1
|
Liang Y, Li Q, Li Y, Zheng Y, Shen Y, Yang H, Lu Y, Liu J, Zhou Q, Li D, Sun W, Zhu H, Chen C, Zhang Y. Lasiodiplodiapyrones A and B, Pyrone-Preussomerin Adducts with Highly Strained Polycyclic Ring Systems from Lasiodiplodia pseudotheobromae. JOURNAL OF NATURAL PRODUCTS 2023; 86:18-23. [PMID: 36607819 DOI: 10.1021/acs.jnatprod.2c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lasiodiplodiapyrones A and B (1 and 2), two new preussomerin derivatives, possessing an unexpected 6-methyl-4H-furo[3,2-c]pyran-4-one moiety and a highly functionalized conjoint and complicated polycyclic ring system, along with two known congeners (3 and 4), were isolated from the fungus Lasiodiplodia pseudotheobromae. Their structures including absolute configurations were determined by spectroscopic analyses, Mosher's method, and ECD calculations. A biosynthetic pathway was proposed to explain the origin of lasiodiplodiapyrones A and B as well as their relationship with preussomerins. Compounds 1-4 showed suppressive effects on the production of NO with IC50 values of 4.8 ± 0.3, 8.5 ± 1.1, 5.9 ± 0.8, and 12.8 ± 1.3 μM, respectively.
Collapse
Affiliation(s)
- Yu Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yongqi Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yuyi Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yong Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Haojie Yang
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Diseaserelated Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610000, Sichuan Province, People's Republic of China
| | - Yuling Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Dongyan Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| |
Collapse
|
2
|
Tammam MA, Sebak M, Greco C, Kijjoa A, El-Demerdash A. Chemical diversity, biological activities and biosynthesis of fungal naphthoquinones and their derivatives: A comprehensive update. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Phytotoxic compounds from endophytic fungi. Appl Microbiol Biotechnol 2022; 106:931-950. [PMID: 35039926 DOI: 10.1007/s00253-022-11773-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/22/2022]
Abstract
Weeds represent one of the most challenging biotic factors for the agricultural sector, responsible for causing significant losses in important agricultural crops. Traditional herbicides have managed to keep weeds at bay, but overuse has resulted in negative environmental and toxicological impacts, including the increase of herbicide-resistant species. Within this context, the use of biologically derived (bio-)herbicides represents a promising solution because they are able to provide the desired phytotoxic effects while causing less toxic environmental damage. In recent years, bioactive secondary metabolites, in particular those bio-synthesized by endophytic fungi, have been shown to be promising sources of novel compounds that can be exploited in agriculture, including their use in weed control. Endophytic fungi have the ability to produce volatile and nonvolatile compounds with broad phytotoxic activity. In addition, as a result of the beneficial relationships they establish with their host plants, they are part of the colonization mechanism and can provide protection for their hosts. As such, endophytic fungi can be exploited as bioherbicides and as research tools. In this review, we cover 100 nonvolatile secondary metabolites with phytotoxic activity and more than 20 volatile organic compounds in a mixture, produced by 28 isolates of endophytic fungi from 21 host plant families, collected in 8 countries. This information can form the basis for the application of endophytic fungal compounds in weed control. KEY POINTS: • Endophytic fungi produce a wide variety of secondary metabolites with unique and complex structures. • Fungal endophytes produce volatile and nonvolatile compounds with promising phytotoxic activity. • Endophytic fungi are a promising source of useful bioherbicides.
Collapse
|
4
|
Nural Y, Ozdemir S, Doluca O, Demir B, Yalcin MS, Atabey H, Kanat B, Erat S, Sari H, Seferoglu Z. Synthesis, biological properties, and acid dissociation constant of novel naphthoquinone–triazole hybrids. Bioorg Chem 2020; 105:104441. [DOI: 10.1016/j.bioorg.2020.104441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/17/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
|
5
|
Moura MS, Lacerda JWF, Siqueira KA, Bellete BS, Sousa PT, Dall Óglio EL, Soares MA, Vieira LCC, Sampaio OM. Endophytic fungal extracts: evaluation as photosynthesis and weed growth inhibitors. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:470-476. [PMID: 32009547 DOI: 10.1080/03601234.2020.1721981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A central pillar of modern weed control is the discovery of new herbicides which are nontoxic to humans and the environment and which have low application dosage. The natural products found in plants and microorganisms are well suited in this context because they are generally nontoxic and have a wide variety of biological activities. In this work, Diaporthe phaseolorum (Dp), Penicillium simplicissimum (Ps) and Trichoderma spirale (Ts) (methanolic extracts) were evaluated as photosynthesis and plant growth inhibitors in Senna occidentalis and Ipomoea grandifolia. The most significant results were observed for Ts and Dp in S. occidentalis and I. grandifolia, respectively. Ts reduced PI(abs), ET0/CS0, PHI(E0) and PSI0 parameters by 64, 28, 40 and 38%, respectively, indicating a reduction on electron transport efficiency. Additionally, Ts decreased shoot length by 9%, affecting the plant growth. Dp reduced PI(abs), ET0/CS0 and PHI(E0) parameters by 50, 20, 26 and 22%, respectively, revealing the inhibition competency on PSII acceptor site. Furthermore, Dp decreased by 50% the shoot length on germination assay. Thus, the phytotoxic behaviors based on endophytic fungal extracts may serve as a valuable tool in the further development of a bioherbicide since natural products represent an interesting alternative to replace commercial herbicides.
Collapse
Affiliation(s)
- Mariana S Moura
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Jhuly W F Lacerda
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Kátia A Siqueira
- Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Barbara S Bellete
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Paulo T Sousa
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Brazil
| | | | - Marcos A Soares
- Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Lucas C C Vieira
- Engineering Faculty, Federal University of Mato Grosso, Várzea Grande, Brazil
| | - Olívia M Sampaio
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Brazil
| |
Collapse
|
6
|
Gemili M, Nural Y, Keleş E, Aydıner B, Seferoğlu N, Ülger M, Şahin E, Erat S, Seferoğlu Z. Novel highly functionalized 1,4-naphthoquinone 2-iminothiazole hybrids: Synthesis, photophysical properties, crystal structure, DFT studies, and anti(myco)bacterial/antifungal activity. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Liu X, Wang W, Zhao Y, Lai D, Zhou L, Liu Z, Wang M. Total Synthesis and Structure Revision of Palmarumycin B 6. JOURNAL OF NATURAL PRODUCTS 2018; 81:1803-1809. [PMID: 30102534 DOI: 10.1021/acs.jnatprod.8b00258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Palmarumycin B6 and its regioisomer were synthesized via 7- and 13-step routes using 2-chlorophenol and 4-chlorophenyl methyl ether as the starting materials in overall yields of 2.7% and 12%, respectively. Their structures were characterized by 1H and 13C NMR, HRESIMS, and X-ray diffraction data. The structure of palmarumycin B6 was revised as 6-chloropalmarumycin CP17. The bioassay results showed that the larvicidal activity of palmarumycin B6 with an LC50 value of 32.7 μM was significantly higher than that of its 8-chloro isomer, with an LC50 value of 227.3 μM.
Collapse
|
8
|
Nain-Perez A, Barbosa LCA, Maltha CRA, Giberti S, Forlani G. Tailoring Natural Abenquines To Inhibit the Photosynthetic Electron Transport through Interaction with the D1 Protein in Photosystem II. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11304-11311. [PMID: 29191002 DOI: 10.1021/acs.jafc.7b04624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Abenquines are natural N-acetylaminobenzoquinones bearing amino acid residues, which act as weak inhibitors of the photosynthetic electron transport chain. Aiming to exploit the abenquine scaffold as a model for the synthesis of new herbicides targeting photosynthesis, 14 new analogues were prepared by replacing the amino acid residue with benzylamines and the acetyl with different acyl groups. The synthesis was accomplished in three steps with a 68-95% overall yield from readily available 2,5-dimethoxyaniline, acyl chlorides, and benzyl amines. Key steps include (i) acylation of the aniline, (ii) oxidation, and (iii) oxidative addition of the benzylamino moiety. The compounds were assayed for their activity as Hill inhibitors, under basal, uncoupled, or phosphorylating conditions, or excluding photosystem I. Four analogues showed high effectiveness (IC50 = 0.1-0.4 μM), comparable with the commercial herbicide diuron (IC50 = 0.3 μM). The data suggest that this class of compounds interfere at the reducing side of photosystem II, having protein D1 as the most probable target. Molecular docking studies with the plastoquinone binding site of Spinacia oleracea further strengthened this proposal.
Collapse
Affiliation(s)
- Amalyn Nain-Perez
- Department of Chemistry, Universidade Federal de Minas Gerais , Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, MG Brazil
| | - Luiz C A Barbosa
- Department of Chemistry, Universidade Federal de Minas Gerais , Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, MG Brazil
- Department of Chemistry, Universidade Federal de Viçosa , Viçosa, Av. P. H. Rolfs s/n, CEP 36570-000, Viçosa, MG Brazil
| | - Celia R A Maltha
- Department of Chemistry, Universidade Federal de Viçosa , Viçosa, Av. P. H. Rolfs s/n, CEP 36570-000, Viçosa, MG Brazil
| | - Samuele Giberti
- Department of Life Science and Biotechnology, University of Ferrara , via L. Borsari 46, I-44121 Ferrara, Italy
| | - Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara , via L. Borsari 46, I-44121 Ferrara, Italy
| |
Collapse
|
9
|
Macías-Rubalcava ML, García-Méndez MC, King-Díaz B, Macías-Ruvalcaba NA. Effect of phytotoxic secondary metabolites and semisynthetic compounds from endophytic fungus Xylaria feejeensis strain SM3e-1b on spinach chloroplast photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 166:35-43. [DOI: 10.1016/j.jphotobiol.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022]
|
10
|
Sampaio OM, Lima MMDC, Veiga TAM, King-Díaz B, da Silva MFDGF, Lotina-Hennsen B. Evaluation of antidesmone alkaloid as a photosynthesis inhibitor. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 134:55-62. [PMID: 27914540 DOI: 10.1016/j.pestbp.2016.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 06/06/2023]
Abstract
Antidesmone, isolated from Waltheria brachypetala Turcz., owns special structural features as two α,β-unsaturated carbonyl groups and a side alkyl chain that can compete with the quinones involved in the pool of plastoquinones at photosystem II (PSII). In this work, we showed that the alkaloid is an inhibitor of Hill reaction and its target was located at the acceptor side of PSII. Studies of chlorophyll (Chl) a fluorescence showed a J-band that indicates direct action of antidesmone in accumulation of QA- (reduced plastoquinone A) due to the electron transport blocked at the QB (plastoquinone B) level similar to DCMU. In vivo assays indicated that antidesmone is a selective post-emergent herbicide probe at 300μM by reducing the biomass production of Physalis ixacarpa plants. Furthermore, antidesmone also behaves as pre-emergent herbicide due to inhibit Physalis ixacarpa plant growth about 60%. Antidesmone, a natural product containing a 4(1H)-pyridones scaffold, will serve as a valuable tool in further development of a new class of herbicides.
Collapse
Affiliation(s)
| | | | - Thiago André Moura Veiga
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Beatriz King-Díaz
- Biochemistry Department, Facultad de Química, Universidad Nacional Autónoma de México, México D. F. 04510, Mexico
| | | | - Blas Lotina-Hennsen
- Biochemistry Department, Facultad de Química, Universidad Nacional Autónoma de México, México D. F. 04510, Mexico
| |
Collapse
|
11
|
Arato Ferreira PH, Dos Santos DAP, da Silva MFDGF, Vieira PC, King-Diaz B, Lotina-Hennsen B, Veiga TAM. Acridone Alkaloids from Swinglea glutinosa (Rutaceae) and Their Effects on Photosynthesis. Chem Biodivers 2016; 13:100-6. [PMID: 26765357 DOI: 10.1002/cbdv.201500046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/12/2015] [Indexed: 11/06/2022]
Abstract
Continuing our search for herbicide models based on natural products, we investigated the action mechanisms of five alkaloids isolated from Swinglea glutinosa (Rutaceae): Citrusinine-I (1), glycocitrine-IV (2), 1,3,5-trihydroxy-10-methyl- 2,8-bis(3-methylbut-2-en-1-yl)-9(10H)-acridinone (3), (2R)-2-tert-butyl-3,10-dihydro-4,9-dihydroxy-11-methoxy-10-methylfuro[3,2-b]acridin-5(2H)-one (4), and (3R)-2,3,4,7-tetrahydro-3,5,8-trihydroxy-6-methoxy-2,2,7-trimethyl-12H-pyrano[2,3-a]acridin-12-one (5) on several photosynthetic activities in an attempt to find new compounds that affect photosynthesis. Through polarographic techniques, the compounds inhibited the non-cyclic electron transport in the basal, phosphorylating, and uncoupled conditions from H2 O to methylviologen (=MV). Therefore, they act as Hill reaction inhibitors. This approach still suggested that the compounds 4 and 5 had their interaction site located at photosystem I. Studies on fluorescence of chlorophyll a suggested that acridones (1-3) have different modes of interaction and inhibition sites on the photosystem II electron transport chain.
Collapse
Affiliation(s)
- Pedro H Arato Ferreira
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), 09972270, Diadema, SP, Brazil
| | - Djalma A P Dos Santos
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), 13565905, São Carlos, SP, Brazil
| | | | - Paulo C Vieira
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), 13565905, São Carlos, SP, Brazil
| | - Beatriz King-Diaz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 04510 México, DF, Mexico
| | - Blas Lotina-Hennsen
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 04510 México, DF, Mexico.
| | - Thiago A M Veiga
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), 09972270, Diadema, SP, Brazil.
| |
Collapse
|
12
|
Cimmino A, Masi M, Evidente M, Superchi S, Evidente A. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization. Nat Prod Rep 2015; 32:1629-53. [PMID: 26443032 DOI: 10.1039/c5np00081e] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2007 to 2015 Fungal phytotoxins are secondary metabolites playing an important role in the induction of disease symptoms interfering with host plant physiological processes. Although fungal pathogens represent a heavy constraint for agrarian production and for forest and environmental heritage, they can also represent an ecofriendly alternative to manage weeds. Indeed, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural, safe bioherbicides. Their use could avoid that of synthetic pesticides causing resistance in the host plants and the long term impact of residues in agricultural products with a risk to human and animal health. The isolation and structural and biological characterization of phytotoxins produced by pathogenic fungi for weeds, including parasitic plants, are described. Structure activity relationships and mode of action studies for some phytotoxins are also reported to elucidate the herbicide potential of these promising fungal metabolites.
Collapse
Affiliation(s)
- Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | | | | | | | | |
Collapse
|
13
|
Varejão JO, Barbosa LC, Ramos GÁ, Varejão EV, King-Díaz B, Lotina-Hennsen B. New rubrolide analogues as inhibitors of photosynthesis light reactions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 145:11-8. [DOI: 10.1016/j.jphotobiol.2015.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/09/2015] [Accepted: 02/19/2015] [Indexed: 01/22/2023]
|