1
|
Liu X, Zheng T, Bao Y, Li P, Zhao T, Liu Y, Wang H, Sun C. Genistein Implications in Radiotherapy: Kill Two Birds with One Stone. Molecules 2025; 30:188. [PMID: 39795243 PMCID: PMC11723059 DOI: 10.3390/molecules30010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
More than 70% of cancer patients receive radiotherapy during their treatment, with consequent various side effects on normal cells due to high ionizing radiation doses despite tumor shrinkage. To date, many radioprotectors and radiosensitizers have been investigated in preclinical studies, but their use has been hampered by the high toxicity to normal cells or poor tumor radiosensitization effects. Genistein is a naturally occurring isoflavone found in soy products. It selectively sensitizes tumor cells to radiation while protecting normal cells from radiation-induced damage, thus improving the efficacy of radiotherapy and consequent therapeutic outcomes while reducing adverse effects. Genistein protects normal cells by its potent antioxidant effect that reduces oxidative stress and mitigates radiation-induced apoptosis and inflammation. Conversely, genistein increases the radiosensitivity of tumor cells through specific mechanisms such as the inhibition of DNA repair, the arrest of the cell cycle in the G2/M phase, the generation of reactive oxygen species (ROS), and the modulation of apoptosis. These effects increase the cytotoxicity of radiation. Preclinical studies demonstrated genistein efficacy in various cancer models, such as breast, prostate, and lung cancer. Despite limited clinical studies, the existing evidence supports the potential of genistein in improving the therapeutic effect of radiotherapy. Future research should focus on dosage optimization and administration, the exploration of combination therapies, and long-term clinical trials to establish genistein benefits in clinical settings. Hence, the unique ability of genistein to improve the radiosensitivity of tumor cells while protecting normal cells could be a promising strategy to improve the efficacy and safety of radiotherapy.
Collapse
Affiliation(s)
- Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.); (Y.B.); (P.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Zheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.); (Y.B.); (P.L.); (T.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyu Bao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.); (Y.B.); (P.L.); (T.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.); (Y.B.); (P.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.); (Y.B.); (P.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China;
| | - Hui Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.); (Y.B.); (P.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (X.L.); (T.Z.); (Y.B.); (P.L.); (T.Z.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Kowalski S, Karska J, Tota M, Skinderowicz K, Kulbacka J, Drąg-Zalesińska M. Natural Compounds in Non-Melanoma Skin Cancer: Prevention and Treatment. Molecules 2024; 29:728. [PMID: 38338469 PMCID: PMC10856721 DOI: 10.3390/molecules29030728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The elevated occurrence of non-melanoma skin cancer (NMSC) and the adverse effects associated with available treatments adversely impact the quality of life in multiple dimensions. In connection with this, there is a necessity for alternative approaches characterized by increased tolerance and lower side effects. Natural compounds could be employed due to their safety profile and effectiveness for inflammatory and neoplastic skin diseases. These anti-cancer drugs are often derived from natural sources such as marine, zoonotic, and botanical origins. Natural compounds should exhibit anti-carcinogenic actions through various pathways, influencing apoptosis potentiation, cell proliferation inhibition, and metastasis suppression. This review provides an overview of natural compounds used in cancer chemotherapies, chemoprevention, and promotion of skin regeneration, including polyphenolic compounds, flavonoids, vitamins, alkaloids, terpenoids, isothiocyanates, cannabinoids, carotenoids, and ceramides.
Collapse
Affiliation(s)
- Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (S.K.); (M.T.); (K.S.)
| | - Julia Karska
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-367 Wroclaw, Poland;
| | - Maciej Tota
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (S.K.); (M.T.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (S.K.); (M.T.); (K.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Małgorzata Drąg-Zalesińska
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubińskiego 6a, 50-368 Wroclaw, Poland;
| |
Collapse
|
3
|
Tao TP, Brandmair K, Gerlach S, Przibilla J, Schepky A, Marx U, Hewitt NJ, Maschmeyer I, Kühnl J. Application of a skin and liver Chip2 microphysiological model to investigate the route-dependent toxicokinetics and toxicodynamics of consumer-relevant doses of genistein. J Appl Toxicol 2024; 44:287-300. [PMID: 37700462 DOI: 10.1002/jat.4540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
The HUMMIC skin-liver Chip2 microphysiological system using EpiDerm™ and HepaRG and stellate liver spheroids was used to evaluate the route-specific metabolism and toxicodynamic effects of genistein. Human-relevant exposure levels were compared: 60 nM representing the plasma concentration expected after topical application of a cosmetic product and 1 μM representing measured plasma concentrations after ingesting soya products. Genistein was applied as single and repeated topical and/or systemic doses. The kinetics of genistein and its metabolites were measured over 5 days. Toxicodynamic effects were measured using transcriptional analyses of skin and liver organoids harvested on Days 2 and 5. Route-specific differences in genistein's bioavailability were observed, with first-pass metabolism (sulfation) occurring in the skin after topical application. Only repeated application of 1 μM, resembling daily oral intake of soya products, induced statistically significant changes in gene expression in liver organoids only. This was concomitant with a much higher systemic concentration of genistein which was not reached in any other dosing scenario. This suggests that single or low doses of genistein are rapidly metabolised which limits its toxicodynamic effects on the liver and skin. Therefore, by facilitating longer and/or repeated applications, the Chip2 can support safety assessments by linking relevant gene modulation with systemically available parent or metabolite(s). The rate of metabolism was in accordance with the short half-life observed in in vivo in humans, thus supporting the relevance of the findings. In conclusion, the skin-liver Chip2 provides route-specific information on metabolic fate and toxicodynamics that may be relevant to safety assessment.
Collapse
|
4
|
Bansal K, Singh V, Mishra S, Bajpai M. Articulating the Pharmacological and Nanotechnological Aspects of Genistein: Current and Future Prospectives. Curr Pharm Biotechnol 2024; 25:807-824. [PMID: 38902930 DOI: 10.2174/0113892010265344230919170611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 06/22/2024]
Abstract
Throughout the past several centuries, herbal constituents have been the subject of scientific interest and the latest research into their therapeutic potential is underway. Genistein is a soy-derived isoflavone found in huge amounts in soy, along with the plants of the Fabaceae family. Scientific studies have demonstrated the beneficial effects of genistein on various health conditions. Genistein presents a broad range of pharmacological activities, including anticancer, neuroprotective, cardioprotective, antiulcer, anti-diabetic, wound healing, anti-bacterial, antiviral, skin, and radioprotective effects. However, the hydrophobic nature of genistein results in constrained absorption and restricts its therapeutic potential. In this review, the number of nanocarriers for genistein delivery has been explored, such as polymeric nanoparticles, nanostructured lipid carriers, solid lipid nanoparticles, liposomes, micelles, transferosomes, and nanoemulsions and nanofibers. These nano-formulations of genistein have been utilized as a potential strategy for various disorders, employing a variety of ex vivo, in vitro, and in vivo models and various administration routes. This review concluded that genistein is a potential therapeutic agent for treating various diseases, including cancer, neurodegenerative disorders, cardiovascular disorders, obesity, diabetes, ulcers, etc., when formulated in suitable nanocarriers.
Collapse
Affiliation(s)
- Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Vanshita Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Samiksha Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
5
|
Esmaeilneia S, Amiri Dehkharghani R, Zamanlui Benisi S. Architecture of a dual biocompatible platform to immobilize genistin: fabrication with physio-chemical and in vitro evaluation. Sci Rep 2023; 13:22439. [PMID: 38105302 PMCID: PMC10725880 DOI: 10.1038/s41598-023-49513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023] Open
Abstract
The design of biocompatible cell culture substrates and electrospun nanofibers can improve cell proliferation and behavior in laboratory conditions for tissue engineering applications in medicine. In this research, genistin was obtained by extracting from soybean meal powder, and then by adding polycaprolactone (PCL), genistin nanocapsules were prepared. For the first time, we used a lipophilic nanophase (encapsulated genistin) coated in a hydrophilic nanophase (gelatin /polyvinyl alcohol) as a dual nanosystem by the electrospinning method. In the approach, the nanofibers mimic the natural extracellular matrix, interact favorably with cells being cultured from one side, and raise the local concentration of a bioactive compound at the cell surface. The encapsulated drug which was inserted in fibers with a loading percentage of 92.01% showed appropriate and significant controlled release using high-performance liquid chromatography (HPLC). To prove the experiments, analysis using an ultraviolet-visible spectrometer (UV-Vis), 1H NMR spectrometer, Fourier transforms infrared spectrometer (FTIR), mechanical test, scanning electron microscope (SEM) and microscope transmission electron microscopy (TEM) was performed. The sample synthesized with 40% drug using the MTT method exhibited remarkable biological effects, viability, and non-toxicity. Additionally, significant proliferation and adhesion on the mouse fibroblast cell line L929 were observed within a 72-h timeframe.
Collapse
Affiliation(s)
- S Esmaeilneia
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - R Amiri Dehkharghani
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - S Zamanlui Benisi
- Tissue Engineering and Regenerative Medicine Institute, Stem Cell Research Center, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Lin M, Bao C, Chen L, Geng S, Wang H, Xiao Z, Gong T, Ji C, Cheng B. Tremella fuciformis polysaccharides alleviates UV-provoked skin cell damage via regulation of thioredoxin interacting protein and thioredoxin reductase 2. Photochem Photobiol Sci 2023; 22:2285-2296. [PMID: 37458972 DOI: 10.1007/s43630-023-00450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/11/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Skin is exposed to a wide range of environmental risk factors including ultraviolet (UV) and all kinds of pollutants. Excessive UV exposure contributes to many disorders, such as photoaging, skin inflammation, and carcinogenesis. Previous studies have shown that Tremella fuciformis polysaccharides (TFPS) have protective effects on oxidative stress in cells, but the specific protective mechanism has not been clarified. METHODS To determine the effects of TFPS on UV-irritated human skin, we conducted a variety of studies, including Cell Counting Kit-8 (CCK-8), trypan blue, Western blot, apoptosis assays, reactive oxygen species (ROS) detection in primary skin keratinocytes, and chronic UV-irradiated mouse model. RESULTS We first determined that TFPS protects human skin keratinocytes against UV radiation-induced apoptosis and ROS production. Moreover, TFPS regulates thioredoxin interacting protein (TXNIP) and thioredoxin reductase 2 (TXNRD2) levels in primary skin keratinocytes for photoprotection. Last, we found that topical TFPS treatment could alleviate the UV-induced skin damage in chronic UV-irradiated mouse model. CONCLUSION Collectively, our work indicates the beneficial role of TFPS in UV-induced skin cell damage and provides a novel therapeutic reagent to prevent or alleviate the progress of photoaging and other UV-provoked skin diseases.
Collapse
Affiliation(s)
- Mengting Lin
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Chengbei Bao
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Lihong Chen
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Shiling Geng
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Haiqing Wang
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Zhixun Xiao
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Ting Gong
- Central Laboratory, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China.
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China.
| | - Bo Cheng
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China.
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China.
| |
Collapse
|
7
|
McCarty MF, Benzvi C, Vojdani A, Lerner A. Nutraceutical strategies for alleviation of UVB phototoxicity. Exp Dermatol 2023. [PMID: 36811352 DOI: 10.1111/exd.14777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Ultraviolet B exposure to keratinocytes promotes carcinogenesis by inducing pyrimidine dimer lesions in DNA, suppressing the nucleotide excision repair mechanism required to fix them, inhibiting the apoptosis required for the elimination of initiated cells, and driving cellular proliferation. Certain nutraceuticals - most prominently spirulina, soy isoflavones, long-chain omega-3 fatty acids, the green tea catechin epigallocatechin gallate (EGCG) and Polypodium leucotomos extract - have been shown to oppose photocarcinogenesis, as well as sunburn and photoaging, in UVB-exposed hairless mice. It is proposed that spirulina provides protection in this regard via phycocyanobilin-mediated inhibition of Nox1-dependent NADPH oxidase; that soy isoflavones do so by opposing NF-κB transcriptional activity via oestrogen receptor-beta; that the benefit of eicosapentaenoic acid reflects decreased production of prostaglandin E2; and that EGCG counters UVB-mediated phototoxicity via inhibition of the epidermal growth factor receptor. The prospects for practical nutraceutical down-regulation of photocarcinogenesis, sunburn, and photoaging appear favourable.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, San Diego, California, USA
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel
| | | | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel.,Ariel University, Ariel, Israel
| |
Collapse
|
8
|
Liu JK. Natural products in cosmetics. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:40. [PMID: 36437391 PMCID: PMC9702281 DOI: 10.1007/s13659-022-00363-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/11/2022] [Indexed: 05/14/2023]
Abstract
The global cosmetics market reached US$500 billion in 2017 and is expected to exceed US$800 billion by 2023, at around a 7% annual growth rate. The cosmetics industry is emerging as one of the fastest-growing industries of the past decade. Data shows that the Chinese cosmetics market was US$60 billion in 2021. It is expected to be the world's number one consumer cosmetics market by 2050, with a size of approximately US$450 billion. The influence of social media and the internet has raised awareness of the risks associated with the usage of many chemicals in cosmetics and the health benefits of natural products derived from plants and other natural resources. As a result, the cosmetic industry is now paying more attention to natural products. The present review focus on the possible applications of natural products from various biological sources in skin care cosmetics, including topical care products, fragrances, moisturizers, UV protective, and anti-wrinkle products. In addition, the mechanisms of targets for evaluation of active ingredients in cosmetics and the possible benefits of these bioactive compounds in rejuvenation and health, and their potential role in cosmetics are also discussed.
Collapse
Affiliation(s)
- Ji-Kai Liu
- Wuhan Institute of Health, Shenzhen Moore Vaporization Health & Medical Technology Co., Ltd., Wuhan, 430074, People's Republic of China.
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
9
|
Jahan A, Akhtar J, Badruddeen, Jaiswal N, Ali A, Ahmad U. Recapitulate genistein for topical applications including nanotechnology delivery. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2048021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Afroz Jahan
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Neha Jaiswal
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | - Usama Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
10
|
Enhancement of the Topical Bioavailability and Skin Whitening Effect of Genistein by Using Microemulsions as Drug Delivery Carriers. Pharmaceuticals (Basel) 2021; 14:ph14121233. [PMID: 34959634 PMCID: PMC8703605 DOI: 10.3390/ph14121233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
Genistein, the most abundant isoflavone of the soy-derived phytoestrogen compounds, is a potent antioxidant and inhibitor of tyrosine kinase, which can inhibit UVB-induced skin carcinogenesis in hairless mice and UVB-induced erythema on human skin. In current study, genistein-loaded microemulsions were developed by using the various compositions of oil, surfactants, and co-surfactants and used as a drug delivery carrier to improve the solubility, peremability, skin whitening, and bioavailbility of genistein. The mean droplet size and polydispersity index of all formulations was less than 100 nm and 0.26 and demonstrated the formation of microemulsions. Similarly, various studies, such as permeation, drug skin deposition, pharmacokinetics, skin whitening test, skin irritation, and stability, were also conducted. The permeability of genistein was significantly affected by the composition of microemulsion formulation, particular surfactnat, and cosurfactant. In-vitro permeation study revealed that both permeation rate and deposition amount in skin were significantly increased from 0.27 μg/cm2·h up to 20.00 μg/cm2·h and 4.90 up to 53.52 μg/cm2, respectively. In in-vivo whitening test, the change in luminosity index (ΔL*), tended to decrease after topical application of genistein-loaded microemulsion. The bioavailability was increased 10-fold by topical administration of drug-loaded microemulsion. Conclusively, the prepared microemulsion has been enhanced the bioavailability of genistein and could be used for clinical purposes.
Collapse
|
11
|
Nazari-Khanamiri F, Ghasemnejad-Berenji M. Cellular and molecular mechanisms of genistein in prevention and treatment of diseases: An overview. J Food Biochem 2021; 45:e13972. [PMID: 34664285 DOI: 10.1111/jfbc.13972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Genistein is the simplest secondary metabolite in soybeans and belongs to a group of compounds called isoflavones. It is a phytoestrogen and it makes up more than 60% of soy isoflavones. Studies have shown the anti-inflammatory, anti-apoptotic, and anti-angiogenic effects of genistein in addition to its modulatory effects on steroidal hormone receptors. In this review, we discuss the pharmacologic and therapeutic effects of genistein on various diseases. PRACTICAL APPLICATIONS: In this review, we have discussed the therapeutic effects of genistein as the main constituent of soybeans on health conditions. Its antioxidant, anti-inflammatory, anti-apoptotic and, anti-angiogenic effects need more attention. The pharmacological properties of genistein make this natural isoflavone a potential treatment for various diseases such as postmenopausal symptoms, cancer, bone, brain, and heart diseases. Special emphasis should be given to it, resulting in using it in clinical as a safe, potent, and bioactive molecule.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
12
|
Zagórska-Dziok M, Kleczkowska P, Olędzka E, Figat R, Sobczak M. Poly(chitosan-ester-ether-urethane) Hydrogels as Highly Controlled Genistein Release Systems. Int J Mol Sci 2021; 22:3339. [PMID: 33805204 PMCID: PMC8037816 DOI: 10.3390/ijms22073339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Polymeric hydrogels play an increasingly important role in medicine, pharmacy and cosmetology. They appear to be one of the most promising groups of biomaterials due to their favorable physicochemical properties and biocompatibility. The objective of the presented study was to synthesize new poly(chitosan-ester-ether-urethane) hydrogels and to study the kinetic release of genistein (GEN) from these biomaterials. In view of the above, six non-toxic hydrogels were synthesized via the Ring-Opening Polymerization (ROP) and polyaddition processes. The poly(ester-ether) components of the hydrogels have been produced in the presence of the enzyme as a biocatalyst. In some cases, the in vitro release rate of GEN from the obtained hydrogels was characterized by near-zero-order kinetics, without "burst release" and with non-Fickian transport. It is important to note that developed hydrogels have been shown to possess the desired safety profile due to lack of cytotoxicity to skin cells (keratinocytes and fibroblasts). Taking into account the non-toxicity of hydrogels and the relatively highly controlled release profile of GEN, these results may provide fresh insight into polymeric hydrogels as an effective dermatological and/or cosmetological tool.
Collapse
Affiliation(s)
- Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Faculty of Medicine, University of Information Technology and Management in Rzeszow, 2 Sucharskiego St., 35-225 Rzeszow, Poland;
| | - Patrycja Kleczkowska
- Centre for Preclinical Research (CBP), Department of Pharmacodynamics, Medical University of Warsaw, 1B Banacha St., 02-097 Warsaw, Poland;
- Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| | - Ewa Olędzka
- Chair of Analytical Chemistry and Biomaterials, Department of Biomaterials Chemistry, Faculty of Pharmacy, Medical University of Warsaw,1 Banacha St., 02-097 Warsaw, Poland;
| | - Ramona Figat
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw,1 Banacha St., 02-097 Warsaw, Poland;
| | - Marcin Sobczak
- Department of Technology of Cosmetic and Pharmaceutical Products, Faculty of Medicine, University of Information Technology and Management in Rzeszow, 2 Sucharskiego St., 35-225 Rzeszow, Poland;
- Chair of Analytical Chemistry and Biomaterials, Department of Biomaterials Chemistry, Faculty of Pharmacy, Medical University of Warsaw,1 Banacha St., 02-097 Warsaw, Poland;
| |
Collapse
|
13
|
Gan M, Yang D, Fan Y, Du J, Shen L, Li Q, Jiang Y, Tang G, Li M, Wang J, Li X, Zhang S, Zhu L. Bidirectional regulation of genistein on the proliferation and differentiation of C2C12 myoblasts. Xenobiotica 2020; 50:1352-1358. [PMID: 29171786 DOI: 10.1080/00498254.2017.1409917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genistein is a widely studied phytoestrogen. The effects of genistein on myoblasts were reported long ago, but the conclusions are controversial. In this study, we evaluated the effects of different concentrations of genistein on C2C12 myoblasts. Genistein treatment promoted myoblast proliferation in a dose-dependent manner in the concentration range of 0-2 µM/L, reaching its maximum effect at 2 µM/L. Proliferation then declined, and a concentration higher than 20 µM/L showed significant inhibition. In addition, genistein treatment promoted myoblast differentiation at a dose of 10 µM/L. However, at treatment concentrations higher than 10 µM/L, the effect on myoblast differentiation was rapidly inhibited as the concentration increased. Genistein treatment also down-regulated the expression of miR-222, resulting in increased expression of its target genes, MyoG, MyoD, and ERα and thereby promoting myoblast differentiation. Our results suggest that genistein has a dose-dependent and bidirectional regulation effect on myoblast proliferation and differentiation. We also found that genistein is a miRNA inducer, and it specifically affects the expression of miR-222 to regulate myoblast differentiation.
Collapse
Affiliation(s)
- Mailin Gan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dongli Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yuan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jingjing Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiang Li
- Sichuan Province General Station of Animal Husbandry, Chengdu, China
| | - Yanzhi Jiang
- College of Life and Science, Sichuan Agricultural University, Chengdu, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- College of Life and Science, Sichuan Agricultural University, Chengdu, China
| | - Jinyong Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Huang JW, Xu QY, Lin M, Cheng B, Ji C. The Extract from Acidosasa longiligula Alleviates in vitro UV-Induced Skin Cell Damage via Positive Regulation of Thioredoxin 1. Clin Interv Aging 2020; 15:897-905. [PMID: 32606631 PMCID: PMC7306462 DOI: 10.2147/cia.s239920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/29/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Skin, as the outermost organ, is exposed to a wide range of environmental risk factors including ultraviolet (UV) and all kinds of pollutants. Excessive UV exposure contributes to many disorders, such as photoaging, skin inflammation, and carcinogenesis. Methods To determine the effects of bamboo extract (BEX) from our local plant, Acidosasa longiligula, on UV-irritated human skin, we conducted a variety of studies, including Western blot, apoptosis assays, reactive oxygen species (ROS) detection, and thioredoxin (TXN) and thioredoxin reductase (TXNRD) activity assays in primary skin keratinocytes. Results We first determined that BEX protects human skin keratinocytes against UV radiation-induced apoptosis and ROS production. UV radiation can robustly impair TXN and TXNRD activity which can, in turn, be significantly rescued by BEX treatment. Moreover, BEX regulates TXN1 levels in primary skin keratinocytes and TXN1 is proved to be required for the protective function of BEX. Last, we found that the NF-κB/p65 pathway mediates the protective function of BEX against UV. Discussion Collectively, our work delineates the beneficial role of BEX in UV-induced skin cell damage and provides a novel therapeutic reagent to prevent or alleviate the progress of photoaging and other UV-provoked skin diseases.
Collapse
Affiliation(s)
- Jin-Wen Huang
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, People's Republic of China
| | - Qiu-Yun Xu
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, People's Republic of China
| | - Min Lin
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, People's Republic of China
| | - Bo Cheng
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, People's Republic of China
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, People's Republic of China
| |
Collapse
|
15
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
16
|
Masson‐Meyers DS, Andrade TAM, Caetano GF, Guimaraes FR, Leite MN, Leite SN, Frade MAC. Experimental models and methods for cutaneous wound healing assessment. Int J Exp Pathol 2020; 101:21-37. [PMID: 32227524 PMCID: PMC7306904 DOI: 10.1111/iep.12346] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022] Open
Abstract
Wound healing studies are intricate, mainly because of the multifaceted nature of the wound environment and the complexity of the healing process, which integrates a variety of cells and repair phases, including inflammation, proliferation, reepithelialization and remodelling. There are a variety of possible preclinical models, such as in mice, rabbits and pigs, which can be used to mimic acute or impaired for example, diabetic and nutrition-related wounds. These can be induced by many different techniques, with excision or incision being the most common. After determining a suitable model for a study, investigators need to select appropriate and reproducible methods that will allow the monitoring of the wound progression over time. The assessment can be performed by non-invasive protocols such as wound tracing, photographic documentation (including image analysis), biophysical techniques and/or by invasive protocols that will require wound biopsies. In this article, we provide an overview of some of the most often needed and used: (a) preclinical/animal models including incisional, excisional, burn and impaired wounds; (b) methods to evaluate the healing progression such as wound healing rate, wound analysis by image, biophysical assessment, histopathological, immunological and biochemical assays. The aim is to help researchers during the design and execution of their wound healing studies.
Collapse
Affiliation(s)
- Daniela S. Masson‐Meyers
- Marquette University School of DentistryMilwaukeeWisconsinUSA
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
| | - Thiago A. M. Andrade
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
- Graduate Program of Biomedical SciencesUniversity Center of Herminio Ometto Foundation (FHO)ArarasSao PauloBrazil
| | - Guilherme F. Caetano
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
- Graduate Program of Biomedical SciencesUniversity Center of Herminio Ometto Foundation (FHO)ArarasSao PauloBrazil
| | - Francielle R. Guimaraes
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
- University Center of Associated Schools of Education (UNIFAE)São João da Boa VistaSão PauloBrazil
| | - Marcel N. Leite
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
| | - Saulo N. Leite
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
- University Center of the Educational Foundation Guaxupe (UNIFEG)GuaxupeMinas GeraisBrazil
| | - Marco Andrey C. Frade
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
| |
Collapse
|
17
|
Effects of the soy isoflavones, genistein and daidzein, on male rats' skin. Postepy Dermatol Alergol 2019; 36:760-766. [PMID: 31998007 PMCID: PMC6986282 DOI: 10.5114/ada.2019.87280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Introduction Genistein and daidzein are typical soy isoflavones with known estrogenic properties to provide protection against skin ageing in postmenopausal women and female rats. However their effect on male skin was very rarely studied. Aim This study was designed to evaluate the effect of a mixture of genistein and daidzein on male rats’ skin. Material and methods Male rats were administered this mixture in a dose of 2 or 20 mg/kg body weight (bw) per day for 5 days weekly mixed with regular rat chow, from prenatal life until sexual maturity. The female and male rats of the control group received regular rat chow. The skin epidermis thickness, number of fibroblasts in the dermis and diameter of collagen fibers in the dermis were measured using morphometric assay. The isoflavone effects on activities of antioxidant enzymes, lipid peroxides, and glutathione concentration in the skin were measured with commercially available kits. Results The thickness of the skin epidermis and collagen fibers in the dermis and amount of elastic fibers were significantly greater in the isoflavone-treated groups. Isoflavones significantly decreased catalase activity in the skin homogenates and at a higher dose inhibited lipid peroxides formation. Conclusions Our results provide further support for the contribution of isoflavones to defence mechanisms against oxidative stress in the skin and suggest that genistein and daidzein supplementation may provide protection against skin ageing in males.
Collapse
|
18
|
Carrara IM, Melo GP, Bernardes SS, Neto FS, Ramalho LNZ, Marinello PC, Luiz RC, Cecchini R, Cecchini AL. Looking beyond the skin: Cutaneous and systemic oxidative stress in UVB-induced squamous cell carcinoma in hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 195:17-26. [PMID: 31035030 DOI: 10.1016/j.jphotobiol.2019.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/25/2022]
Abstract
Cumulative ultraviolet (UV) exposure is associated with squamous skin cell carcinoma. UV radiation induces oxidative modifications in biomolecules of the skin leading to photocarcinogenesis. Indeed, the cyclobutene pyrimidine dimers and other dimers formed by photoaddition between carbon-carbon bonds also have an important role in the initiation process. However, information on the systemic redox status during these processes is scarce. Thus, we investigated the systemic redox profile in UVB-induced squamous cell carcinoma in mice. Female hairless mice were exposed to UVB radiation (cumulative dose = 17.1 J/cm2). The dorsal skin of these mice developed actinic keratosis (AK) and squamous cell carcinoma (SCC) and presented increased levels of oxidative and nitrosative stress biomarkers (4-hydroxy-2-nonenal and 3-nitrotyrosine), and decreased antioxidant defenses. Systemically, we observed the consumption of plasmatic antioxidant defenses and increased levels of advanced oxidized protein products (AOPP), an oxidative stress product derived from systemic inflammatory response. Taken together, our results indicate that UVB chronic irradiation leads not only to adjacent and tumoral oxidative stress in the skin, but it systemically is reflected through the blood. These new findings clarify some aspects of the pathogenesis of SCC and should assist in formulating better chemoprevention strategies, while avoiding additional primary SCC development and metastasis.
Collapse
Affiliation(s)
- Iriana Moratto Carrara
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Gabriella Pasqual Melo
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Sara Santos Bernardes
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Healthy Sciences Research, Federal University of Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil, UFGD, R. João Rosa Góes, 1761 - Vila Progresso, Dourados, MS, 79825-070, Brazil.
| | - Fernando Souza Neto
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Leandra Naira Zambelli Ramalho
- Department of Pathology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), FMRP, Av. Bandeirantes, 3900 - Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil.
| | - Poliana Camila Marinello
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Rodrigo Cabral Luiz
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Rubens Cecchini
- Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Alessandra Lourenço Cecchini
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil.
| |
Collapse
|
19
|
Takshak S, Agrawal SB. Defense potential of secondary metabolites in medicinal plants under UV-B stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:51-88. [PMID: 30818154 DOI: 10.1016/j.jphotobiol.2019.02.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 01/13/2023]
Abstract
Ultraviolet-B (UV-B) radiation has, for many decades now, been widely studied with respect to its consequences on plant and animal health. Though according to NASA, the ozone hole is on its way to recovery, it will still be a considerable time before UV-B levels reach pre-industrial limits. Thus, for the present, excessive UV-B reaching the Earth is a cause for concern, and UV-B related human ailments are on the rise. Plants produce various secondary metabolites as one of the defense strategies under UV-B. They provide photoprotection via their UV-B screening effects and by quenching the reactive oxygen- and nitrogen species produced under UV-B influence. These properties of plant secondary metabolites (PSMs) are being increasingly recognized and made use of in sunscreens and cosmetics, and pharma- and nutraceuticals are gradually becoming a part of the regular diet. Secondary metabolites derived from medicinal plants (alkaloids, terpenoids, and phenolics) are a source of pharmaceuticals, nutraceuticals, as well as more rigorously tested and regulated drugs. These metabolites have been implicated in providing protection not only to plants under the influence of UV-B, but also to animals/animal cell lines, when the innate defenses in the latter are not adequate under UV-B-induced damage. The present review focuses on the defense potential of secondary metabolites derived from medicinal plants in both plants and animals. In plants, the concentrations of the alkaloids, terpenes/terpenoids, and phenolics have been discussed under UV-B irradiation as well as the fate of the genes and enzymes involved in their biosynthetic pathways. Their role in providing protection to animal models subjected to UV-B has been subsequently elucidated. Finally, we discuss the possible futuristic scenarios and implications for plant, animal, and human health pertaining to the defense potential of these secondary metabolites under UV-B radiation-mediated damages.
Collapse
Affiliation(s)
- Swabha Takshak
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
20
|
GEPSI: A Gene Expression Profile Similarity-Based Identification Method of Bioactive Components in Traditional Chinese Medicine Formula. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6935350. [PMID: 29692857 PMCID: PMC5859853 DOI: 10.1155/2018/6935350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/08/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
The identification of bioactive components in traditional Chinese medicine (TCM) is an important part of the TCM material foundation research. Recently, molecular docking technology has been extensively used for the identification of TCM bioactive components. However, target proteins that are used in molecular docking may not be the actual TCM target. For this reason, the bioactive components would likely be omitted or incorrect. To address this problem, this study proposed the GEPSI method that identified the target proteins of TCM based on the similarity of gene expression profiles. The similarity of the gene expression profiles affected by TCM and small molecular drugs was calculated. The pharmacological action of TCM may be similar to that of small molecule drugs that have a high similarity score. Indeed, the target proteins of the small molecule drugs could be considered TCM targets. Thus, we identified the bioactive components of a TCM by molecular docking and verified the reliability of this method by a literature investigation. Using the target proteins that TCM actually affected as targets, the identification of the bioactive components was more accurate. This study provides a fast and effective method for the identification of TCM bioactive components.
Collapse
|
21
|
Cavinato M, Waltenberger B, Baraldo G, Grade CVC, Stuppner H, Jansen-Dürr P. Plant extracts and natural compounds used against UVB-induced photoaging. Biogerontology 2017; 18:499-516. [PMID: 28702744 PMCID: PMC5514221 DOI: 10.1007/s10522-017-9715-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022]
Abstract
Skin is continuously exposed to a variety of environmental stresses, including ultraviolet (UV) radiation. UVB is an inherent component of sunlight that crosses the epidermis and reaches the upper dermis, leading to increased oxidative stress, activation of inflammatory response and accumulation of DNA damage among other effects. The increase in UVB radiation on earth due to the destruction of stratospheric ozone poses a major environmental threat to the skin, increasing the risk of damage with long-term consequences, such as photoaging and photocarcinogenesis. Extracts from plants and natural compounds have been historically used in traditional medicine in the form of teas and ointments but the effect of most of these compounds has yet to be verified. Regarding the increasing concern of the population with issues related to quality of life and appearance, the cosmetic market for anti-aging and photoprotective products based on natural compounds is continuously growing, and there is increasing requirement of expansion on research in this field. In this review we summarized the most current and relevant information concerning plant extracts and natural compounds that are able to protect or mitigate the deleterious effects caused by photoaging in different experimental models.
Collapse
Affiliation(s)
- Maria Cavinato
- Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, 6020, Innsbruck, Austria. .,Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria.
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Giorgia Baraldo
- Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, 6020, Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Carla V C Grade
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, 6020, Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| |
Collapse
|
22
|
Abstract
In women, aging and declining estrogen levels are associated with several cutaneous changes, many of which can be reversed or improved by estrogen supplementation. Two estrogen receptors—α and β—have been cloned and found in various tissue types. Epidermal thinning, declining dermal collagen content, diminished skin moisture, decreased laxity, and impaired wound healing have been reported in postmenopausal women. Experimental and clinical studies in postmenopausal conditions indicate that estrogen deprivation is associated with dryness, atrophy, fine wrinkling, and poor wound healing. The isoflavone genistein binds to estrogen receptor β and has been reported to improve skin changes. This review article will focus on the effects of genistein on skin health.
Collapse
|
23
|
Garg S, Lule VK, Malik RK, Tomar SK. Soy Bioactive Components in Functional Perspective: A Review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1136936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sheenam Garg
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Vaibhao Kisanrao Lule
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Ravinder Kumar Malik
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sudhir Kumar Tomar
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
24
|
Ganesan P, Choi DK. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int J Nanomedicine 2016; 11:1987-2007. [PMID: 27274231 PMCID: PMC4869672 DOI: 10.2147/ijn.s104701] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
25
|
Determination of in vitro antioxidant and UV-protecting activity of aqueous and ethanolic extracts from Galinsoga parviflora and Galinsoga quadriradiata herb. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 149:189-95. [DOI: 10.1016/j.jphotobiol.2015.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/21/2015] [Accepted: 06/13/2015] [Indexed: 11/20/2022]
|