1
|
Bi H, Teng W, Wang J, Wang X, Zhang Z, Wang M. Extraction and purification, structural characteristics, pharmacological activities, structure-activity relationships, applications, and quality assessments of Prunella vulgaris L. polysaccharides: A review. Int J Biol Macromol 2025; 306:141665. [PMID: 40037438 DOI: 10.1016/j.ijbiomac.2025.141665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Prunella vulgaris L. (P. vulgaris) is a representative natural medicinal plant in the Prunella L. genus of the Lamiaceae family, widely distributed around the world. It has high value in both medicinal and edible aspects. As a highly representative class of macromolecular substances in P. vulgaris, polysaccharides from P. vulgaris have been extensively studied. P. vulgaris polysaccharides have various pharmacological activities, including anti-HSV, anti-hyperlipidemic, anti-complement, anti-hyperplasia, anti-inflammatory, anti-oxidant, anti-tumor, and immunomodulatory. It is meaningful and necessary to review it to enable better research and application. This article integrates the research results on the extraction and purification, structure, pharmacological activities, structure-activity relationships, applications, and quality assessments of polysaccharides from P. vulgaris over the past 25 years. We look forward to promoting the research and application of polysaccharides from P. vulgaris while providing references for developing polysaccharides from other traditional natural medicinal plants.
Collapse
Affiliation(s)
- Haizheng Bi
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin 150000, China
| | - Wenjing Teng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Jingyuan Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin 150000, China
| | - Xingyu Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin 150000, China
| | - Zhaojiong Zhang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin 150000, China
| | - Meng Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin 150000, China.
| |
Collapse
|
2
|
Cheng J, Guo F, Liang W, Wang H, Chen Y, Dong P. Callus Culture System from Lonicera japonica Thunb Anthers: Light Quality Effects on Callus Quality Evaluation. Int J Mol Sci 2025; 26:2351. [PMID: 40076969 PMCID: PMC11900127 DOI: 10.3390/ijms26052351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Lonicera japonica Thunb has significant edible and medicinal value, possessing heat clearing, detoxification, antibacterial, and blood pressure reduction properties. Currently, its quality is constrained by factors such as climate, environment, flowering period, and germplasm degradation. The strategy of using bioreactors and abiotic inducers to produce bioactive metabolites has not yet been implemented. This study reports, for the first time, the induction of an embryogenic callus from L. japonica anthers, the identification of tissue morphological structures, and the effects of light induction on the callus morphology, metabolite accumulation, and antioxidant activity. The results showed that the MS medium, supplemented with 1.0 mg·L-1 6-BA, 1.5 mg·L-1 NAA, 1.5 mg·L-1 2,4-D, and 0.2 mg·L-1 KT, induced 89% embryogenic callus formation. Uniform callus lines were obtained using 2.0 mg·L-1 6-BA, 0.5 mg·L-1 NAA, and 0.2 mg·L-1 KT in each subcultivation. Embryogenic cells were observed to have closely arranged spherical protruding granules on their surface, along with visible nuclei and numerous starch grains. After 15 days of blue light induction, active metabolites and antioxidant activities peaked. This experimental system not only provides support for germplasm innovation but also indicates that abiotic inducers can be utilized as a means to achieve higher yields of metabolic products.
Collapse
Affiliation(s)
| | | | | | | | - Yuan Chen
- State Key Laboratory of Aridland Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (F.G.); (W.L.); (H.W.)
| | - Pengbin Dong
- State Key Laboratory of Aridland Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (F.G.); (W.L.); (H.W.)
| |
Collapse
|
3
|
Wen S, Cai X, Zhou K, Min Y, Shang C, Shen L, Deng L, Liu D, Qiao G, Shen X. Metabolome and comparative genome provide insights into secondary metabolites generation of a rare karst-growing Rhododendron in vitro culture. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17235. [PMID: 39935165 DOI: 10.1111/tpj.17235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/18/2024] [Indexed: 02/13/2025]
Abstract
Rhododendron species have the potential to be rich in secondary metabolites with pharmaceutical or industrial value. However, there is a lack of comprehensive metabolome studies at the genome level, particularly for unique and rare species like Rhododendron bailiense, which exclusively grows in karst environments in Guizhou, southwest China. Recently, genome assembly data for this species was available. In this study, nontargeted metabolomics was employed to investigate the secondary metabolites profile of R. bailiense callus. The callus of R. bailiense was induced using 0.2 mg L-1 TDZ (Thidiazuron) + 0.1 mg L-1 IBA (3-Indole butyric acid). A comparison between light-treated calli and dark-cultured calli revealed differential accumulation of metabolites, particularly in flavonoids, terpenoids, coumarins, and hydroxycinnamic acids, known for their beneficial effects such as antioxidant, anticancer, and anti-inflammatory properties. Proanthocyanidins, with various health-promoting effects, were found to accumulate significantly in dark-cultured calli. Light conditions promoted diterpene and triterpene products, whereas darkness favored sesquiterpene products. Additionally, the study demonstrated the potential of utilizing Agrobacterium transformation technology on callus suspension cells to enhance secondary metabolite production. Comparison with the genome of Rhododendron molle revealed that the R. bailiense genome exhibited active 'glycosyltransferase activity,' possessed a higher number of copies of monoterpene and sesquiterpene terpene synthases, and contained high copies of specific cytochrome P450 members (CYP71, CYP76, CYP79, CYP82, CYP736). This study offers valuable insights and potential strategies for the biosynthesis and production of Rhododendron secondary metabolites with pharmaceutical or industrial significance.
Collapse
Affiliation(s)
- Sulin Wen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaowei Cai
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Kui Zhou
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Yi Min
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Chunqiong Shang
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Luonan Shen
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Lin Deng
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Di Liu
- Majorbio Bio-Pharm Technology Co., Ltd, Shanghai, 201203, China
| | - Guang Qiao
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Xiaohui Shen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Sigal Carriço MR, Diaz Rodrigues M, Piaia Ramborger B, Cristofari Gayer M, Kanaan SHH, Moreira Farias F, Gasparotto Denardin EL, Roehrs R. Influence of light-emitting diodes (LEDs) on the 2,4-diclorophenoxyacetic acid phytoremediation by plectranthus neochilus. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1815-1823. [PMID: 38800998 DOI: 10.1080/15226514.2024.2357639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is an herbicide widely used in crops against broadleaf weeds. However, 2,4-D residues are considered an environmental pollutant in bodies of water. Phytoremediation with Plectranthus neochilus is a substantial strategy to remove 2,4-D from the aquatic environment. The objective of this study was to verify the efficiency of the association of the photostimulus by Light Emitting Diodes (LED) with P. neochilus to improve phytoremediation of 2,4-D in water. Phytoremediation was evaluated with the following samples: natural light, white LED, blue LED, and red LED, with and without the plant as controls. The data corresponding to the validation of the method were in accordance with the required parameters: R2: 0.9926; RSD: 1.74%; LOD: 0.075 mg.L-1; LOQ: 0.227 mg.L-1 and recovery by SPE was 76.57%. The efficiency of the association of LED with P. neochilus in the 28 days was: ambient light + plant (47.0%); white light + plant (37.10%); blue light + plant (26.80%); red light + plant (3.32%). This study demonstrated, for the first time, the efficiency of using LEDs light in association with P. neochilus for the phytoremediation of 2,4-D in water.
Collapse
|
5
|
Gubitosa F, Fraternale D, Benayada L, De Bellis R, Gorassini A, Saltarelli R, Donati Zeppa S, Potenza L. Anti-Inflammatory, Antioxidant, and Genoprotective Effects of Callus Cultures Obtained from the Pulp of Malus pumila cv Miller (Annurca Campana Apple). Foods 2024; 13:2036. [PMID: 38998542 PMCID: PMC11241768 DOI: 10.3390/foods13132036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Apples are rich in phytochemicals useful for human health. However, environmental factors can greatly affect the accumulation of these compounds. To face this problem, the callus culture technique was used to obtain large quantities of phytochemicals. Specifically, two callus cultures were obtained from ripe Annurca apple pulp (Malus pumila cv Miller) and cultivated under different light conditions: darkness and an 18-h photoperiod. The hydro-alcoholic extracts from the calli underwent analysis using GC-MS, GC-FID, and HPLC-DAD-ESI-MSn to determine the qualitative and quantitative content of phenolic and triterpenic acids. The study revealed the predominant presence of triterpenic compounds in both calli. Furthermore, we investigated their radical scavenging and antioxidant activities through DPPH, ABTS, ORAC assays, and lipoxygenase inhibition activity. Genoprotection was evaluated via nicking assay, and the anti-inflammatory effect was investigated via Griess assay on LPS-injured murine macrophages. All the analyses performed were compared with peel and pulp hydroalcoholic extracts. The results showed that both calli primarily show anti-inflammatory activity and moderate antioxidant effect and can protect DNA against oxidative stimuli. This data encouraged further research aimed at utilizing callus as a bioreactor to produce secondary metabolites for use in preventive and therapeutic applications to combat acute or chronic age-associated diseases.
Collapse
Affiliation(s)
- Federica Gubitosa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Daniele Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Leila Benayada
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Roberta De Bellis
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Andrea Gorassini
- Department of Humanities and Cultural Heritage, University of Udine, 33100 Udine, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Lucia Potenza
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
6
|
Ali A, Mashwani ZUR, Raja NI, Mohammad S, Ahmad MS, Luna-Arias JP. Exposure of Caralluma tuberculata to biogenic selenium nanoparticles as in vitro rooting agent: Stimulates morpho-physiological and antioxidant defense system. PLoS One 2024; 19:e0297764. [PMID: 38598493 PMCID: PMC11006134 DOI: 10.1371/journal.pone.0297764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/11/2024] [Indexed: 04/12/2024] Open
Abstract
The commercial-scale production of Caralluma tuberculata faces significant challenges due to lower seed viability and sluggish rate of root growth in natural conditions. To overcome these obstacles, using phyto-mediated selenium nanomaterials as an in vitro rooting agent in plant in vitro cultures is a promising approach to facilitate rapid propagation and enhance the production of valuable therapeutic compounds. This study aimed to investigate the impact of phytosynthesized selenium nanoparticles (SeNPs) on the morphological growth attributes, physiological status, and secondary metabolite fabrication in in vitro propagated Caralluma tuberculata. The results demonstrated that a lower dose of SeNPs (100 μg/L) along with plant growth regulators (IBA 1 mg/L) had an affirmative effect on growth parameters and promoted earliest root initiation (4.6±0.98 days), highest rooting frequency (68.21±5.12%), number of roots (6.3±1.8), maximum fresh weight (710±6.01 mg) and dry weight (549.89±6.77 mg). However, higher levels of SeNPs (200 and 400 μg/L) in the growth media proved detrimental to growth and development. Further, stress caused by SeNPs at 100 μg/L along with PGRs (IBA 1 mg/L) produced a higher level of total chlorophyll contents (32.66± 4.36 μg/ml), while cultures exposed to 200 μg/L SeNPs alone exhibited the maximum amount of proline contents (10.5± 1.32 μg/ml). Interestingly, exposure to 400 μg/L SeNPs induced a stress response in the cultures, leading to increased levels of total phenolic content (3.4 ± 0.052), total flavonoid content (1.8 ± 0.034), and antioxidant activity 82 ± 4.8%). Furthermore, the combination of 100 μg/L SeNPs and plant growth regulators (1 mg/L IBA) led to accelerated enzymatic antioxidant activities, including superoxide dismutase (SOD = 4.4 ± 0.067 U/mg), peroxidase dismutase (POD = 3.3 ± 0.043 U/mg), catalase (CAT = 2.8 ± 0.048 U/mg), and ascorbate peroxidase (APx = 1.6 ± 0.082 U/mg). This is the first report that highlights the efficacy of SeNPs in culture media and presents a promising approach for the commercial propagation of C. tuberculata with a strong antioxidant defense system in vitro.
Collapse
Affiliation(s)
- Amir Ali
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
- Biotechnology Laboratory, Agricultural Research Institute (ARI) Tarnab, Peshawar, Pakistan
| | - Zia-ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Sher Mohammad
- Biotechnology Laboratory, Agricultural Research Institute (ARI) Tarnab, Peshawar, Pakistan
| | - M. Sheeraz Ahmad
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Juan Pedro Luna-Arias
- Department of Cell Biology and Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
7
|
Seyedi FS, Nafchi MG, Reezi S. Effects of light spectra on morphological characteristics, primary and specialized metabolites of Thymus vulgaris L. Heliyon 2024; 10:e23032. [PMID: 38148820 PMCID: PMC10750077 DOI: 10.1016/j.heliyon.2023.e23032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Light is a crucial environmental factor that profoundly influences the growth and development of plants. However, the precise mechanisms by which light affects biochemical processes and growth and development factors in Thymus vulgaris remain unknown, necessitating further investigation. Hence, this study aimed to investigate the impact of different light spectra, including red, blue, red-blue, and white lights, on the morphological characteristics, primary, and specialized metabolites of T. vulgaris. Compared to white light, red light significantly increased leaf area (by 64 %), the number of branches (by 132 %), and dry weight (by 6.2 %), although a 40 % reduction in fresh weight was observed under red light conditions. Red-blue light notably enhanced canopy width, fresh weight, and dry weight. Gas chromatography/mass spectrometry (GC/MS) analysis of the plant's essential oil (EO) revealed that p-Cymene and γ-Terpinene were present at the highest levels. Notably, p-Cymene exhibited the highest concentrations under white light and blue light treatments, reaching 60.92 % and 59.53 %, respectively. Moreover, under the same light conditions, phenol and antioxidant levels were significantly elevated. Overall, these findings indicate that red and red-blue light spectra are the most favorable for thyme production.
Collapse
Affiliation(s)
- Forouh Sadat Seyedi
- Department of Horticulture Science, College of Agriculture, Shahrekord University, Iran
| | - Mehdi Ghasemi Nafchi
- Department of Horticulture Science, College of Agriculture, Shahrekord University, Iran
| | - Saeed Reezi
- Department of Horticulture Science, College of Agriculture, Shahrekord University, Iran
| |
Collapse
|
8
|
Tavan M, Hanachi P, Mirjalili MH. Biochemical changes and enhanced accumulation of phenolic compounds in cell culture of Perilla frutescens (L.) by nano-chemical elicitation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108151. [PMID: 37931559 DOI: 10.1016/j.plaphy.2023.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/28/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Perilla frutescens (L.) Britt is a renowned medicinal plant with pharmaceutically valuable phenolic acids and flavonoids. The present study was aimed to study the eliciting effect of silver and copper nanoparticles (AgNPs and CuNPs, 50 and 100 mg/L), and methyl jasmonate (MeJa, 50 and 100 μM) on the biochemical traits, the accumulation of phenolic compounds and antioxidative capacity of P. frutescens cell suspension culture. Suspension cells were obtained from friable calli derived from nodal explants in Murashige and Skoog (MS) liquid medium containing 1 mg/L 2,4-D and 1 mg/L BAP. The 21 days old cell suspension culture established from nodal explant derived callus supplemented with 100 mg/L MeJa resulted in the highest activity of catalase and guaiacol peroxidase enzymes, and CuNPs 100 mg/L treated cells indicated the maximum content of total phenol, total anthocyanin, superoxide dismutase, malondialdehyde, and H2O2. Also, the highest content of ferulic acid (1.41 ± 0.03, mg/g DW), rosmarinic acid (19.29 ± 0.12, mg/g DW), and phenylalanine ammonia-lyase (16.81 ± 0.18, U/mg protein) were observed with 100 mg/L CuNPs, exhibiting a total increase of 1.58-fold, 2.12-fold, and 1.51-fold, respectively, higher than untreated cells. On the other hand, AgNPs 100 mg/L treated cells indicated the most amounts of caffeic acid (0.57 ± 0.03, mg/g DW) and rutin (1.13 ± 0.07, mg/g DW), as well as the highest scavenging potential of free radicals. Overall, the results of the present study can be applied for the large-scale production of valuable phenolic acids and flavonoids from P. frutescens through CuNPs and AgNPs 100 mg/L elicited cell suspension cultures.
Collapse
Affiliation(s)
- Mansoureh Tavan
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran.
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran
| |
Collapse
|
9
|
Zholdasbayev ME, Atazhanova GA, Musozoda S, Poleszak E. Prunella vulgaris L.: An Updated Overview of Botany, Chemical Composition, Extraction Methods, and Biological Activities. Pharmaceuticals (Basel) 2023; 16:1106. [PMID: 37631021 PMCID: PMC10460042 DOI: 10.3390/ph16081106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Prunella vulgaris L. (PV) is a well-known renewable drug resource full of different groups of biologically active substances with a wide range of pharmacological actions and applications in medicine. In this review, we present an updated comprehensive overview of the botany, extracting methods, chemical composition, and pharmacological activity of different parts of PV extracts. As a result of this review, it was found that chemical composition of PV depends on various factors ranging from the part of the plant to the method of extraction. We also highlight extraction methods that have not been previously used for obtaining PV extracts and may have high scientific interest. With this review, we hope to guide present and future professionals and provide possible previously unexplored areas to find new solutions associated with PV plant.
Collapse
Affiliation(s)
- Mussa E. Zholdasbayev
- School of Pharmacy, NJSC “Karaganda Medical University”, Gogol Street, 40, Karaganda 100000, Kazakhstan;
| | - Gayane A. Atazhanova
- School of Pharmacy, NJSC “Karaganda Medical University”, Gogol Street, 40, Karaganda 100000, Kazakhstan;
| | - Safol Musozoda
- Department of Pharmaceutical Technology and Pharmacology, Building No. 3, Tajik National University, Rudaki Avenue Street, 17, Dushanbe 734035, Tajikistan;
| | - Ewa Poleszak
- Department of Applied and Social Pharmacy, Medical University of Lublin, st. Al. Racławickie 1, 20-059 Lublin, Poland;
| |
Collapse
|
10
|
Sawatdee S, Jarunglumlert T, Pavasant P, Sakihama Y, Flood AE, Prommuak C. Effect of mixed light emitting diode spectrum on antioxidants content and antioxidant activity of red lettuce grown in a closed soilless system. BMC PLANT BIOLOGY 2023; 23:351. [PMID: 37415111 PMCID: PMC10324264 DOI: 10.1186/s12870-023-04364-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Light spectra have been demonstrated to result in different levels of comfort or stress, which affect plant growth and the availability of health-promoting compounds in ways that sometimes contradict one another. To determine the optimal light conditions, it is necessary to weigh the vegetable's mass against the amount of nutrients it contains, as vegetables tend to grow poorly in environments where nutrient synthesis is optimal. This study investigates the effects of varying light conditions on the growth of red lettuce and its occurring nutrients in terms of productivities, which were determined by multiplying the total weight of the harvested vegetables by their nutrient content, particularly phenolics. Three different light-emitting diode (LED) spectral mixes, including blue, green, and red, which were all supplemented by white, denoted as BW, GW, and RW, respectively, as well as the standard white as the control, were equipped in grow tents with soilless cultivation systems for such purposes. RESULTS Results demonstrated that the biomass and fiber content did not differ substantially across treatments. This could be due to the use of a modest amount of broad-spectrum white LEDs, which could help retain the lettuce's core qualities. However, the concentrations of total phenolics and antioxidant capacity in lettuce grown with the BW treatment were the highest (1.3 and 1.4-fold higher than those obtained from the control, respectively), with chlorogenic acid accumulation (8.4 ± 1.5 mg g- 1 DW) being particularly notable. Meanwhile, the study observed a high glutathione reductase (GR) activity in the plant achieved from the RW treatment, which in this study was deemed the poorest treatment in terms of phenolics accumulation. CONCLUSION In this study, the BW treatment provided the most efficient mixed light spectrum to stimulate phenolics productivity in red lettuce without a significant detrimental effect on other key properties.
Collapse
Affiliation(s)
- Sopanat Sawatdee
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wang Chan, Rayong, 21210, Thailand
| | - Teeraya Jarunglumlert
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok (Rayong Campus), Ban Khai, Rayong, 21180, Thailand
| | | | - Yasuko Sakihama
- Graduate School/Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Adrian E Flood
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wang Chan, Rayong, 21210, Thailand.
| | - Chattip Prommuak
- Energy Research Institute, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Czech K, Gaweł-Bęben K, Szopa A, Kukula-Koch W, Jakschitz T, Bonn G, Hussain S, Kubica P, Ekiert H, Głowniak K. Phytochemical Profiling, Antioxidant and Tyrosinase Regulatory Activities of Extracts from Herb, Leaf and In Vitro Culture of Achillea millefolium (Yarrow). Molecules 2023; 28:4791. [PMID: 37375348 DOI: 10.3390/molecules28124791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Achillea millefolium L. is one of the most known medicinal plants with a broad spectrum of applications in the treatment of inflammation, pain, microbial infections and gastrointestinal disorders. In recent years, the extracts from A. millefolium have also been applied in cosmetics with cleansing, moisturizing, shooting, conditioning and skin-lightening properties. The growing demand for naturally derived active substances, worsening environmental pollution and excessive use of natural resources are causing increased interest in the development of alternative methods for the production of plant-based ingredients. In vitro plant cultures are an eco-friendly tool for continuous production of desired plant metabolites, with increasing applicability in cosmetics and dietary supplements. The purpose of the study was to compare phytochemical composition and antioxidant and tyrosinase inhibitory properties of aqueous and hydroethanolic extracts from A. millefolium obtained from field conditions (AmL and AmH extracts) and in vitro cultures (AmIV extracts). In vitro microshoot cultures of A. millefolium were obtained directly from seeds and harvested following 3 weeks of culture. Extracts prepared in water, 50% ethanol and 96% ethanol were compared for the total polyphenolic content, phytochemical content using the ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-hr-qTOF/MS), antioxidant activity by DPPH scavenging assay and the influence on the activity of mushroom and murine tyrosinases. The phytochemical content of AmIV extracts was significantly different from AmL and AmH extracts. Most of the polyphenolic compounds identified in AmL and AmH extracts were present in AmIV extracts only in trace amounts and the major constituents presented in AmIV extracts were fatty acids. The total content of polyphenols in AmIV exceeded 0.25 mg GAE/g of dried extract, whereas AmL and AmH extracts contained from 0.46 ± 0.01 to 2.63 ± 0.11 mg GAE/g of dried extract, depending on the solvent used. The low content of polyphenols was most likely responsible for the low antioxidant activity of AmIV extracts (IC50 values in DPPH scavenging assay >400 µg/mL) and the lack of tyrosinase inhibitory properties. AmIV extracts increased the activity of mushroom tyrosinase and tyrosinase present in B16F10 murine melanoma cells, whereas AmL and AmH extracts showed significant inhibitory potential. The presented data indicated that microshoot cultures of A. millefolium require further experimental research before they can be implemented as a valuable raw material for the cosmetics industry.
Collapse
Affiliation(s)
- Karolina Czech
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Thomas Jakschitz
- Austrian Drug Screening Institute GmbH, Innrain 66a, 6020 Innsbruck, Austria
| | - Günther Bonn
- Austrian Drug Screening Institute GmbH, Innrain 66a, 6020 Innsbruck, Austria
| | - Shah Hussain
- Austrian Drug Screening Institute GmbH, Innrain 66a, 6020 Innsbruck, Austria
| | - Paweł Kubica
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland
| | - Kazimierz Głowniak
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszow, Poland
| |
Collapse
|
12
|
Krzemińska M, Hnatuszko-Konka K, Weremczuk-Jeżyna I, Owczarek-Januszkiewicz A, Ejsmont W, Olszewska MA, Grzegorczyk-Karolak I. Effect of Light Conditions on Polyphenol Production in Transformed Shoot Culture of Salvia bulleyana Diels. Molecules 2023; 28:4603. [PMID: 37375158 DOI: 10.3390/molecules28124603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Various strategies have been used to increase the efficiency of secondary metabolite production in Salvia plants. This report is the first to examine the spontaneous development of Salvia bulleyana shoots transformed by Agrobacterium rhizogenes on hairy roots and the influence of light conditions on the phytochemical profile of this shoot culture. The transformed shoots were cultivated on solid MS medium with 0.1 mg/L of IAA (indole-3-acetic acid) and 1 mg/L of m-Top (meta-topolin), and their transgenic characteristic was confirmed by PCR-based detection of the rolB and rolC genes in the target plant genome. This study assessed the phytochemical, morphological, and physiological responses of the shoot culture under stimulation by light-emitting diodes (LEDs) with different wavelengths (white, WL; blue, B; red, RL; and red/blue, ML) and under fluorescent lamps (FL, control). Eleven polyphenols identified as phenolic acids and their derivatives were detected via ultrahigh-performance liquid chromatography with diode-array detection coupled to electrospray ionization tandem mass spectrometry (UPLC-DAD/ESI-MS) in the plant material, and their content was determined using high-performance liquid chromatography (HPLC). Rosmarinic acid was the predominant compound in the analyzed extracts. The mixed red and blue LEDs gave the highest levels of polyphenol and rosmarinic acid accumulation (respectively, 24.3 mg/g of DW and 20.0 mg/g of DW), reaching two times greater concentrations of polyphenols and three times greater rosmarinic acid levels compared to the aerial parts of two-year-old intact plants. Similar to WL, ML also stimulated regeneration ability and biomass accumulation effectively. However, the highest total photosynthetic pigment production (1.13 mg/g of DW for total chlorophyll and 0.231 mg/g of DW for carotenoids) was found in the shoots cultivated under RL followed by BL, while the culture exposed to BL was characterized as having the highest antioxidant enzyme activities.
Collapse
Affiliation(s)
- Marta Krzemińska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Katarzyna Hnatuszko-Konka
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Izabela Weremczuk-Jeżyna
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | | | - Wiktoria Ejsmont
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Monika A Olszewska
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Izabela Grzegorczyk-Karolak
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
13
|
Medison MB, Pan R, Peng Y, Medison RG, Shalmani A, Yang X, Zhang W. Identification of HQT gene family and their potential function in CGA synthesis and abiotic stresses tolerance in vegetable sweet potato. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:361-376. [PMID: 37033766 PMCID: PMC10073390 DOI: 10.1007/s12298-023-01299-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Hydroxycinnamate-CoA quinate hydroxycinnamoyl transferase (HQT) enzyme affect plant secondary metabolism and are crucial for growth and development. To date, limited research on the genome-wide analysis of HQT family genes and their regulatory roles in chlorogenic acid (CGA) accumulation in leafy vegetable sweet potato is available. Here, a total of 58 HQT family genes in the sweet potato genome (named IbHQT) were identified and analyzed. We studied the chromosomal distribution, phylogenetic relationship, motifs distribution, collinearity, and cis-acting element analysis of HQT family genes. This study used two sweet potato varieties, high CGA content Fushu 7-6-14-7 (HC), and low CGA content Fushu 7-6 (LC). Based on the phylogenetic analysis, clade A was unique among the identified four clades as it contained HQT genes from various species. The chromosomal location and collinearity analysis revealed that tandem gene duplication may promote the IbHQT gene expansion and expression. The expression patterns and profile analysis showed changes in gene expression levels at different developmental stages and under cold, drought, and salt stress conditions. The expression analysis verified by qRT-PCR revealed that IbHQT genes were highly expressed in the HC variety leaves than in the LC variety. Furthermore, cloning and gene function analysis unveiled that IbHQT family genes are involved in the biosynthesis and accumulation of CGA in sweet-potato. This study expands our understanding of the regulatory role of HQT genes in sweet-potato and lays a foundation for further functional characterization and genetic breeding by engineering targeted HQT candidate genes in various sweet-potato varieties and other species. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01299-4.
Collapse
Affiliation(s)
- Milca Banda Medison
- Research Center of Crop Stresses Resistance Technologies/ Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025 China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies/ Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025 China
| | - Ying Peng
- Research Center of Crop Stresses Resistance Technologies/ Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025 China
| | - Rudoviko Galileya Medison
- Research Center of Crop Stresses Resistance Technologies/ Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025 China
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100 China
| | - XinSun Yang
- Institute of Food Crops/Hubei Engineering and Technology Research Centre of Sweet Potato/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/ Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025 China
| |
Collapse
|
14
|
Bajwa MN, Khanum M, Zaman G, Ullah MA, Farooq U, Waqas M, Ahmad N, Hano C, Abbasi BH. Effect of Wide-Spectrum Monochromatic Lights on Growth, Phytochemistry, Nutraceuticals, and Antioxidant Potential of In Vitro Callus Cultures of Moringa oleifera. Molecules 2023; 28:1497. [PMID: 36771159 PMCID: PMC9921732 DOI: 10.3390/molecules28031497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/08/2023] Open
Abstract
Moringa oleifera, also called miracle tree, is a pharmaceutically important plant with a multitude of nutritional, medicinal, and therapeutic attributes. In the current study, an in-vitro-based elicitation approach was used to enhance the commercially viable bioactive compounds in an in vitro callus culture of M. oleifera. The callus culture was established and exposed to different monochromatic lights to assess the potentially interactive effects on biomass productions, biosynthesis of pharmaceutically valuable secondary metabolites, and antioxidant activity. Optimum biomass production (16.7 g/L dry weight), total phenolic contents (TPC: 18.03 mg/g), and flavonoid contents (TFC: 15.02 mg/g) were recorded in callus cultures placed under continuous white light (24 h), and of other light treatments. The highest antioxidant activity, i.e., ABTS (550.69 TEAC µM) and FRAP (365.37 TEAC µM), were also noted under white light (24 h). The analysis of phytochemicals confirmed the significant impact of white light exposures on the enhanced biosynthesis of plant secondary metabolites. The enhanced levels of secondary metabolites, i.e., kaempferol (1016.04 µg/g DW), neochlorogenic acid (998.38 µg/g DW), quercetin (959.92 µg/g DW), and minor compounds including luteolin, apigenin, and p-coumaric acid were observed as being highest in continuous white light (24 h with respect to the control (photoperiod). Similarly, blue light enhanced the chlorogenic acid accumulation. This study shows that differential spectral lights demonstrate a good approach for the enhancement of nutraceuticals along with novel pharmacologically important metabolites and antioxidants in the in vitro callus culture of M. oleifera.
Collapse
Affiliation(s)
| | - Mehnaz Khanum
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Gouhar Zaman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Asad Ullah
- School of Agriculture and Food Sciences, Gatton Campus, The University of Queensland, Gatton, QLD 4343, Australia
| | - Umar Farooq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Waqas
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Nisar Ahmad
- Center for Biotechnology and Microbiology (CB&M), University of Swat, Swat 19200, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orleans, INRAE USC1328, F28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Pakistan Academy of Sciences, Islamabad 44000, Pakistan
| |
Collapse
|
15
|
Qaderi MM, Martel AB, Strugnell CA. Environmental Factors Regulate Plant Secondary Metabolites. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030447. [PMID: 36771531 PMCID: PMC9920071 DOI: 10.3390/plants12030447] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 05/31/2023]
Abstract
Abiotic environmental stresses can alter plant metabolism, leading to inhibition or promotion of secondary metabolites. Although the crucial roles of these compounds in plant acclimation and defense are well known, their response to climate change is poorly understood. As the effects of climate change have been increasing, their regulatory aspects on plant secondary metabolism becomes increasingly important. Effects of individual climate change components, including high temperature, elevated carbon dioxide, drought stress, enhanced ultraviolet-B radiation, and their interactions on secondary metabolites, such as phenolics, terpenes, and alkaloids, continue to be studied as evidence mounting. It is important to understand those aspects of secondary metabolites that shape the success of certain plants in the future. This review aims to present and synthesize recent advances in the effects of climate change on secondary metabolism, delving from the molecular aspects to the organismal effects of an increased or decreased concentration of these compounds. A thorough analysis of the current knowledge about the effects of climate change components on plant secondary metabolites should provide us with the required information regarding plant performance under climate change conditions. Further studies should provide more insight into the understanding of multiple environmental factors effects on plant secondary metabolites.
Collapse
Affiliation(s)
- Mirwais M. Qaderi
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada
- Department of Biology, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - Ashley B. Martel
- Department of Biology, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - Courtney A. Strugnell
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada
| |
Collapse
|
16
|
Win AN, Sankhuan D, Chintakovid W, Supaibulwatana K. Bioactive Compounds Produced in Leaves of Mulberry ( Morus alba L.) Transplants under Modified Environments of Root and Aerial Zones. PLANTS (BASEL, SWITZERLAND) 2022; 11:2850. [PMID: 36365301 PMCID: PMC9658746 DOI: 10.3390/plants11212850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Different shoot/root micro-environments were investigated for growth performances and nutraceutical compounds in leaves of mulberry (Morus alba L.) transplants. Single-node segments were taken from seedling-grown pots of three cultivars: Myanmar large leaf (MLL), Myanmar medium leaf (MML), and C14. Transplant production was compared in soil, vermiculite (V), or the dynamic root floating technique (DRFT). The highest survival percentage of the transplants was obtained from V-system, and MLL showed a higher shoot/root formation over two tested cultivars. The MLL transplants grown in V-system under white LED light (445 and 554 nm) at 200 μmol·m-2·s-1 gave a fresh weight with superior qualified transplants compared to other treatments. The bioactive compounds in leaves of MLL, MML, and C14 were analyzed using GC-MS after incubation with different LED spectra. Ethanol extracts of the leaves revealed that more than 50% of the bioactive compounds were fatty acids and conjugates and varied according to spectra and cultivar. Blue LED light (445 nm) induced the production of total phenolics, whereas white LED light favored the production of total proteins, soluble sugar, and biomass. The modified environments at the root and aerial zones significantly influenced the growth and biochemical parameters of transplants, and this applied technique can elevate useful functional ingredients of mulberry leaves.
Collapse
Affiliation(s)
- Aye Nwe Win
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Sericulture Research and Development Center, Pyin-Oo-Lwin, Mandalay 05081, Myanmar
| | - Darunmas Sankhuan
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Watcharra Chintakovid
- Agricultural Science Program, Kanchanaburi Campus, Mahidol University, Kanchanaburi 71150, Thailand
| | | |
Collapse
|
17
|
Lai CC, Pan H, Zhang J, Wang Q, Que QX, Pan R, Lai ZX, Lai GT. Light Quality Modulates Growth, Triggers Differential Accumulation of Phenolic Compounds, and Changes the Total Antioxidant Capacity in the Red Callus of Vitis davidii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13264-13278. [PMID: 36216360 DOI: 10.1021/acs.jafc.2c04620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Light quality is one of the key elicitors that directly affect plant cell growth and biosynthesis of secondary metabolites. In this study, the red callus of spine grape was cultured under nine light qualities (namely, dark, white, red, yellow, blue, green, purple, warm-yellow, and warm-white light). The effects of different light qualities were studied on callus growth, accumulation of phenolic compounds, and total antioxidant capacity of the red callus of spine grape. The results showed that blue and purple light induced increased red coloration in the callus, whereas yellow light induced the greatest callus proliferation. Among all of the light quality treatments, darkness treatment downregulated the contents of phenolic compounds, whereas blue light was the treatment most conducive to the accumulation of total phenolics. White, blue, and purple light induced increased anthocyanin accumulation. Mixed-wavelength light was beneficial to the accumulation of flavonoids. Blue and purple light were conducive to the accumulation of proanthocyanidins. A further study showed that cyanidin 3-glucoside (Cy3G) and peonidin 3-glucoside (P3G) were the main anthocyanin components in the callus, and blue, purple, and white light treatments promoted their accumulation, whereas flavan-3-ols and flavonols were the main components of non-anthocyanin phenolics, and their accumulation changed in response to not only light quality but also culture duration. The total antioxidant capacity of the callus cultures changed significantly in response to different light qualities. These results will provide evidence for an abiotic elicitor strategy to stimulate callus growth and enhance the accumulation of the main phenolic compounds in the red callus of spine grape.
Collapse
Affiliation(s)
- Cheng-Chun Lai
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350003, Fujian, China
| | - Hong Pan
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jing Zhang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qi Wang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350003, Fujian, China
| | - Qiu-Xia Que
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Ruo Pan
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhong-Xiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Gong-Ti Lai
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
- Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou 350003, Fujian, China
| |
Collapse
|
18
|
Improvement of Stevia rebaudiana Bertoni In Vitro Propagation and Steviol Glycoside Content Using Aminoacid Silver Nanofibers. PLANTS 2022; 11:plants11192468. [PMID: 36235334 PMCID: PMC9572510 DOI: 10.3390/plants11192468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
The food industry is interested in replacing artificial sweeteners with natural sugars that possess zero calories and carbohydrates and do not cause spikes in blood sugar levels. The steviosides leaves, synthesized at Stevia rebaudiana Bertoni, are 300 times sweeter than common table sugar. Stevia propagation is limited due to the poor viability of the seeds, the long time and low germination rate, and the poor rooting ability of vegetative cuttings. Because of this, an alternative biotechnological method for its reproduction is being studied, such as multiple shoot production through direct organogenesis using nanofibers, formed from a derivative of amino acid valine as a carrier of the biologically active agent silver atoms/particles (NF-1%Ag and NF-2%Ag). The stevia explants were cultured on a medium containing NF-1%Ag and NF-2%Ag at concentrations of 1, 10, 50, and 100 mg L−1. The NF-1%Ag and NF-2%Ag treatment caused hormetic effects on stevia plantlets. At low concentrations of from 1 to 50 mg L−1 of nanofibers, the stimulation of plant growth was observed, with the maximum effect being observed at 50 mg L−1 nanofibers. However, at the higher dose of 100 mg L−1, inhibition of the values of parameters characterizing plant growth was recorded. The presence of nanofibers in the medium stimulates stevia root formatting.
Collapse
|
19
|
Effects of Laser Irradiation at 488, 514, 532, 552, 660, and 785 nm on the Aqueous Extracts of Plantago lanceolata L.: A Comparison on Chemical Content, Antioxidant Activity and Caco-2 Viability. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In this study, six laser radiation (488 nm/40 mW, 514 nm/15 mW, 532 nm/20 mW, 552 nm/15 mW, 660 nm/ 75 mW, and at 785 nm/70 mW) were tested on the aqueous extracts of leaves of Plantago lanceolata L. to compare extraction efficacy and antioxidant and cell viability effects in vitro. Briefly, in comparison with the control extract, laser extracts at 488, 514, 532, and 552 nm revealed small acquisitions of total extractible compounds in samples (up to 6.52%; laser extracts at 488 and 532 nm also revealed minerals and micro-elements increases (up to 6.49%); the most prominent results were obtained upon Fe (up to 38%, 488 nm), Cr (up to 307%, 660 nm), and Zn (up to 465%, 532 nm). Laser extracts at 488, 514, 552, and 785 nm proved more intense antioxidant capacity than the control sample, while laser extract at 660 nm indicated clear pro-oxidant effects. Caco-2 cells study indicated stimulatory activity for the extracts at 488 nm, no effects at 532 nm, and the decrease of the cell viability in the case of extracts at 660 nm respectively. Further studies are necessary to understand the pro-oxidant effects observed in the case of extracts exposed to laser radiation at 660 nm.
Collapse
|
20
|
Phenolic Compounds Content Evaluation of Lettuce Grown under Short-Term Preharvest Daytime or Nighttime Supplemental LEDs. PLANTS 2022; 11:plants11091123. [PMID: 35567124 PMCID: PMC9105848 DOI: 10.3390/plants11091123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022]
Abstract
The study aimed to determine the changes in phenolic compounds content in lettuce (Lactuca sativa L. cv. Little Gem) depending on the preharvest short-term daytime or nighttime supplemental light-emitting diodes (LEDs) to high-pressure sodium lamps (HPS) lighting in a greenhouse during autumn and spring cultivation. Plants were grown in a greenhouse under HPS supplemented with 400 nm, 455 nm, 530 nm, 455 + 530 nm or 660 nm LEDs light for 4 h five days before harvest. Two experiments (EXP) were performed: EXP1—HPS, and LEDs treatment during daytime 6 PM–10 PM, and EXP2—LEDs treatment at nighttime during 10 AM–2 PM. LEDs’ photosynthetic photon flux density (PPFD) was 50 and HPS—90 ± 10 µmol m−2 s−1. The most pronounced positive effect on total phenolic compounds revealed supplemental 400 and 455 + 530 nm LEDs lighting, except its application during the daytime at spring cultivation, when all supplemental LEDs light had no impact on phenolics content variation. Supplemental 400 nm LEDs applied in the daytime increased chlorogenic acid during spring and chicoric acid during autumn cultivation. 400 nm LEDs used in nighttime enhanced chlorogenic acid accumulation and rutin during autumn. Chicoric and chlorogenic acid significantly increased under supplemental 455 + 530 nm LEDs applied at daytime in autumn and used at nighttime—in spring. Supplemental LEDs application in the nighttime resulted in higher phenolic compounds content during spring cultivation and the daytime during autumn cultivation.
Collapse
|
21
|
Juneja K, Beuerle T, Sircar D. Enhanced Accumulation of Biologically Active Coumarin and Furanocoumarins in Callus Culture and Field-grown Plants of Ruta chalepensis Through LED Light-treatment. Photochem Photobiol 2022; 98:1100-1109. [PMID: 35191044 DOI: 10.1111/php.13610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/18/2022] [Indexed: 11/28/2022]
Abstract
Ruta chalepensis, a medicinal plant, produces biologically active coumarins (CRs) and furanocoumarins (FCRs). However, their yield is quite low in cultivated plants. In this work, the influence of light emitting diodes (LEDs) was investigated on the accumulation of CRs and FCRs in the callus cultures and field-grown plants of R. chalepensis. Among the various tested wavelengths of LED lights, maximum accumulation of CR and FCRs was recorded under blue LED treatment in both the callus cultures as well as field-grown plants as compared to respective controls treated with white LED. Metabolite analyses of LED-treated field-grown plants showed that highest concentrations of CR (umbelliferone, 2.8-fold), and FCRs (psoralen, 2.3-fold; xanthotoxin, 3.8-fold; bergapten, 1.16-fold) were accumulated upon blue LED-treatment for six days. CR and FCRs contents were also analyzed in the blue- and red-LED-treated in vitro callus tissue. Upon blue LED-treatment, callus accumulated significantly high levels of umbelliferone (48.6 ± 1.2 µg/g DW), psoralen (370.12 ± 10.6 µg/g DW) and xanthotoxin (10.16 ± 0.48 µg/g DW). These findings imply that blue LED-treatment is a viable option as a non-invasive and low-cost elicitation technology for the enhanced production of biologically active CR and FCRs in field-grown plants and callus cultures of R. chalepensis.
Collapse
Affiliation(s)
- Kriti Juneja
- Plant Molecular Biology Group; Biosciences and Bioengineering Department, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| | - Till Beuerle
- Institute for Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstrasse 1, D-38106, Braunschweig, Germany
| | - Debabrata Sircar
- Plant Molecular Biology Group; Biosciences and Bioengineering Department, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| |
Collapse
|
22
|
Hashim M, Ahmad B, Drouet S, Hano C, Abbasi BH, Anjum S. Comparative Effects of Different Light Sources on the Production of Key Secondary Metabolites in Plants In Vitro Cultures. PLANTS (BASEL, SWITZERLAND) 2021; 10:1521. [PMID: 34451566 PMCID: PMC8398697 DOI: 10.3390/plants10081521] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 05/13/2023]
Abstract
Plant secondary metabolites are known to have a variety of biological activities beneficial to human health. They are becoming more popular as a result of their unique features and account for a major portion of the pharmacological industry. However, obtaining secondary metabolites directly from wild plants has substantial drawbacks, such as taking a long time, posing a risk of species extinction owing to over-exploitation, and producing a limited quantity. Thus, there is a paradigm shift towards the employment of plant tissue culture techniques for the production of key secondary metabolites in vitro. Elicitation appears to be a viable method for increasing phytochemical content and improving the quality of medicinal plants and fruits and vegetables. In vitro culture elicitation activates the plant's defense response and increases the synthesis of secondary metabolites in larger proportions, which are helpful for therapeutic purposes. In this respect, light has emerged as a unique and efficient elicitor for enhancing the in vitro production of pharmacologically important secondary metabolites. Various types of light (UV, fluorescent, and LEDs) have been found as elicitors of secondary metabolites, which are described in this review.
Collapse
Affiliation(s)
- Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan;
| | - Bushra Ahmad
- Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan;
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Eure & Loir Campus, University of Orleans, 28000 Chartres, France; (S.D.); (C.H.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Eure & Loir Campus, University of Orleans, 28000 Chartres, France; (S.D.); (C.H.)
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan;
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan;
| |
Collapse
|
23
|
Fazal H, Abbasi BH, Ahmad N, Noureen B, Shah J, Ma D, Chuanliang L, Akbar F, Uddin MN, Khan H, Ali M. Biosynthesis of antioxidative enzymes and polyphenolics content in calli cultures of Prunella vulgaris L. in response to auxins and cytokinins. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:893-902. [PMID: 32490684 DOI: 10.1080/21691401.2020.1771349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prunella vulgaris L. is one of the therapeutic herbs containing various polyphenolics, which is used for multiple medicinal purposes. In this study, plant growth regulators (PGRs)-induced calli cultures from seed-derived leaf explants were exploited for the production of stress enzymes and polyphenolics. A growth curve was plotted for each PGR for 49 days period, which showed a distinct lag, log and decline phases. Here, the combination of naphthalene acetic acid (NAA) and 6-benzyleadenine (BA; 0.5 and 2.0 mg l-1) produced maximum fresh (6.32 FW-g/100 ml) and dry biomass (0.75 DW-g/100 ml) in contrast to control. The maximum synthesis of SOD (0.0154 FW-nM/min/mg) was detected on media comprising mixture of NAA and BA (1.5 mg l-1), while POD enzyme (0.366 FW-nM/min/mg) was higher at 0.5 mg l-1 NAA and 2, 4-dichlorophenoxy acetic acid. Further, NAA and BA (1.5 and 2.0 mg l-1) boosted up the synthesis of phenolics (18.83 GAE-mg/g-DW) and flavonoids content (18.05 RE-mg/g-DW) than control. Moreover, NAA of 1.0 and 2.0 mg l-1 were found supportive for maximum antioxidant activity (87.4%) and total protein (716 µg BSAE/mg-DW). This study will contribute in the development of cell culture in fermenter and synthesis of antioxidant secondary metabolites for commercial uses.
Collapse
Affiliation(s)
- Hina Fazal
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Peshawar, Pakistan
| | | | - Nisar Ahmad
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Bushra Noureen
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jahangir Shah
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Peshawar, Pakistan
| | - Dan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Liu Chuanliang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Fazal Akbar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | | | - Haji Khan
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Peshawar, Pakistan
| | - Mohammad Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| |
Collapse
|
24
|
Zhang S, Zhang L, Zou H, Qiu L, Zheng Y, Yang D, Wang Y. Effects of Light on Secondary Metabolite Biosynthesis in Medicinal Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:781236. [PMID: 34956277 PMCID: PMC8702564 DOI: 10.3389/fpls.2021.781236] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/17/2021] [Indexed: 05/16/2023]
Abstract
Secondary metabolites (SMs) found in medicinal plants are one of main sources of drugs, cosmetics, and health products. With the increase in demand for these bioactive compounds, improving the content and yield of SMs in medicinal plants has become increasingly important. The content and distribution of SMs in medicinal plants are closely related to environmental factors, especially light. In recent years, artificial light sources have been used in controlled environments for the production and conservation of medicinal germplasm. Therefore, it is essential to elucidate how light affects the accumulation of SMs in different plant species. Here, we systematically summarize recent advances in our understanding of the regulatory roles of light quality, light intensity, and photoperiod in the biosynthesis of three main types of SMs (polyphenols, alkaloids, and terpenoids), and the underlying mechanisms. This article provides a detailed overview of the role of light signaling pathways in SM biosynthesis, which will further promote the application of artificial light sources in medicinal plant production.
Collapse
Affiliation(s)
- Shuncang Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Lei Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Haiyan Zou
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Lin Qiu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Yuwei Zheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Dongfeng Yang,
| | - Youping Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
- Youping Wang,
| |
Collapse
|
25
|
Effect of AuNPs and AgNPs on the Antioxidant System and Antioxidant Activity of Lavender ( Lavandula angustifolia Mill.) from In Vitro Cultures. Molecules 2020; 25:molecules25235511. [PMID: 33255548 PMCID: PMC7728155 DOI: 10.3390/molecules25235511] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to determine the effect of gold and silver nanoparticles on the activity of antioxidant enzymes (ascorbate peroxidase (APX), superoxide dismutase (SOD), guaiacol peroxidase (POX), and catalase (CAT)), the free radical scavenging capacity, and the total polyphenol capacity of lavender (Lavandula angustifolia Mill.) cultivar “Munstead” propagated in vitro. In the experiment, fragments of lavender plants were cultivated in vitro on medium with the addition of 1, 2, 5, 10, 20, and 50 mg∙dm−3 of AgNPs or AuNPs (particle sizes 24.2 ± 2.4 and 27.5 ± 4.8 nm, respectively). It was found that the nanoparticles increase the activity of the antioxidant enzymes APX and SOD; however, the reaction depends on the NP concentration. The highest APX activity is found in plants propagated on media with 2 and 5 mg∙dm−3 of AgNPs. AuNPs significantly increase the APX activity when added to media with a concentration of 10 mg∙dm−3. The highest SOD activity is recorded at 2 and 5 mg∙dm−3 AgNP and AuNP concentrations. The addition of higher concentrations of nanoparticles to culture media results in a decrease in the APX and SOD activity. The addition of AuNPs to culture media at concentrations from 2 to 50 mg∙dm−3 increases the POX activity in comparison to its activity when AgNPs are added to the culture media. No significant influence of NPs on the increase in CAT activity was demonstrated. AgNPs and AuNPs increased the free radical scavenging capacity (ABTS•+). The addition of NPs at concentrations of 2 and 5 mg∙dm−3 increased the production of polyphenols; however, in lower concentrations it decreased their content in lavender tissues.
Collapse
|
26
|
Effects of sorbitol on the production of phenolic compounds and terpenoids in the cell suspension cultures of Ocimum basilicum L. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00581-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
27
|
Zafar H, Gul FZ, Mannan A, Zia M. ZnO NPs reveal distinction in toxicity under different spectral lights: An in vitro experiment on Brassica nigra (Linn.) Koch. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Aref MS, Salem SS. Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101689] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Kumar SS, Arya M, Mahadevappa P, Giridhar P. Influence of photoperiod on growth, bioactive compounds and antioxidant activity in callus cultures of Basella rubra L. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111937. [PMID: 32570057 DOI: 10.1016/j.jphotobiol.2020.111937] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 11/20/2022]
Abstract
Basella rubra L. is an important green leafy vegetable vine and is known for its health benefits in traditional medicine. Light is a basic physical factor essential to the development and bioactive secondary metabolite production in in vitro callus cultures. The present study researched the impact of different photoperiods on biomass, bioactive compounds, and antioxidant activity in callus cultures of B. rubra. The in vitro seedling based cotyledonary leaf explants responded differently, when cultured on Murashige and Skoog (MS) medium with varying concentrations and combination of auxins and cytokinins. The best callus proliferation was found in MS medium with 0.1 mg.L-1 1-naphthaleneacetic acid (NAA) and 6 mg.L-1 6-benzylaminopurine (BAP), with greenish callus inception by about 2 weeks. The growth curve recorded for 6 weeks of culturing revealed that the photoperiod effect was found to be pivotal for acquiring biomass. At the fifth week, the continuous light supported maximum biomass (12.42 g) production followed by the 16:8 h photoperiod (9.02 g) and continuous darkness (4.28 g). The 80% ethanol extract of 1-week-old callus that grows under the 16:8 h photoperiod showed the highest total phenolic content (TPC) (74 mg.100 g-1 fresh weight, FW) when compared to all other extracts at different stages. The ferric reducing antioxidant power assay showed the highest (336.23 mg.100 g-1 FW) activity in methanol extractions of first-week callus cultures maintained in the continuous light condition. HPLC-UV identification and quantification of individual phenolics and flavonoids, such as gallic, trans-cinnamic, quercetin, protocatechuic and rutin, were highest in the callus cultures. The outcome of this study is significant to this plant, as B. rubra is familiar for its important health constituents with high-value bioactives and applications in the pharma and nutraceutical industries.
Collapse
Affiliation(s)
- Sandopu Sravan Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Plant Cell Biotechnology Department, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore 570020, India
| | - Monisha Arya
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore 570020, India
| | - Paramesha Mahadevappa
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore 570020, India; Presently : Department of Studies and Research in Food Technology, Davangere University, Davangere, Karnataka 577007, India
| | - Parvatam Giridhar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Plant Cell Biotechnology Department, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore 570020, India.
| |
Collapse
|
30
|
Khurshid R, Ullah MA, Tungmunnithum D, Drouet S, Shah M, Zaeem A, Hameed S, Hano C, Abbasi BH. Lights triggered differential accumulation of antioxidant and antidiabetic secondary metabolites in callus culture of Eclipta alba L. PLoS One 2020; 15:e0233963. [PMID: 32530961 PMCID: PMC7292357 DOI: 10.1371/journal.pone.0233963] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Eclipta alba L., also known as false daisy, is well known and commercially attractive plant with excellent hepatotoxic and antidiabetic activities. Light is considered a key modulator in plant morphogenesis and survival by regulating important physiological cascades. Current study was carried out to investigate growth and developmental aspects of E. alba under differential effect of multispectral lights. In vitro derived callus culture of E. alba was exposed to multispectral monochromatic lights under controlled aseptic conditions. Maximum dry weight was recorded in culture grown under red light (11.2 g/L) whereas negative effect was observed under exposure of yellow light on callus growth (4.87 g/L). Furthermore, red light significantly enhanced phenolics and flavonoids content (TPC: 57.8 mg/g, TFC: 11.1 mg/g) in callus cultures compared to rest of lights. HPLC analysis further confirmed highest accumulation of four major compounds i.e. coumarin (1.26 mg/g), eclalbatin (5.00 mg/g), wedelolactone (32.54 mg/g) and demethylwedelolactone (23.67 mg/g) and two minor compounds (β-amyrin: 0.38 mg/g, luteolin: 0.39 mg/g) in red light treated culture whereas stigmasterol was found optimum (0.22 mg/g) under blue light. In vitro based biological activities including antioxidant, antidiabetic and lipase inhibitory assays showed optimum values in cultures exposed to red light, suggesting crucial role of these phytochemicals in the enhancement of the therapeutic potential of E. alba. These results clearly revealed that the use of multispectral lights in in vitro cultures could be an effective strategy for enhanced production of phytochemicals.
Collapse
Affiliation(s)
- Razia Khurshid
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d’Orléans, Orléans, France
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Rajathevi, Bangkok, Thailand
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d’Orléans, Orléans, France
- COSM’ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, Orléans, France
| | - Muzamil Shah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Afifa Zaeem
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Safia Hameed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d’Orléans, Orléans, France
- COSM’ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, Orléans, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
31
|
Usman H, Ullah MA, Jan H, Siddiquah A, Drouet S, Anjum S, Giglioli-Guviarc’h N, Hano C, Abbasi BH. Interactive Effects of Wide-Spectrum Monochromatic Lights on Phytochemical Production, Antioxidant and Biological Activities of Solanum xanthocarpum Callus Cultures. Molecules 2020; 25:E2201. [PMID: 32397194 PMCID: PMC7248882 DOI: 10.3390/molecules25092201] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Solanum xanthocarpum is considered an important traditional medicinal herb because of its unique antioxidant, and anti-diabetic, anti-aging, and anti-inflammatory potential. Because of the over exploitation linked to its medicinal properties as well as destruction of its natural habitat, S. xanthocarpum is now becoming endangered and its supply is limited. Plant in vitro culture and elicitation are attractive alternative strategies to produce biomass and stimulate biosynthesis of medicinally important phytochemicals. Here, we investigated the potential influence of seven different monochromatic light treatments on biomass and secondary metabolites accumulation in callus culture of S. xanthocarpum as well as associated biological activities of the corresponding extracts. Among different light treatments, highest biomass accumulation was observed in white light-treated callus culture. Optimum accumulation of total flavonoid contents (TFC) and total phenolic contents (TPC) were observed in callus culture kept under continuous white and blue light respectively than control. Quantification of phytochemicals through HPLC revealed that optimum production of caffeic acid (0.57 ± 0.06 mg/g DW), methyl-caffeate (17.19 mg/g ± 1.79 DW), scopoletin (2.28 ± 0.13 mg/g DW), and esculetin (0.68 ± 0.07 mg/g DW) was observed under blue light callus cultures. Compared to the classic photoperiod condition, caffeic acid, methyl-caffeate, scopoletin, and esculetin were accumulated 1.7, 2.5, 1.1, and 1.09-folds higher, respectively. Moreover, high in vitro cell free antioxidant, anti-diabetic, anti-aging, and anti-inflammatory activities were closely associated with the production of these secondary metabolites. These results clearly showed the interest to apply multispectral light as elicitor of in vitro callus cultures S. xanthocarpum to promote the production of important phytochemicals, and allow us to propose this system as an alternative for the collection of this endangered species from the wild.
Collapse
Affiliation(s)
- Hazrat Usman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| | - Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| | - Hasnain Jan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| | - Aisha Siddiquah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Unversité ď, CEDEX 2, 45067 Orléans, France;
- COSMACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, CEDEX 2, 4506 Orléans, France
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan;
| | | | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Unversité ď, CEDEX 2, 45067 Orléans, France;
- COSMACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, CEDEX 2, 4506 Orléans, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (H.U.); (M.A.U.); (H.J.); (A.S.)
| |
Collapse
|
32
|
Wu C, Liu H, Rong X, Liu J, Ding W, Cheng X, Xing J, Wang C. Phytochemical composition profile and space-time accumulation of secondary metabolites for Dracocephalum moldavica Linn. via UPLC-Q/TOF-MS and HPLC-DAD method. Biomed Chromatogr 2020; 34:e4865. [PMID: 32330321 DOI: 10.1002/bmc.4865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/22/2020] [Accepted: 04/22/2020] [Indexed: 11/06/2022]
Abstract
The aerial parts of Dracocephalum moldavica L. are extensively used in traditional ethnic medicines in China as a remedy for cardiovascular and cerebrovascular damage. However, the chemical composition and the accumulation of main secondary metabolites of D. moldavica in different natural environments remain unclear. This study aimed to conduct a qualitative and quantitative analysis of the main secondary metabolites to explore the quality variation of D. moldavica in markets. The evaluation of space-time accumulation of main secondary metabolites in D. moldavica was carried out during different growth periods and in different geographical locations. A total of 35 ingredients were detected and 24 identified, including 21 flavonoids, two phenolic acids and one coumarin by UPLC-QTOF-MS method. Furthermore, a simple and convenient HPLC method was successfully developed for the simultaneous determination of lutelin-7-O-glucuronide and tilianin and rosmarinic acid in D. moldavica. The results of space-time accumulation analysis showed the distinct variation of secondary metabolites of D. moldavica with the growth period and geographical location. Finally, the current study provided a meaningful and useful approach for comprehensively evaluating the quality of D. moldavica.
Collapse
Affiliation(s)
- Chao Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China.,Institute of Xinjiang Pharmaceutical Research, Urumqi, China
| | - Hanze Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Xiaojuan Rong
- Institute of Xinjiang Pharmaceutical Research, Urumqi, China
| | - Jiahao Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Wenzheng Ding
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Jianguo Xing
- Institute of Xinjiang Pharmaceutical Research, Urumqi, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China.,Institute of Xinjiang Pharmaceutical Research, Urumqi, China
| |
Collapse
|
33
|
Dantas LA, Rosa M, Resende EC, Silva FG, Pereira PS, Souza ACL, de Lima E Silva FH, Neto AR. Spectral quality as an elicitor of bioactive compound production in Solanum aculeatissimum JACQ cell suspension. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111819. [PMID: 32062388 DOI: 10.1016/j.jphotobiol.2020.111819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 10/25/2022]
Abstract
Solanum aculeatissimum Jacq. is a common plant in much of Brazil. Despite containing metabolites with a wide range of pharmacological applications, there are few tissue culture reports for this plant. The possibility of large-scale in vitro production of this material has significant biotechnological potential. Therefore, the objective of this study was to investigate the effect of light conditions on the growth of cells in suspension, observing the production and yield of biomass and bioactive compounds and the enzymatic behavior. Calli obtained from leaf segments were cultured in solid medium supplemented with 1 mg L-1 of 2,4-D, 2.5 mg L-1 kinetin, pH 5.7, in the dark. After 110 days of subculture, the calli were transferred to liquid medium. Cells were kept in the dark under agitation at 110 rpm and 25 °C and subcultured every 30 days. After 90 days of culture, 20 mL aliquots of cell suspension were added to flasks containing approximately 20 mL of medium (1:1) and cultured at different wavelengths (white, green, blue, red, and blue/red) under a photoperiod of 16 h with irradiance of 50 μmol m-2 s-1) and in the absence of light. The experiment was performed in a 6 × 6 factorial design (light condition × culture time). The cell cultures showed viability throughout the entire cycle, and chlorogenic and ferulic acids, orientin, quercitrin and, in higher amounts, quercetin, were detected in the first 7 days of culture. There was an increase in superoxide dismutase and catalase and a decrease in ascorbate peroxidase after exposure to different light conditions; for phenylalanine ammonia lyase, no differences were observed. The different light conditions were not sufficient to trigger responses in the concentrations of bioactive compounds, despite the detection of increased levels of the enzymes involved in cellular homeostasis.
Collapse
Affiliation(s)
- Luciana Arantes Dantas
- Plant Biotechnology, Program in Biotechnology and Biodiversity, Pro-Centro Oeste Network, Federal Institute of Education, Science and Technology Goiano (IF Goiano), Rio Verde, GO, Brazil.
| | - Márcio Rosa
- Plant Biotechnology, Program in Biotechnology and Biodiversity, Pro-Centro Oeste Network, Federal Institute of Education, Science and Technology Goiano (IF Goiano), Rio Verde, GO, Brazil
| | | | | | | | | | | | | |
Collapse
|
34
|
Landi M, Zivcak M, Sytar O, Brestic M, Allakhverdiev SI. Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148131. [PMID: 31816291 DOI: 10.1016/j.bbabio.2019.148131] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/17/2019] [Accepted: 11/28/2019] [Indexed: 01/08/2023]
Abstract
Light spectra significantly influence plant metabolism, growth and development. Here, we review the effects of monochromatic blue, red and green light compared to those of multispectral light sources on the morpho-anatomical, photosynthetic and molecular traits of herbaceous plants. Emphasis is given to the effect of light spectra on the accumulation of secondary metabolites, which are important bioactive phytochemicals that determine the nutritional quality of vegetables. Overall, blue light may promote the accumulation of phenylpropanoid-based compounds without substantially affecting plant morpho-anatomical traits compared to the effects of white light. Red light, conversely, strongly alters plant morphology and physiology compared to that under white light without showing a consistent positive effect on secondary metabolism. Due to species-specific effects and the small shifts in the spectral band within the same color that can substantially affect plant growth and metabolism, it is conceivable that monochromatic light significantly affects not only plant photosynthetic performance but also the "quality" of plants by modulating the biosynthesis of photoprotective compounds.
Collapse
Affiliation(s)
- Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic.
| | - Oksana Sytar
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic; Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia; Department of Plant Physiology, M.V. Lomonosov Moscow State University, Moscow, Russia; Department of Molecular and Cell Biology, Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow Region, Russia; Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Baku, Azerbaijan; King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
35
|
Makowski W, Tokarz B, Banasiuk R, Królicka A, Dziurka M, Wojciechowska R, Tokarz KM. Is a blue-red light a good elicitor of phenolic compounds in the family Droseraceae? A comparative study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 201:111679. [PMID: 31710926 DOI: 10.1016/j.jphotobiol.2019.111679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/23/2019] [Accepted: 10/30/2019] [Indexed: 01/14/2023]
Abstract
Plants from the family Droseraceae, especially Drosera sp. and Dionaea sp., are naturally rich in phenolic derivatives such as plumbagin, among others. Plumbagin is known both for its pharmacological significance and its protective properties against light stress. Light stress - high light intensity or/and light spectral composition - activates plants' response mechanisms including, among others, hormonal (salicylic acid, jasmonic acid) pathways and secondary metabolite (phenolic compounds, proline) pathways. Short-wavelength radiation, due to its high energy, will induce the synthesis of protective secondary metabolites, including those with pharmaceutical properties. The aim of the study was to describe and compare acclimation strategies of Drosera peltata and Dionaea muscipula to blue-red light in the context of phenolic compound accumulation, and salicylic acid, jasmonic acid and proline synthesis. For the first time, differences in the responses of D. muscipula and D. peltata to blue-red light (in the ratio 6:1) were established. In Dionaea sp., it was associated with the use of redox equivalents (in particular, plastoquinone pool) for the synthesis of primary metabolites used in the process of growth and development. In Drosera sp., a rapid adjustment of redox state led to the synthesis of secondary metabolites, constituting a reservoir of carbon skeletons and allowing for a quick defence response to stress factors. In both species, blue-red light did not induce the jasmonic acid pathway. However, the salicylic acid pathway was induced as an alternative to the phenolic compound synthesis pathway. Nevertheless, the applied blue-red light was not an effective elicitor of phenolic compounds in the plants examined.
Collapse
Affiliation(s)
- Wojciech Makowski
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland
| | - Barbara Tokarz
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland
| | - Rafał Banasiuk
- Institute of Biotechnology and Molecular Medicine, Trzy Lipy 3, 80-172 Gdansk, Poland
| | - Aleksandra Królicka
- University of Gdansk, Intercollegiate Faculty of Biotechnology UG and MUG, Laboratory of Biologically Active Compounds, Abrahama 58, 80-307 Gdansk, Poland
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Science, Niezapominajek 21, 30-239 Krakow, Poland
| | - Renata Wojciechowska
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland
| | - Krzysztof M Tokarz
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland.
| |
Collapse
|
36
|
Shen T, Xing G, Zhu J, Cai Y, Zhang S, Xu G, Feng Y, Li D, Rao J, Shi R. Effects of 12-Week Supplementation of a Polyherbal Formulation in Old Adults with Prehypertension/Hypertension: A Randomized, Double-Blind, Placebo-Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:7056872. [PMID: 31391860 PMCID: PMC6662493 DOI: 10.1155/2019/7056872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/24/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Uncontrolled blood pressure is the leading cause of mortality and disability due to associated cerebral and cardiovascular diseases and kidney failure. More than one-third of the old adult population have hypertension or prehypertension and many of their blood pressure are poorly controlled. OBJECTIVE We hypothesized that plant extracts-based antioxidants may benefit those with prehypertension/hypertension. METHOD One hundred age- and gender-matched healthy older adults were randomly assigned to receive HyperBalance capsules (n=50) or placebo (n=50) at Tang-Qiao Community Health Service Center, Shanghai. Blood pressure and severity scores of hypertension treatment-related symptoms (dizziness, headache, ringing/buzzing in ears, rapid heart rate, and chest tightness) were evaluated before and after the 12-week intervention. RESULTS Ninety-eight people completed the study, with 2 dropouts in the placebo group before the end of the study. Forty-one subjects (82%) of the HyperBalance group and 40 subjects (83.3%) of the placebo group had prehypertension (systolic blood pressures (SBP) between 130-139 and diastolic blood pressure (DBP) between 85-89mmHg), and 9 subjects (18%) in the HyperBalance group and 8 subjects (16.7%) in the placebo group had hypertension (≥140/90mmHg) before the intervention. HyperBalance significantly (P<0.01) reduced SBP from 136.18±4.38 to 124.14±3.96 mmHg and reduced DBP from 82.45±2.91 to 80.24±2.41mmHg, respectively, and reversed all 9 hypertension people to normotension or prehypertension state, whereas the placebo moderately reduced SBP from 135.79±4.22 to 132.35±4.656mmHg and reduced DBP from 82.90±3.07 to 82.27±3.01mmHg. All symptom severity scores became significantly lower in the HyperBalance group than in the placebo group after HyperBalance intervention: dizziness (0.82±0.44; vs 2.02±0.64, P<0.01); headache (0.46±0.50; vs 1.81±0.61, P<0.01); ringing/buzzing in ears (0.44±0.50; vs 1.04±0.29, P<0.01); and rapid heart rate and chest tightness (0.30±0.46; vs 0.92±0.28, P<0.01). CONCLUSION Polyherbal supplementation such as HyperBalance could benefit old adults with prehypertension/hypertension and improve treatment-related symptoms. Further studies are needed to validate the current findings.
Collapse
Affiliation(s)
- Tian Shen
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Guoqiang Xing
- The Affiliated Hospital and the Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong 637000, China
- Lotus Biotech.com LLC, John Hopkins University-MCC, 9601 Medical Center Drive, Rockville, MD 20850, USA
| | - Jingfen Zhu
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yong Cai
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Shuxian Zhang
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Gang Xu
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yi Feng
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Donghua Li
- Tang Qiao Community Health Service Center, Pudong New District, Shanghai 200127, China
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Rong Shi
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
37
|
Fazal H, Abbasi BH, Ahmad N, Ali M, Shujait Ali S, Khan A, Wei DQ. Sustainable production of biomass and industrially important secondary metabolites in cell cultures of selfheal (Prunella vulgaris L.) elicited by silver and gold nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2553-2561. [DOI: 10.1080/21691401.2019.1625913] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hina Fazal
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Peshawar, Pakistan
| | - Bilal Haider Abbasi
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nisar Ahmad
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Mohammad Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biostatistics College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biostatistics College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Ullah MA, Tungmunnithum D, Garros L, Hano C, Abbasi BH. Monochromatic lights-induced trends in antioxidant and antidiabetic polyphenol accumulation in in vitro callus cultures of Lepidium sativum L. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 196:111505. [PMID: 31129506 DOI: 10.1016/j.jphotobiol.2019.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022]
Abstract
Lepidium sativum L. is an important edible, herbaceous plant with huge medicinal value as cardio-protective, hepatoprotective and antitumor agent. This study was designed and performed to investigate biosynthesis of plant's active ingredients in callus cultures of L. sativum in response to the exposure of multi spectral lights. Optimum biomass accumulation (15.36 g/L DW), total phenolic and flavonoid contents (TPC; 47.43 mg/g; TFC; 9.41 mg/g) were recorded in calli placed under white light (24 h) compared to rest of the treatments. Antioxidant enzymatic activities i.e. superoxide dismutase and peroxidase were found optimum in cultures exposed to green light (SOD; 0.054 nM/min/mg FW, POD; 0.501 nM/min/mg FW). Phytochemical analysis further confirmed the potential influence of white light exposure on enhanced production of plant's metabolites. Significant enhancement level of major metabolic compounds such as chlorogenic acid (7.20 mg/g DW), quercetin (22.08 mg/g DW), kaempferol (7.77 mg/g DW) and minor compounds including ferulic acid, sinapic acid, protocatechuic acid, vanillic acid and caffeic acid were recorded in white light compared to control (photoperiod), whereas blue light increased the p-coumaric acid accumulation. Moreover, callus cultures of this plant under white light (24 h) showed highest in vitro based anti-diabetic and antioxidant activities compared to other conditions. Finding of our current study revealed that multi spectral lights are proved to be an effective strategy for enhancing metabolic quantity of antioxidant and anti-diabetic bioactive compounds in callus cultures of L. sativum L.
Collapse
Affiliation(s)
- Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i -Azam University, Islamabad 45320, Pakistan
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans Cedex 2, France; Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand
| | - Laurine Garros
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans Cedex 2, France; Institut de Chimie Organique et Analytique (ICOA) UMR7311, Université d'Orléans-CNRS, 45067 Orléans Cedex 2, France; COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans Cedex 2, France; COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i -Azam University, Islamabad 45320, Pakistan; Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067 Orléans Cedex 2, France; COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France; EA2106 Biomolecules et Biotechnologies Vegetales, Universite Francois-Rabelais de Tours, Tours, France.
| |
Collapse
|
39
|
Chen Y, Zhang X, Guo Q, Cao L, Qin Q, Li C, Zhao M, Wang W. Plant morphology, physiological characteristics, accumulation of secondary metabolites and antioxidant activities of Prunella vulgaris L. under UV solar exclusion. Biol Res 2019; 52:17. [PMID: 30935421 PMCID: PMC6442409 DOI: 10.1186/s40659-019-0225-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background Prunella vulgaris L. has been an important medicinal plant for the treatment of thyroid gland malfunction and mastitis in China for over 2000 years. There is an urgent need to select effective wavelengths for greenhouse cultivation of P. vulgaris as light is a very important factor in P. vulgaris growth. Here, we described the effects of natural light (control) and UV solar exclusion on the morphological and physiological traits, secondary metabolites contents and antioxidant activities of P. vulgaris. Results The results showed that UV solar exclusion resulted in remarkable alterations to morphological and biomass traits; significantly reduced the chlorophyll a, chlorophyll b and total chlorophyll contents; significantly enhanced the ratio of chlorophyll a to b; and significantly increased the carotenoid and anthocyanin contents in P. vulgaris. UV solar exclusion significantly increased the catalase (CAT) and peroxidase (POD) activities, increased superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities and slightly decreased the glutathione (GSH) content. UV solar exclusion significantly increased the soluble sugar and H2O2 contents and increased the soluble protein content but significantly decreased the proline content and slightly decreased the MDA content. The secondary metabolite contents (total phenolics, rosmarinic acid, caffeic acid, hyperoside, ursolic acid and oleanolic acid) and in vitro antioxidative properties (DPPH· and ABTS·+scavenging activities) were significantly increased in P. vulgaris spicas under UV solar exclusion. Additionally, the total polysaccharide and total flavonoids contents were slightly increased by UV solar exclusion. The salviaflaside content was significantly reduced by UV solar exclusion. Conclusion Our study demonstrated that P. vulgaris activates several antioxidant defence systems against oxidative damage caused by UV solar exclusion.
Collapse
Affiliation(s)
- Yuhang Chen
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China. .,Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China. .,Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xuerong Zhang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.,Shanghai Traditional Chinese Medicine Co., LTD., Shanghai, 200002, China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Liping Cao
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Qin Qin
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Chen Li
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Miao Zhao
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Wenming Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
40
|
Growth, morphology and bioactive phenolic compounds production in Pyrostegia venusta calli. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Nadeem M, Abbasi BH, Younas M, Ahmad W, Zahir A, Hano C. LED-enhanced biosynthesis of biologically active ingredients in callus cultures of Ocimum basilicum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2019; 190:172-178. [PMID: 30268421 DOI: 10.1016/j.jphotobiol.2018.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/17/2018] [Accepted: 09/11/2018] [Indexed: 01/01/2023]
Abstract
Ocimum basilicum is a medicinal plant with multiple health benefits including cardiovascular, cancer and diabetics. In the present study, the influences of light emitting diodes (LEDs) were investigated on the accumulation of biologically active ingredients in callus cultures of Ocimum basilicum. Among the various tested treatments optimum levels of Total phenolic content (TPC) was noted in callus culture grown under blue lights as compared to control, while maximum accumulation of Total flavonoid content (TFC) was noted in callus culture grown under red light as compared to control. HPLC analyses showed that highest concentrations of Rosmarinic acid (96.0 mg/g DW) and Eugenol (0.273 mg/g DW) were accumulated in blue light which was 2.46 and 2.25 times greater than control (39.0 mg/g DW, 0.171 mg/g DW), respectively. Chicoric acid (81.40 mg/g DW) optimum accumulation was noted in callus grown under the continuous white light, which was almost 4.52 times greater than control. Anthocyanins content were also analyzed, the highest amount of Peonidin (0.127 mg/g DW) and cyanidin (0.1216 mg/g DW) were found in callus culture grown under red light. These findings suggest that application of LED's is a promising strategy for enhancing production of biologically active ingredients in callus cultures Ocimum basilicum.
Collapse
Affiliation(s)
- Muhammad Nadeem
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207, Université d'Orléans, F 28000 Chartres, France; EA2106 Biomolecules et Biotechnologies Vegetales, Universite Francois-Rabelais de Tours, Tours, France.
| | - Muhammad Younas
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Waqar Ahmad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Adnan Zahir
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207, Université d'Orléans, F 28000 Chartres, France
| |
Collapse
|
42
|
Rukh G, Ahmad N, Rab A, Ahmad N, Fazal H, Akbar F, Ullah I, Mukhtar S, Samad N. Photo-dependent somatic embryogenesis from non-embryogenic calli and its polyphenolics content in high-valued medicinal plant of Ajuga bracteosa. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 190:59-65. [PMID: 30500677 DOI: 10.1016/j.jphotobiol.2018.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 01/21/2023]
Abstract
Ajuga bracteosa (A. bracteosa) is one of the critically endangered and high-valued medicinal plants worldwide. Light is one of the major factor or stimulus involved in the morphogenic responses and bioactive compounds production in various medicinal plants. In this study, unique properties of colored lights have been observed on induction of somatic embryos from non-embryonic calli cultures of A. bracteosa. The maximum callogenic response (92.32%) from leaf explants was observed on Murashige and Skoog (MS) medium augmented with benzyl adenine (BA; 2.0 l-1) and 2, 4-Dichlorophenoxy acetic acid (2.4-D; 1.0 mg l-1). Calli cultures with same hormonal concentrations were placed under different spectral lights for somatic embryogenesis and photochemical variations. Red lights were found effective for maximum somatic embryos induction (92.75%) with optimum biomass accumulation (152.64 g l-1) on day 40. Similarly, among all the spectral lights, red light exhibited the highest DPPH-radical scavenging activity (DRSA; 92.86%). In contrast, blue lights induced maximum biosynthesis of chemically important total phenolics content and total flavonoids content (TPC; 0.264 and TFC; 0.06 mg/g-DW), respectively. Furthermore, blue, green and red lights also enhanced phenolics and production, polyphenolics content and total polyphenolics production in somatic embryos. It is concluded that exposure of calli cultures to colored lights provides an effective and promising in vitro technique for conservation of endangered A. bracteosa species and enhancement of its bioactive compounds. Steps should be taken to adopt these strategies/ techniques at a larger scale in order to yield maximum benefits from this highly valued medicinal plant species.
Collapse
Affiliation(s)
- Gul Rukh
- Center for Biotechnology and Microbiology, University of Swat, Swat 19200, Pakistan
| | - Nisar Ahmad
- Center for Biotechnology and Microbiology, University of Swat, Swat 19200, Pakistan.
| | - Abdur Rab
- Department of Horticulture, The University of Agriculture, Peshawar, Peshawar 25120, Pakistan
| | - Naveed Ahmad
- Department of Horticulture, The University of Agriculture, Peshawar, Peshawar 25120, Pakistan.
| | - Hina Fazal
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Peshawar 25120, Pakistan
| | - Fazal Akbar
- Center for Biotechnology and Microbiology, University of Swat, Swat 19200, Pakistan
| | - Irfan Ullah
- Department of Horticulture, The University of Agriculture, Peshawar, Peshawar 25120, Pakistan
| | - Sidra Mukhtar
- Department of Horticulture, The University of Agriculture, Peshawar, Peshawar 25120, Pakistan
| | - Nadia Samad
- Department of Horticulture, The University of Agriculture, Peshawar, Peshawar 25120, Pakistan
| |
Collapse
|
43
|
Fazal H, Abbasi BH, Ahmad N, Ali M. Exogenous melatonin trigger biomass accumulation and production of stress enzymes during callogenesis in medicinally important Prunella vulgaris L. (Selfheal). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:1307-1315. [PMID: 30425443 PMCID: PMC6214439 DOI: 10.1007/s12298-018-0567-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/06/2018] [Accepted: 06/05/2018] [Indexed: 05/30/2023]
Abstract
The objective of the current study was to monitor the variations caused by the application of exogenous melatonin on growth kinetics and production of stress enzymes in Prunella vulgaris. Leaf and petiole explants were used for callogenesis. These explants were inoculated on Murashige and Skoog media containing various concentrations of melatonin alone or in combination with 2.0 mg/l naphthalene acetic acid. Herein, a maximum of 3.18-g/100 ml fresh biomass accumulation was observed on day 35 during log phase of growth kinetics at 1.0 mg/l melatonin concentration from leaf explants. While 0.5 and 1.0 mg/l melatonin enhanced the biomass accumulation from petiole explants. Moreover, the synergistic combination of melatonin and naphthalene acetic acid also promoted growth from leaf and petiole explants. Leaf derived callus cultures treated with 1.0 mg/l melatonin induced the production of total protein content (90.47 μg BSAE/mg FW) and protease activity (4.77 U/g FW). While the calli obtained from petiole explants have shown highest content of total protein (160.8 μg BSAE/mg FW) and protease activity (5.35 U/g FW) on media containing 0.5 mg/l melatonin. Similarly, 0.5 mg/l melatonin enhanced superoxide dismutase (3.011 nM/min/mg FW) and peroxidase (1.73 nM/min/mg FW) enzymes from leaf derived callus cultures. The combination of 1.0 and 1.5 mg/l naphthalene acetic acid enhanced content of total protein and protease activity in leaf and petiole derived cultures. These results suggested that the application of melatonin play a positive role in biomass accumulation and production of stress enzymes in P. vulgaris.
Collapse
Affiliation(s)
- Hina Fazal
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Peshawar, 25120 Pakistan
| | - Bilal Haider Abbasi
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Nisar Ahmad
- Center for Biotechnology and Microbiology, University of Swat, Swat, 19200 Pakistan
| | - Mohammad Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, 19200 Pakistan
| |
Collapse
|
44
|
Khan T, Ullah MA, Garros L, Hano C, Abbasi BH. Synergistic effects of melatonin and distinct spectral lights for enhanced production of anti-cancerous compounds in callus cultures of Fagonia indica. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 190:163-171. [PMID: 30482427 DOI: 10.1016/j.jphotobiol.2018.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/18/2018] [Accepted: 10/09/2018] [Indexed: 11/28/2022]
Abstract
Fagonia indica is one of the commercially vital medicinal plant species. It is well-known for biosynthesis of anticancer phenolics and flavonoids metabolites. The plant has been exploited for in vitro studies and production of vital phytochemicals, however, the synergistic effects of melatonin and lights remains to be investigated. In current study, we have evaluated the synergistic effects of melatonin and different light emitting diodes (LEDs) in callus cultures of F. indica. Both, light and melatonin play vital role in physiological and biochemical processes of plant cell. The highest Fresh weight (FW: 320 g/L) and Dry weight (DW: 20 g/L) was recorded in cultures under white LEDs. Optimum total phenolics content (11.3 μg GAE/mg), total flavonoids content (4.02 μg QAE/mg) and Free radical scavenging activity (97%) was found in cultures grown under white LED and melatonin. Furthermore, cultures maintained under white light were also found with highest levels of phenolic and flavonoids production (total phenolic production; 226.9 μg GAE/mg, Total flavonoid production; 81 μg QAE/mg) than other LED-grown cultures. However, the antioxidant enzymes; Superoxide dismutase (SOD: 0.53 nM/min/mg FW) and Peroxidase (POD:1.18 nM/min/mg FW) were found optimum in cultures grown under blue LED. The HPLC data showed that enhanced total production of metabolites was recorded in cultures under white LED (6.765 μg/mg DW) than other lights and control. The findings of this study comprehend the role of melatonin and influence of light quality on biomass accumulation and production of phytochemicals in callus cultures of F. indica.
Collapse
Affiliation(s)
- Taimoor Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Laurine Garros
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, INRA USC1328, Université d'Orléans, 28000 Chartres, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, INRA USC1328, Université d'Orléans, 28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, INRA USC1328, Université d'Orléans, 28000 Chartres, France; EA2106 Biomolecules et Biotechnologies Vegetales, Universite Francois-Rabelais de Tours, Tours, France.
| |
Collapse
|
45
|
Wang W, Su M, Li H, Zeng B, Chang Q, Lai Z. Effects of supplemental lighting with different light qualities on growth and secondary metabolite content of Anoectochilus roxburghii. PeerJ 2018; 6:e5274. [PMID: 30038873 PMCID: PMC6054866 DOI: 10.7717/peerj.5274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/01/2018] [Indexed: 11/20/2022] Open
Abstract
Background Anoectochilus roxburghii is a widespread herbaceous plant with high medicinal value. Wild A. roxburghii resources face extinction due to their slow growth rate and over exploitation. The growing market demand has led to advances in the field of artificial planting of A. roxburghii. Methods to increase the economic benefits of cultivation and the production of medicinal ingredients are very useful. Methods A. roxburghii was exposed to red light, blue light (BL), yellow light (YL), green light, or white light as supplemental lighting at night (18:00-02:00) in a greenhouse or were left in darkness (control, CK) to investigate the effects of various light qualities on growth indices, photosynthetic pigments, chlorophyll fluorescence, root vitality, stomatal density, soluble proteins, sugars, and the accumulation of secondary metabolites. Results Supplementation of BL had a positive effect on A. roxburghii growth and secondary metabolite accumulation. Leaf number, stem diameter, fresh weight, dry weight, chlorophyll a content, and secondary metabolite (total flavonoids, total polyphenols) content increased significantly. YL treatment showed significantly higher soluble sugar and polysaccharide contents than the control. Discussion BL treatment was conducive to promoting the growth and accumulation of secondary metabolites (total flavonoids, total polyphenols); YL treatment significantly increased the content of soluble sugar and polysaccharides more than the control. Polysaccharides and total flavonoids are important medicinal ingredients of Anoectochilus, so future research will focus on the combination of blue and YL.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China.,Institute of Horticultural Biotechnology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Physiology and Biochemistry for Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, Fujian, China
| | - Minghua Su
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Physiology and Biochemistry for Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, Fujian, China
| | - Huihua Li
- Fujian Key Laboratory of Physiology and Biochemistry for Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, Fujian, China
| | - Biyu Zeng
- Fujian Key Laboratory of Physiology and Biochemistry for Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, Fujian, China
| | - Qiang Chang
- Fujian Key Laboratory of Physiology and Biochemistry for Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, Fujian, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China.,Institute of Horticultural Biotechnology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
46
|
Idrees M, Sania B, Hafsa B, Kumari S, Khan H, Fazal H, Ahmad I, Akbar F, Ahmad N, Ali S, Ahmad N. Spectral lights trigger biomass accumulation and production of antioxidant secondary metabolites in adventitious root cultures of Stevia rebaudiana (Bert.). C R Biol 2018; 341:334-342. [PMID: 29859915 DOI: 10.1016/j.crvi.2018.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 11/18/2022]
Abstract
Stevia rebaudiana (S. rebaudiana) is the most important therapeutic plant species and has been accepted as such worldwide. It has a tendency to accumulate steviol glycosides, which are 300 times sweeter than marketable sugar. Recently, diabetic patients commonly use this plant as a sugar substitute for sweet taste. In the present study, the effects of different spectral lights were investigated on biomass accumulation and production of secondary metabolites in adventitious root cultures of S. rebaudiana. For callus development, leaf explants were excised from seed-derived plantlets and inoculated on a Murashige and Skoog (MS) medium containing the combination of 2,4-dichlorophenoxy acetic acid (2, 4-D, 2.0mg/l) and 6-benzyladenine (BA, 2.0mg/l), while 0.5mg/l naphthalene acetic acid (NAA) was used for adventitious root culture. Adventitious root cultures were exposed to different spectral lights (blue, green, violet, red and yellow) for a 30-day period. White light was used as control. The growth kinetics was studied for 30days with 3-day intervals. In this study, the violet light showed the maximum accumulation of fresh biomass (2.495g/flask) as compared to control (1.63g/flask), while red light showed growth inhibition (1.025g/flask) as compared to control. The blue light enhanced the highest accumulation of phenolic content (TPC; 6.56mg GAE/g DW), total phenolic production (TPP; 101mg/flask) as compared to control (5.44mg GAE/g DW; 82.2mg GAE/g DW), and exhibited a strong correlation with dry biomass. Blue light also improved the accumulation of total flavonoid content (TFC; 4.33mg RE/g DW) and total flavonoid production (TFP; 65mg/flask) as compared to control. The violet light showed the highest DPPH inhibition (79.72%), while the lowest antioxidant activity was observed for control roots (73.81%). Hence, we concluded that the application of spectral lights is an auspicious strategy for the enhancement of the required antioxidant secondary metabolites in adventitious root cultures of S. rebaudiana and of other medicinal plants.
Collapse
Affiliation(s)
- Muhammad Idrees
- Centre for Biotechnology and Microbiology, University of Swat, 19200 Swat, Pakistan
| | - Bibi Sania
- Centre for Biotechnology and Microbiology, University of Swat, 19200 Swat, Pakistan
| | - Bibi Hafsa
- Centre for Biotechnology and Microbiology, University of Swat, 19200 Swat, Pakistan
| | - Sana Kumari
- Centre for Biotechnology and Microbiology, University of Swat, 19200 Swat, Pakistan
| | - Haji Khan
- Centre for Biotechnology and Microbiology, University of Swat, 19200 Swat, Pakistan
| | - Hina Fazal
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, 25120 Peshawar, Pakistan
| | - Ishfaq Ahmad
- Centre for Biotechnology and Microbiology, University of Swat, 19200 Swat, Pakistan
| | - Fazal Akbar
- Centre for Biotechnology and Microbiology, University of Swat, 19200 Swat, Pakistan
| | - Naveed Ahmad
- Department of Horticulture, The University of Agriculture, 25120 Peshawar, Pakistan
| | - Sadeeq Ali
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Pakistan
| | - Nisar Ahmad
- Centre for Biotechnology and Microbiology, University of Swat, 19200 Swat, Pakistan.
| |
Collapse
|
47
|
Younas M, Drouet S, Nadeem M, Giglioli-Guivarc'h N, Hano C, Abbasi BH. Differential accumulation of silymarin induced by exposure of Silybum marianum L. callus cultures to several spectres of monochromatic lights. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 184:61-70. [PMID: 29803074 DOI: 10.1016/j.jphotobiol.2018.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/12/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
Silybum marianum L. (Milk thistle) is one of the most extensively studied medicinal herbs with well-known hepatoprotective activity. Light is considered as a key abiotic elicitor influencing several physiological processes in plants, including the biosynthesis of secondary metabolites. In this study, we investigated the influence of light quality on morphological and biochemical aspects in in vitro grown leaf-derived callus cultures of S. marianum. Combination of 6-benzylaminopurine (BAP 2.5 mg/L) and α-naphthalene acetic acid (NAA 1.0 mg/L) resulted in optimum callogenic response (97%) when placed under cool-white light with 16 h light and 8 h dark. Red light significantly increased the total phenolic content (TPC), total flavonoid content (TFC), antioxidant and superoxide dismutase (SOD) activities while highest peroxidase (POD) activity was recorded for the dark grown cultures, followed by green light grown cultures. HPLC analysis revealed enhanced total silymarin content under red light (18.67 mg/g DW), which was almost double than control (9.17 mg/g DW). Individually, the level of silychristin, isosilychristin, silydianin, silybin A and silybin B were found greatest under red light, whereas green spectrum resulted in highest accumulation of isosilybin A and isosilybin B. Conversely, the amount of taxifolin was found maximum under continuous white light (0.480 mg/g DW) which was almost 8-fold greater than control (0.063 mg/g DW). A positive correlation was found between the TPC, TFC and antioxidant activities. This study will assist in comprehending the influence of light quality on production of valuable secondary metabolites in in vitro cultures of S. marianum L.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207 INRA USC1328, Université d'Orléans, F 28000 Chartres, France
| | - Muhammad Nadeem
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207 INRA USC1328, Université d'Orléans, F 28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207 INRA USC1328, Université d'Orléans, F 28000 Chartres, France; EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 37200 Tours, France.
| |
Collapse
|
48
|
Szopa A, Starzec A, Ekiert H. The importance of monochromatic lights in the production of phenolic acids and flavonoids in shoot cultures of Aronia melanocarpa, Aronia arbutifolia and Aronia × prunifolia. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2018; 179:91-97. [PMID: 29351879 DOI: 10.1016/j.jphotobiol.2018.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/27/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022]
Abstract
Shoot cultures of Aronia melanocarpa, A. arbutifolia and A. × prunifolia were maintained on Murashige and Skoog medium with 1 mg/l each of BA and NAA under monochromatic lights (far-red, red, blue lights, UV-A-irradiation), in darkness, and under white light (control). HPLC-DAD analyses of 19 phenolic acids and 11 flavonoids in methanolic extracts from the shoots revealed in all of them the presence of three depsides (chlorogenic, neochlorogenic and rosmarinic acids), protocatechuic acid, four flavonoid glycosides (cynaroside, quercitrin, hyperoside and rutoside), and additionally, in A. arbutifolia, 3,4-dihydroxyphenylacetic acid. Depending on light quality, the total amounts of these metabolites increased 1.8-5.9 times, reaching maximum values under blue light: 527.40 and 144.61 mg 100 g-1 DW (A. melanocarpa), 543.27 and 85.82 mg 100 g-1 DW (A. arbutifolia) and 1615.18 and 220.65 mg 100 g-1 DW (A. × prunifolia), respectively. The maximum total amounts were 1.3-3.6 times higher than under white light. The quantities of individual metabolites changed from 1.2 to 11.0 times, with high amounts of neochlorogenic acid and quercitrin in A. melanocarpa (243.35 and 75.64 mg 100 g-1 DW), and of chlorogenic and rosmarinic acids and quercitrin in A. arbutifolia (236.52, 219.35 and 51.01 mg 100 g-1 DW). Extremely high amounts of depsides (418.83, 644.68, 548.86 mg 100 g-1 DW) and quercitrin (165.88 mg 100 g-1 DW) were produced in cultures of the hybrid - A. × prunifolia. The results are potentially useful for practical applications. This is the first report documented the importance of light quality on the production of phenolic acids and flavonoids in three aronia in vitro cultures.
Collapse
Affiliation(s)
- Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Collegium Medicum, ul. Medyczna 9, 30-688 Kraków, Poland.
| | - Anna Starzec
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Collegium Medicum, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Collegium Medicum, ul. Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
49
|
Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids? PLoS One 2017; 12:e0188522. [PMID: 29190278 PMCID: PMC5708618 DOI: 10.1371/journal.pone.0188522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022] Open
Abstract
Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs) in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica) plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR) and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm), violet (420 nm), blue (470 nm), or green (515 nm). We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates), and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants) over control plants.
Collapse
|
50
|
Dutta Gupta S, Karmakar A. Machine vision based evaluation of impact of light emitting diodes (LEDs) on shoot regeneration and the effect of spectral quality on phenolic content and antioxidant capacity in Swertia chirata. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:162-172. [PMID: 28779689 DOI: 10.1016/j.jphotobiol.2017.07.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022]
Abstract
The present study demonstrates the influence of LED irradiance of various wavelengths on shoot regeneration, biomass accumulation, photosynthetic pigment contents, and antioxidant potentials of Swertia chirata - a critically endangered medicinal plant. Mixed treatment of blue (BL) and red LEDs (RL) in equal proportion (1:1) significantly improved the shoot regeneration response. A machine vision system was developed to assess the shoot regeneration potential under different lighting treatments. Regenerated shoots exposed under BL:RL (1:1) exhibited higher biomass accumulation and canopy development compared to other lighting treatments. Improved canopy growth was evident from the increase in the area, major axis, minor axis, convex area, equivalent diameter and perimeter of regenerated shoot clusters. A higher correlation of dry weight (DW) was noted with the image feature, weighted density (WD) than the fresh weight (FW) in all the LED treated cultures. The significant correlation between DW and WD implies that the image feature WD can be adopted as a non-invasive approach for measuring biomass accumulation as well as detecting hyperhydricity. The developed machine vision approach provides a new direction in the evaluation of shoot organogenesis that displayed features including both shoot multiplication and canopy development. Chlorophyll and carotenoid contents of the regenerated shoots were found to be higher under BL:RL (1:1) than the other treatments. Supplementation of RL led to a reduction in the pigment contents. Spectral quality of lights also significantly influenced the accumulation of total phenolics, flavonoids and flavonols. Cultures exposed under BL exhibited the maximum accumulation of polyphenols. A similar effect of spectral quality was observed with the antioxidant capacity and reducing power potential of leaf extract. The findings demonstrate the ability of LEDs in inducing shoot regeneration as well as accumulation of phenolic antioxidants and suggest that the proportion of blue and red LEDs is an important factor in achieving the optimum response.
Collapse
Affiliation(s)
- S Dutta Gupta
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - A Karmakar
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|