouth with few evidence-based studies. Moreo-ver, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become perti-nent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of die-tary phytochemicals are known to inhibit ATP synthase. Structural modifications of phyto-chemicals have been shown to increase the inhibitory potency and extent of inhibition. Site-directed mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can re-sult in selective binding and inhibition of microbial ATP synthase. In this review, the therapeu-tic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective target-ing of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections.
Collapse
Affiliation(s)
- Zulfiqar Ahmad
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, Missouri 63501, USA
| | - Sherif S Hassan
- Department of Medical Education, California University of Sciences and Medicine, School of Medicine (Cal Med-SOM), Colton, California 92324, USA
| | - Sofiya Azim
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, Missouri 63501, USA
| |
Collapse
|
23
|
Xenobiotic transporters and kidney injury. Adv Drug Deliv Rev 2017; 116:73-91. [PMID: 28111348 DOI: 10.1016/j.addr.2017.01.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 02/07/2023]
Abstract
Renal proximal tubules are targets for toxicity due in part to the expression of transporters that mediate the secretion and reabsorption of xenobiotics. Alterations in transporter expression and/or function can enhance the accumulation of toxicants and sensitize the kidneys to injury. This can be observed when xenobiotic uptake by carrier proteins is increased or efflux of toxicants and their metabolites is reduced. Nephrotoxic chemicals include environmental contaminants (halogenated hydrocarbon solvents, the herbicide paraquat, the fungal toxin ochratoxin, and heavy metals) as well as pharmaceuticals (certain beta-lactam antibiotics, antiviral drugs, and chemotherapeutic drugs). This review explores the mechanisms by which transporters mediate the entry and exit of toxicants from renal tubule cells and influence the degree of kidney injury. Delineating how transport proteins regulate the renal accumulation of toxicants is critical for understanding the likelihood of nephrotoxicity resulting from competition for excretion or genetic polymorphisms that affect transporter function.
Collapse
|
24
|
Yang S, Zhou J, Li D, Shang C, Peng L, Pan S. The structure-antifungal activity relationship of 5,7-dihydroxyflavonoids against Penicillium italicum. Food Chem 2016; 224:26-31. [PMID: 28159264 DOI: 10.1016/j.foodchem.2016.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/27/2016] [Accepted: 12/01/2016] [Indexed: 01/31/2023]
Abstract
To evaluate the structure-activity relationship of 5,7-dihydroxyflavonoids against P. italicum, we tested the antifungal activity of 23 selected 5,7-dihydroxyflavonoids against spore germination of P. italicum, and the effects of hydroxyl group, hydrogenation, methylation and glycosylation on the antifungal activity are explored. C-4'-OH and C-3-OH are active groups for the 5,7-dihydroxyflavonoids against P. italicum. We find that hydrogenation of the C2/C3 bond decreases the antifungal activity of 5,7-dihydroxyflavonoids. Antifungal activity of 5,7-dihydroxyflavonoids against P. italicum was affected by the conjugation site of glycosylation and the class of sugar moiety. The correlation between antifungal activity and the inhibition of respiration of 5,7-dihydroxyflavonoids was further evaluated. We find no significant relationship among the IC50 of 5,7-dihydroxyflavonoids on spore germination and on respiration. Some 5,7-dihydroxyflavonoids even enhance the respiration of P. italicum. This indicate respiration is not the only target for 5,7-dihydroxyflavonoids against P. italicum.
Collapse
Affiliation(s)
- Shuzhen Yang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jie Zhou
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Dongmei Li
- Georgetown University Medical Center, Washington, DC, USA.
| | - Chunyu Shang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Litao Peng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
25
|
Zeng X, Shi J, Zhao M, Chen Q, Wang L, Jiang H, Luo F, Zhu L, Lu L, Wang X, Liu Z. Regioselective Glucuronidation of Diosmetin and Chrysoeriol by the Interplay of Glucuronidation and Transport in UGT1A9-Overexpressing HeLa Cells. PLoS One 2016; 11:e0166239. [PMID: 27832172 PMCID: PMC5104480 DOI: 10.1371/journal.pone.0166239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/25/2016] [Indexed: 12/23/2022] Open
Abstract
This study aimed to determine the reaction kinetics of the regioselective glucuronidation of diosmetin and chrysoeriol, two important methylated metabolites of luteolin, by human liver microsomes (HLMs) and uridine-5′-diphosphate glucuronosyltransferase (UGTs) enzymes. This study also investigated the effects of breast cancer resistance protein (BCRP) on the efflux of diosmetin and chrysoeriol glucuronides in HeLa cells overexpressing UGT1A9 (HeLa—UGT1A9). After incubation with HLMs in the presence of UDP-glucuronic acid, diosmetin and chrysoeriol gained two glucuronides each, and the OH—in each B ring of diosmetin and chrysoeriol was the preferable site for glucuronidation. Screening assays with 12 human expressed UGT enzymes and chemical-inhibition assays demonstrated that glucuronide formation was almost exclusively catalyzed by UGT1A1, UGT1A6, and UGT1A9. Importantly, in HeLa—UGT1A9, Ko143 significantly inhibited the efflux of diosmetin and chrysoeriol glucuronides and increased their intracellular levels in a dose-dependent manner. This observation suggested that BCRP-mediated excretion was the predominant pathway for diosmetin and chrysoeriol disposition. In conclusion, UGT1A1, UGT1A6, and UGT1A9 were the chief contributors to the regioselective glucuronidation of diosmetin and chrysoeriol in the liver. Moreover, cellular glucuronidation was significantly altered by inhibiting BCRP, revealing a notable interplay between glucuronidation and efflux transport. Diosmetin and chrysoeriol possibly have different effects on anti-cancer due to the difference of UGT isoforms in different cancer cells.
Collapse
Affiliation(s)
- Xuejun Zeng
- Department of Pharmacy, First Hospital Affiliated to Shihezi University, Shihezi, Xinjiang, 832002, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jian Shi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Min Zhao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qingwei Chen
- Department of Pharmacy, First Hospital Affiliated to Shihezi University, Shihezi, Xinjiang, 832002, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Liping Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Huangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Feifei Luo
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xinchun Wang
- Department of Pharmacy, First Hospital Affiliated to Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
26
|
Kupski L, Freitas M, Ribeiro D, Furlong EB, Fernandes E. Ochratoxin A activates neutrophils and kills these cells through necrosis, an effect eliminated through its conversion into ochratoxin α. Toxicology 2016; 368-369:91-102. [PMID: 27597255 DOI: 10.1016/j.tox.2016.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 02/08/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by several species of fungi from the Aspergillus and Penicillium genera that frequently grow in improperly stored food products. OTA has carcinogenic, teratogenic and nephrotoxic potential and sustains a high half-life in human blood. Despite the recently efforts to decontaminate OTA through its conversion into its metabolite ochratoxin alpha (OTα), there are just a few reports in literature comparing the toxic effects of these toxins. Thus, herein we studied and compared the proinflammatory and toxicological effects of OTA and its metabolite OTα in human neutrophils in vitro. The effect of OTA and OTα on human neutrophils viability was evaluated by trypan blue, annexin-V and propidium iodide methods as well as by the analysis of cytomorphological alterations. The ATP levels were also evaluated using the luciferin-luciferase bioluminescence assay. The alteration on mitochondrial potential was assessed by a mitoscreen flow cytometry mitochondrial membrane potential detection kit and the intracellular calcium levels through the probe FLUO-4/AM. To study the human neutrophils' oxidative burst, the fluorescent probe dichlorodihydrofluorescein diacetate was used. OTA induced an increase on the intracellular calcium, human neutrophils' oxidative burst followed by depletion of ATP levels and alterations on mitochondrial potential leading to cell death by necrosis, while OTα did not induce significant toxic effects. Our results strongly suggest that the toxicity in human neutrophils induced by OTA started with the release of calcium from internal stores triggering several neutrophils' activities that culminate in cell death by necrosis.
Collapse
Affiliation(s)
- Larine Kupski
- UCIBIO, REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; Laboratório de Ciência de Alimentos, Escola de Química e Alimentos, Universidade Federal do Rio Grande - FURG, 96201-900 Rio Grande, RS, Brazil
| | - Marisa Freitas
- UCIBIO, REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| | - Daniela Ribeiro
- UCIBIO, REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Eliana Badiale Furlong
- Laboratório de Ciência de Alimentos, Escola de Química e Alimentos, Universidade Federal do Rio Grande - FURG, 96201-900 Rio Grande, RS, Brazil
| | - Eduarda Fernandes
- UCIBIO, REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
27
|
Abdel-Rafei MK, Amin MM, Hasan HF. Novel effect of Daflon and low-dose γ-radiation in modulation of thioacetamide-induced hepatic encephalopathy in male albino rats. Hum Exp Toxicol 2016; 36:62-81. [PMID: 26987350 DOI: 10.1177/0960327116637657] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study was designed to evaluate the hepato and neuroprotective activity of Daflon and low-dose γ radiation on thioacetamide (TAA)-induced liver damage and hepatic encephalopathy (HE) in rats. Effect of daily Daflon treatment (100 mg/kg body weight, Per OS (p.o.) for consecutive 3 days) and/or fractionated low-dose γ-radiation (LDR; 0.25 Gy, twice the total dose of 0.5 Gy at the 1st and 3rd day, respectively) was evaluated against TAA (300 mg/kg, intraperitoneal × 3) induced liver damage and HE in rats. Serum aspartate transaminase, alanine transaminase, γ-glutamyltransferase, total bilirubin, ammonia, and manganese were estimated to evaluate liver function. In addition, malondialdehyde (MDA) as well as reduced glutathione (GSH), glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) were determined to assess antioxidant capacity in liver tissue. Moreover, hepatic apoptotic markers (cysteine-dependent aspartate-directed proteases 3, 8 (caspase-3, 8) and cytochrome C) were estimated to indicate hepatic apoptosis. HE was evaluated through the determination of whole brain ammonia, manganese, MDA, GSH, GPX, SOD, CAT, and caspase-3. The cognitive and locomotor deficits were assessed via step through passive avoidance test, activity cage (actophotometer), γ-aminobutyric acid, and N-methyl-d-aspartate/adenosine triphosphate-neuronal nitric oxide synthase/nitric oxide-cyclic guanosine monophosphate axis in rats' cerebella and hippocampi. The involvement of hypoxia inducible factor-1α, aquaporine-4, and matrix metalloproteinase 9 in association with the brain water content (%) in the whole brain as an index for brain edema was also evaluated. The obtained results showed a marked amelioration of the aforementioned biochemical parameters and behavioral tasks which is supported by histopathological and immunohistochemical examination. It could be concluded that Daflon and LDR afforded hepatoprotection and neuroprotection against TAA-induced acute liver damage and HE.
Collapse
Affiliation(s)
- MKh Abdel-Rafei
- 1 Department of Radiation Biology, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr city, Cairo, Egypt
| | - M M Amin
- 2 Department of Pharmacology, Medical Division, National Research Centre, Dokki, Giza, Egypt
| | - H F Hasan
- 1 Department of Radiation Biology, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr city, Cairo, Egypt
| |
Collapse
|
28
|
Heussner A, Paget T. Evaluation of renal in vitro models used in ochratoxin research. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.1975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ochratoxin A (OTA) induces renal carcinomas in rodents with a specific localisation in the S3 segment of proximal tubules and distinct early severe tissue alterations, which have been observed also in other species. Pronounced species- and sex-specific differences in toxicity occur and similar effects cannot be excluded in humans, however precise mechanism(s) remain elusive until today. In such cases, the use of in vitro models for mechanistic investigations can be very useful; in particular if a non-genotoxic mechanism of cancer formation is assumed which include cytotoxic effects. However, potential genotoxic mechanisms can also be investigated in vitro. A crucial issue of in vitro research is the choice of the appropriate cell model. Apparently, the cellular target of OTA is the renal proximal tubular cell; therefore cells from this tissue area are the most reasonable model. Furthermore, cells from affected species should be used and can be compared to cells of human origin. Another important parameter is whether to use primary cultures or to choose a cell line from the huge variety of cell lines available. In any case, important characteristics and quality controls need to be verified beforehand. Therefore, this review discusses the renal in vitro models that have been used for the investigation of renal ochratoxin toxicity. In particular, we discuss the choice of the models and the essential parameters making them suitable models for ochratoxin research together with exemplary results from this research. Furthermore, new promising models such as hTERT-immortalised cells and 3D-cultures are briefly discussed.
Collapse
Affiliation(s)
- A.H. Heussner
- Human and Environmental Toxicology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
- Pharmacy Health and Well-being, University of Sunderland, Sciences Complex, Wharncliffe Street, Sunderland SR1 3SD, United Kingdom
| | - T. Paget
- Pharmacy Health and Well-being, University of Sunderland, Sciences Complex, Wharncliffe Street, Sunderland SR1 3SD, United Kingdom
| |
Collapse
|
29
|
Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins (Basel) 2016; 8:111. [PMID: 27092524 PMCID: PMC4848637 DOI: 10.3390/toxins8040111] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 01/28/2023] Open
Abstract
Ochratoxin A (OTA) is a widely-spread mycotoxin all over the world causing major health risks. The focus of the present review is on the molecular and cellular interactions of OTA. In order to get better insight into the mechanism of its toxicity and on the several attempts made for prevention or attenuation of its toxic action, a detailed description is given on chemistry and toxicokinetics of this mycotoxin. The mode of action of OTA is not clearly understood yet, and seems to be very complex. Inhibition of protein synthesis and energy production, induction of oxidative stress, DNA adduct formation, as well as apoptosis/necrosis and cell cycle arrest are possibly involved in its toxic action. Since OTA binds very strongly to human and animal albumin, a major emphasis is done regarding OTA-albumin interaction. Displacement of OTA from albumin by drugs and by natural flavonoids are discussed in detail, hypothesizing their potentially beneficial effect in order to prevent or attenuate the OTA-induced toxic consequences.
Collapse
|
30
|
Talhaoui N, Vezza T, Gómez-Caravaca AM, Fernández-Gutiérrez A, Gálvez J, Segura-Carretero A. Phenolic compounds and in vitro immunomodulatory properties of three Andalusian olive leaf extracts. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
31
|
Yang JW, Kim HS, Im JH, Kim JW, Jun DW, Lim SC, Lee K, Choi JM, Kim SK, Kang KW. GPR119: a promising target for nonalcoholic fatty liver disease. FASEB J 2016; 30:324-35. [PMID: 26399788 DOI: 10.1096/fj.15-273771] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/08/2015] [Indexed: 02/05/2023]
Abstract
Nonalcoholic fatty liver disease is associated with metabolic syndrome and has the unique characteristic of excess lipid accumulation in liver. G-protein-coupled receptor 119 (GPR119) is a promising target for type 2 diabetes. However, the role of GPR119 activation in hepatic steatosis and its precise mechanism has not been investigated. In primary cultured hepatocytes from wild-type and GPR119 knockout (KO) mice, expression of lipogenic enzymes was elevated in GPR119 KO hepatocytes. Treatment of hepatocytes and HepG2 cells with GPR119 agonists in phase 2 clinical trials (MBX-2982 [MBX] and GSK1292263) inhibited protein expression of both nuclear and total sterol regulatory element binding protein (SREBP)-1, a key lipogenesis transcription factor. Oral administration of MBX in mice fed a high-fat diet potently inhibited hepatic lipid accumulation and expression levels of SREBP-1 and lipogenesis-related genes, whereas the hepatic antilipogenesis effects of MBX were abolished in GPR119 KO mice. MBX activated AMPK and increased Ser-372 phosphorylation of SREBP-1c, an inhibitory form of SREBP-1c. Moreover, inhibition of AMPK recovered MBX-induced down-regulation of SREBP-1. These findings demonstrate for the first time that the GPR119 ligand alleviates hepatic steatosis by inhibiting SREBP-1-mediated lipogenesis in hepatocytes.
Collapse
Affiliation(s)
- Jin Won Yang
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hyo Seon Kim
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Hye Im
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Won Kim
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Dae Won Jun
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Chul Lim
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Kyeong Lee
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jong Min Choi
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Kyum Kim
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Keon Wook Kang
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
32
|
Shen Z, Shao J, Dai J, Lin Y, Yang X, Ma J, He Q, Yang B, Yao K, Luo P. Diosmetin protects against retinal injury via reduction of DNA damage and oxidative stress. Toxicol Rep 2015; 3:78-86. [PMID: 28959525 PMCID: PMC5615423 DOI: 10.1016/j.toxrep.2015.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/02/2015] [Accepted: 12/12/2015] [Indexed: 11/15/2022] Open
Abstract
Visual impairment is a global public health problem that needs new candidate drugs. Chrysanthemum is a traditional Chinese drug, famous for its eye-protective function, with an unclear mechanism of action. To determine how chrysanthemum contributes to vision, we identified, for the first time, the component of chrysanthemum, diosmetin (DIO), which acts in protecting the injured retina in an adriamycin (ADR) improving model. We observed that DIO could attenuate the apoptosis of retinal cells in Sprague–Dawley rats and verified this effect in cultured human retinal pigment epithelium (RPE) cells, ARPE-19. Our further study on the mechanism revealed the counteractive effect of DIO on the attenuation of DNA damage and oxidative stress, which occurs in a wide range of retinal disorders. These results collectively promise the potential value of DIO as a retinal-protective agent for disorders that lead to blindness. In addition, we identified, for the first time, the component of chrysanthemum, DIO, which acts in protecting the injured retina.
Collapse
Key Words
- ADR, adriamycin
- AMD, age-related macular degeneration
- ATP, adenosine triphosphate
- Apoptosis
- CNV, choroidal neovascularisation
- Chrysanthemum
- DIO, diosmetin
- DNA damage
- Diosmetin
- Diosmetin (PubChem CID5281612)
- Doxorubicin (PubChem CID31703)
- H&E, hematoxylin and eosin
- IC50, inhibition for 50% of the cells
- IVI, intravitreal injection
- Oxidative stress
- PVR, proliferative vitreoretinopathy
- ROS, reactive oxygen species
- RPE, retinal pigment epithelium
- Retinal injury
- Retinal pigment epithelium
Collapse
Affiliation(s)
- Zeren Shen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Jinjin Shao
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Jiabin Dai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yuchen Lin
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xiaochun Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Jian Ma
- Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, P.R. China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Ke Yao
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Peihua Luo
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
33
|
Zhao M, Du L, Tao J, Qian D, Shang EX, Jiang S, Guo J, Liu P, Su SL, Duan JA. Determination of metabolites of diosmetin-7-O-glucoside by a newly isolated Escherichia coli from human gut using UPLC-Q-TOF/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11441-11448. [PMID: 25382172 DOI: 10.1021/jf502676j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Different human intestinal bacteria were isolated and screened for their ability to transform diosmetin-7-O-glucoside. A Gram-negative anaerobic bacterium, strain 4, capable of metabolizing diosmetin-7-O-glucoside was newly isolated. Its 16S rRNA gene sequence displayed 99% similarity with that of Escherichia. Then strain 4 was identified as a species of the genus Escherichia and was named Escherichia sp. 4. Additionally, an ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) technique combined with Metabolynx software method was established to screen the metabolites of diosmetin-7-O-glucoside. Comparing the retention time and MS/MS spectrum, three metabolites were detected and tentatively identified. These metabolites were acquired by four proposed metabolic pathways including dehydroxylation, deglycosylation, methylation, and acetylation. Diosmetin-7-O-glucoside was mainly bioconverted to considerable amounts of diosmetin and minor amounts of acacetin by the majority of the isolated intestinal bacteria such as Escherichia sp. 4. Subsequently, several strains could degrade acacetin to produce methylated and acetylated acacetin. The metabolites and metabolic pathways of diosmetin-7-O-glucoside by human intestinal bacterium Escherichia sp. 4 were first investigated.
Collapse
Affiliation(s)
- Min Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine , 138 Xianlin Road, Nanjing 210023, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li C, Huang C, Lu T, Wu L, Deng S, Yang R, Li J. Tandem mass spectrometric fragmentation behavior of lignans, flavonoids and triterpenoids in Streblus asper. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2363-2370. [PMID: 25279750 DOI: 10.1002/rcm.7035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE An unambiguous identification of compounds can be achieved by comparison of known fragmentation patterns. While the literature about fragmentation mechanisms of lignans, flavonoids and triterpenoids is few. So the present study analyses the fragmentation mechanisms of these compounds isolated from Streblus asper. METHODS Electrospray ionization ion trap mass spectrometry (ESI-ITMS) and atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-ITMS) were used to obtain the MS(n) spectra of the compounds. By analyzing the differences between the ions, the fragmentation mechanisms of these compounds were explored. RESULTS Of the 29 compounds detected, 17, 7, and 5 were lignans, flavonoids and triterpenoids, respectively. The majority of lignans were found to give [M - H](-) ions of sufficient abundance for MS(n) analyses. The flavonoids were prone to the loss of CO and H2O. The triterpenoids always lost one formic acid molecule and two hydrogens, or one H2O from [M - H](-) to form the most abundant product ion in the MS(n) spectrum. CONCLUSIONS ESI/APCI-ITMS were demonstrated to be fast, effective and practical tools to characterize the structures of flavonoids, triterpenoids and lignans. Results of the present study can help identify the analogous constituents by analyzing their MS(n) spectra.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Environment and Resource of Guangxi Normal University, Guilin, 541004, P.R. China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education of China), Guilin, 541004, P.R. China
| | | | | | | | | | | | | |
Collapse
|