1
|
Burtseva AD, Baymukhametov TN, Bolshakov MA, Makhneva ZК, Mardanov AV, Tsedilin AM, Zhang H, Popov VO, Ashikhmin AA, Boyko KM. Near-atomic cryo-EM structure of the light-harvesting complex LH2 from the sulfur purple bacterium Ectothiorhodospira haloalkaliphila. Structure 2025; 33:311-320.e3. [PMID: 39694041 DOI: 10.1016/j.str.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024]
Abstract
Bacteria with the simplest system for solar energy absorption and conversion use various types of light-harvesting complexes for these purposes. Light-harvesting complex 2 (LH2), an important component of the bacterial photosynthetic apparatus, has been structurally well characterized among purple non-sulfur bacteria. In contrast, so far only one high-resolution LH2 structure from sulfur bacteria is known. Here, we report the near-atomic resolution cryoelectron microscopy (cryo-EM) structure of the LH2 complex from the purple sulfur bacterium Ectothiorhodospira haloalkaliphila, which allowed us to determine the predominant polypeptide composition of this complex and the identification of the most probable type of its carotenoid. Comparison of our structure with the only known LH2 complex from a sulfur bacterium revealed severe differences in the overall ring-like organization. Expanding the architectural universe of bacterial light-harvesting complexes, our results demonstrate that, as observed for non-sulfur bacteria, the LH2 complexes of sulfur bacteria may also exhibit various types of spatial organization.
Collapse
Affiliation(s)
- Anna D Burtseva
- Bach Institute of Biochemistry, Research Center of Biotechnology Russian Academy of Sciences, Leninsky pr-t, 33, bld. 2, Moscow 119071, Russia; Landau Phystech School of Physics and Research, Moscow Institute of Physics and Technology, Institutsky lane, 9, Dolgoprudny, Moscow region 141700, Russia
| | - Timur N Baymukhametov
- Kurchatov Complex of NBICS Nature-Like Technologies, Structural Biology Department, National Research Center ''Kurchatov Institute'', Akademika Kurchatova pl., 1, Moscow 123182, Russia
| | - Maxim A Bolshakov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str. 2, Pushchino, Moscow region 142290, Russia
| | - Zoya К Makhneva
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str. 2, Pushchino, Moscow region 142290, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 60th Anniversary of October Avenue, 7, bld. 1, Moscow 119071, Russia
| | - Andrey M Tsedilin
- Bach Institute of Biochemistry, Research Center of Biotechnology Russian Academy of Sciences, Leninsky pr-t, 33, bld. 2, Moscow 119071, Russia
| | - Huawei Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Avenue, 1068, Shenzhen 518055, China; School of Life Sciences, Southern University of Science and Technology, Xueyuan Avenue, 1088, Shenzhen 518055, China
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology Russian Academy of Sciences, Leninsky pr-t, 33, bld. 2, Moscow 119071, Russia
| | - Aleksandr A Ashikhmin
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str. 2, Pushchino, Moscow region 142290, Russia
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology Russian Academy of Sciences, Leninsky pr-t, 33, bld. 2, Moscow 119071, Russia.
| |
Collapse
|
2
|
Gorlenko VM, Grouzdev DS, Lunina ON, Gaisin VA, Ashikhmin AA, Sinetova MA. A new mesophilic member of the Chloroflexota phylum 'Ca. Сhloroploca septentrionalis' from the meromictic lake Bol'shie Khruslomeny separated from the White Sea. FEMS Microbiol Lett 2025; 372:fnae113. [PMID: 39725410 DOI: 10.1093/femsle/fnae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024] Open
Abstract
A new filamentous phototrophic bacterium Khr17 was isolated as an enrichment culture from the brackish polar lake Bol'shie Khruslomeny. The organism was a halotolerant, strictly anaerobic phototroph possessing photosystem II. Sulfide was required for phototrophic growth. The cells of bacterium Khr17 formed nonmotile, wavy trichomes surrounded by a sheath. The cells contained chlorosomes, gas vesicles, and storage granules. The antenna pigments of bacterium Khr17 were bacteriochlorophyll c and β- and γ-carotenes. The genome of Khr17 bacterium carries all the genes responsible for CO2 fixation via the 3-hydroxypropionate pathway. The genes encoding the proteins of the nitrogenase complex were not found. The DNA G + C content was 59.9%. The 16S rRNA gene sequence of isolate Khr17 exhibited 99.4% similarity to related species. The average nucleotide identity and digital DNA-DNA hybridization values for the isolate showed 91.9% and 46.9% similarity, respectively, to other 'Ca. Chloroploca' species. Based on its phenotypic and phylogenetic characteristics, classification of Khr17 as member of a new species, 'Ca. Chloroploca septentrionalis' sp. nov., was proposed. Members of the genus 'Ca. Chloroploca' have previously not been found in Arctic areas and in the plankton of meromictic lakes.
Collapse
Affiliation(s)
- Vladimir M Gorlenko
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky ave. 33, bld. 2. Moscow 119071, Russian Federation
| | - Denis S Grouzdev
- SciBear LLC, Tartu mnt 67/1-13b, Kesklinna linnaosa, Tallin 10115, Estonia
| | - Olga N Lunina
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky ave. 33, bld. 2. Moscow 119071, Russian Federation
| | - Vasil A Gaisin
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky ave. 33, bld. 2. Moscow 119071, Russian Federation
| | - Aleksandr A Ashikhmin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of Russian Academy of Sciences', Institutskaya ave. 2, Pushchino 142290, Russian Federation
| | - Maria A Sinetova
- K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Botanicheskaya St. 35, Moscow 127276, Russian Federation
| |
Collapse
|
3
|
Didaran F, Kordrostami M, Ghasemi-Soloklui AA, Pashkovskiy P, Kreslavski V, Kuznetsov V, Allakhverdiev SI. The mechanisms of photoinhibition and repair in plants under high light conditions and interplay with abiotic stressors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113004. [PMID: 39137703 DOI: 10.1016/j.jphotobiol.2024.113004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
This review comprehensively examines the phenomenon of photoinhibition in plants, focusing mainly on the intricate relationship between photodamage and photosystem II (PSII) repair and the role of PSII extrinsic proteins and protein phosphorylation in these processes. In natural environments, photoinhibition occurs together with a suite of concurrent stress factors, including extreme temperatures, drought and salinization. Photoinhibition, primarily caused by high irradiance, results in a critical imbalance between the rate of PSII photodamage and its repair. Central to this process is the generation of reactive oxygen species (ROS), which not only impair the photosynthetic apparatus first PSII but also play a signalling role in chloroplasts and other cellulular structures. ROS generated under stress conditions inhibit the repair of photodamaged PSII by suppressing D1 protein synthesis and affecting PSII protein phosphorylation. Furthermore, this review considers how environmental stressors exacerbate PSII damage by interfering with PSII repair primarily by reducing de novo protein synthesis. In addition to causing direct damage, these stressors also contribute to ROS production by restricting CO2 fixation, which also reduces the intensity of protein synthesis. This knowledge has significant implications for agricultural practices and crop improvement under stressful conditions.
Collapse
Affiliation(s)
- Fardad Didaran
- Department of Horticulture, Aburaihan Campus, University of Tehran, Iran
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| | - Ali Akbar Ghasemi-Soloklui
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| | - Pavel Pashkovskiy
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Vladimir Kuznetsov
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - Suleyman I Allakhverdiev
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia
| |
Collapse
|
4
|
Scales BS, Hassenrück C, Moldaenke L, Hassa J, Rückert-Reed C, Rummel C, Völkner C, Rynek R, Busche T, Kalinowski J, Jahnke A, Schmitt-Jansen M, Wendt-Potthoff K, Oberbeckmann S. Hunting for pigments in bacterial settlers of the Great Pacific Garbage Patch. Environ Microbiol 2024; 26:e16639. [PMID: 38899733 DOI: 10.1111/1462-2920.16639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
The Great Pacific Garbage Patch, a significant collection of plastic introduced by human activities, provides an ideal environment to study bacterial lifestyles on plastic substrates. We proposed that bacteria colonizing the floating plastic debris would develop strategies to deal with the ultraviolet-exposed substrate, such as the production of antioxidant pigments. We observed a variety of pigmentation in 67 strains that were directly cultivated from plastic pieces sampled from the Garbage Patch. The genomic analysis of four representative strains, each distinct in taxonomy, revealed multiple pathways for carotenoid production. These pathways include those that produce less common carotenoids and a cluster of photosynthetic genes. This cluster appears to originate from a potentially new species of the Rhodobacteraceae family. This represents the first report of an aerobic anoxygenic photoheterotrophic bacterium from plastic biofilms. Spectral analysis showed that the bacteria actively produce carotenoids, such as beta-carotene and beta-cryptoxanthin, and bacteriochlorophyll a. Furthermore, we discovered that the genetic ability to synthesize carotenoids is more common in plastic biofilms than in the surrounding water communities. Our findings suggest that plastic biofilms could be an overlooked source of bacteria-produced carotenoids, including rare forms. It also suggests that photoreactive molecules might play a crucial role in bacterial biofilm communities in surface water.
Collapse
Affiliation(s)
- Brittan S Scales
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Christiane Hassenrück
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Lynn Moldaenke
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | | | - Christoph Rummel
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Corinna Völkner
- Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Robby Rynek
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Annika Jahnke
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | | | | | - Sonja Oberbeckmann
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| |
Collapse
|
5
|
Ashikhmin A, Pashkovskiy P, Kosobryukhov A, Khudyakova A, Abramova A, Vereshchagin M, Bolshakov M, Kreslavski V. The Role of Pigments and Cryptochrome 1 in the Adaptation of Solanum lycopersicum Photosynthetic Apparatus to High-Intensity Blue Light. Antioxidants (Basel) 2024; 13:605. [PMID: 38790710 PMCID: PMC11117525 DOI: 10.3390/antiox13050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The effects of high-intensity blue light (HIBL, 500/1000 µmol m-2s-1, 450 nm) on Solanum lycopersicum mutants with high pigment (hp) and low pigment (lp) levels and cryptochrome 1 (cry1) deficiency on photosynthesis, chlorophylls, phenols, anthocyanins, nonenzymatic antioxidant activity, carotenoid composition, and the expression of light-dependent genes were investigated. The plants, grown under white light for 42 days, were exposed to HIBL for 72 h. The hp mutant quickly adapted to 500 µmol m-2s-1 HIBL, exhibiting enhanced photosynthesis, increased anthocyanin and carotenoids (beta-carotene, zeaxanthin), and increased expression of key genes involved in pigment biosynthesis (PSY1, PAL1, CHS, ANS) and PSII proteins along with an increase in nonenzymatic antioxidant activity. At 1000 µmol m-2s-1 HIBL, the lp mutant showed the highest photosynthetic activity, enhanced expression of genes associated with PSII external proteins (psbO, psbP, psbQ), and increased in neoxanthin content. This mutant demonstrated greater resistance at the higher HIBL, demonstrating increased stomatal conductance and photosynthesis rate. The cry1 mutant exhibited the highest non-photochemical quenching (NPQ) but had the lowest pigment contents and decreased photosynthetic rate and PSII activity, highlighting the critical role of CRY1 in adaptation to HIBL. The hp and lp mutants use distinct adaptation strategies, which are significantly hindered by the cry1 mutation. The pigment content appears to be crucial for adaptation at moderate HIBL doses, while CRY1 content and stomatal activity become more critical at higher doses.
Collapse
Affiliation(s)
- Aleksandr Ashikhmin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia; (A.A.); (A.K.); (A.K.); (M.B.)
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (A.A.); (M.V.)
| | - Anatoliy Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia; (A.A.); (A.K.); (A.K.); (M.B.)
| | - Alexandra Khudyakova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia; (A.A.); (A.K.); (A.K.); (M.B.)
| | - Anna Abramova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (A.A.); (M.V.)
| | - Mikhail Vereshchagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (A.A.); (M.V.)
| | - Maksim Bolshakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia; (A.A.); (A.K.); (A.K.); (M.B.)
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia; (A.A.); (A.K.); (A.K.); (M.B.)
| |
Collapse
|
6
|
Benditkis AS, Ashikhmin AA, Moskalenko AA, Krasnovsky AA. Photogeneration and quenching of singlet molecular oxygen by bacterial C 40 carotenoids with long chain of conjugated double bonds. PHOTOSYNTHESIS RESEARCH 2024; 159:291-301. [PMID: 38315423 DOI: 10.1007/s11120-023-01070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/14/2023] [Indexed: 02/07/2024]
Abstract
Measurement of photosensitized luminescence of singlet oxygen has been applied to studies of singlet oxygen generation and quenching by C40 carotenoids (neurosporene, lycopene, rhodopin, and spirilloxanthin) with long chain of conjugated double bonds (CDB) using hexafluorobenzene as a solvent. It has been found that neurosporene, lycopene, and rhodopin are capable of the low efficient singlet oxygen generation in aerated solutions upon photoexcitation in the spectral region of their main absorption maxima. The quantum yield of this process was estimated to be (1.5-3.0) × 10-2. This value is near the singlet oxygen yields in solutions of ζ-carotene (7 CDB) and phytoene (3 CDB) and many-fold smaller than in solutions of phytofluene (5 CDB) (Ashikhmin et al. Biochemistry (Mosc) 85:773-780, https://doi.org/10.1134/S0006297920070056 , 2020, Biochemistry (Mosc) 87:1169-1178, 2022, https://doi.org/10.1134/S00062979221001082022 ). Photogeneration of singlet oxygen was not observed in spirilloxanthin solutions. A correlation was found between the singlet oxygen yields and the quantum yields and lifetimes of the fluorescence of the carotenoid molecules. All carotenoids were shown to be strong physical quenchers of singlet oxygen. The rate constants of 1O2 quenching by the carotenoids with long chain of CDB (9-13) were close to the rate constant of the diffusion-limited reactions ≈1010 M-1 s-1, being many-fold greater than the rate constants of 1O2 quenching by the carotenoids with the short chain of CDB (3-7) phytoene, phytofluene, and ζ-carotene studied in prior papers of our group (Ashikhmin et al. 2020, 2022). To our knowledge, the quenching rate constants of rhodopin and spirilloxanthin have been obtained in this paper for the first time. The mechanisms of 1O2 photogeneration by carotenoids in solution and in the LH2 complexes of photosynthetic cells, as well as the efficiencies of their protective action are discussed.
Collapse
Affiliation(s)
- A S Benditkis
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - A A Ashikhmin
- Pushchino Scientific Center for Biological Research of Russian Academy of Sciences, Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Russia
| | - A A Moskalenko
- Pushchino Scientific Center for Biological Research of Russian Academy of Sciences, Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Russia
| | - A A Krasnovsky
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.
| |
Collapse
|
7
|
Oshkin IY, Tikhonova EN, Suleimanov RZ, Ashikhmin AA, Ivanova AA, Pimenov NV, Dedysh SN. All Kinds of Sunny Colors Synthesized from Methane: Genome-Encoded Carotenoid Production by Methylomonas Species. Microorganisms 2023; 11:2865. [PMID: 38138009 PMCID: PMC10745290 DOI: 10.3390/microorganisms11122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Carotenoids are secondary metabolites that exhibit antioxidant properties and are characterized by a striking range of colorations from red to yellow. These natural pigments are synthesized by a wide range of eukaryotic and prokaryotic organisms. Among the latter, carotenoid-producing methanotrophic bacteria, which display fast growth on methane or natural gas, are of particular interest as potential producers of a feed protein enriched with carotenoids. Until recently, Methylomonas strain 16a and Methylomonas sp. ZR1 remained the only representatives of the genus for which detailed carotenoid profile was determined. In this study, we analyzed the genome sequences of five strains of Methylomonas species whose pigmentation varied from white and yellow to orange and red, and identified carotenoids produced by these bacteria. Carotenoids synthesized using four pigmented strains included C30 fraction, primarily composed of 4,4'-diaplycopene-4,4'-dioic acid and 4,4'-diaplycopenoic acid, as well as C40 fraction with the major compound represented by 1,1'-dihydroxy-3,4-didehydrolycopene. The genomes of studied Methylomonas strains varied in size between 4.59 and 5.45 Mb and contained 4201-4735 protein-coding genes. These genomes and 35 reference Methylomonas genomes available in the GenBank were examined for the presence of genes encoding carotenoid biosynthesis. Genomes of all pigmented Methylomonas strains harbored genes necessary for the synthesis of 4,4'-diaplycopene-4,4'-dioic acid. Non-pigmented "Methylomonas montana" MW1T lacked the crtN gene required for carotenoid production. Nearly all strains possessed phytoene desaturases, which explained their ability to naturally synthesize lycopene. Thus, members of the genus Methylomonas can potentially be considered as producers of C30 and C40 carotenoids from methane.
Collapse
Affiliation(s)
- Igor Y. Oshkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Ekaterina N. Tikhonova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Ruslan Z. Suleimanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Aleksandr A. Ashikhmin
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Anastasia A. Ivanova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Nikolai V. Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia
| |
Collapse
|
8
|
Ashikhmin A, Bolshakov M, Pashkovskiy P, Vereshchagin M, Khudyakova A, Shirshikova G, Kozhevnikova A, Kosobryukhov A, Kreslavski V, Kuznetsov V, Allakhverdiev SI. The Adaptive Role of Carotenoids and Anthocyanins in Solanum lycopersicum Pigment Mutants under High Irradiance. Cells 2023; 12:2569. [PMID: 37947647 PMCID: PMC10650732 DOI: 10.3390/cells12212569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
The effects of high-intensity light on the pigment content, photosynthetic rate, and fluorescence parameters of photosystem II in high-pigment tomato mutants (hp 3005) and low-pigment mutants (lp 3617) were investigated. This study also evaluated the dry weight percentage of low molecular weight antioxidant capacity, expression patterns of some photoreceptor-regulated genes, and structural aspects of leaf mesophyll cells. The 3005 mutant displayed increased levels of photosynthetic pigments and anthocyanins, whereas the 3617 mutant demonstrated a heightened content of ultraviolet-absorbing pigments. The photosynthetic rate, photosystem II activity, antioxidant capacity, and carotenoid content were most pronounced in the high-pigment mutant after 72 h exposure to intense light. This mutant also exhibited an increase in leaf thickness and water content when exposed to high-intensity light, suggesting superior physiological adaptability and reduced photoinhibition. Our findings indicate that the enhanced adaptability of the high-pigment mutant might be attributed to increased flavonoid and carotenoid contents, leading to augmented expression of key genes associated with pigment synthesis and light regulation.
Collapse
Affiliation(s)
- Aleksandr Ashikhmin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia; (A.A.); (M.B.); (A.K.); (G.S.); (A.K.); (V.K.)
| | - Maksim Bolshakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia; (A.A.); (M.B.); (A.K.); (G.S.); (A.K.); (V.K.)
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (V.K.)
| | - Mikhail Vereshchagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (V.K.)
| | - Alexandra Khudyakova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia; (A.A.); (M.B.); (A.K.); (G.S.); (A.K.); (V.K.)
| | - Galina Shirshikova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia; (A.A.); (M.B.); (A.K.); (G.S.); (A.K.); (V.K.)
| | - Anna Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (V.K.)
| | - Anatoliy Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia; (A.A.); (M.B.); (A.K.); (G.S.); (A.K.); (V.K.)
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia; (A.A.); (M.B.); (A.K.); (G.S.); (A.K.); (V.K.)
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (V.K.)
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (V.K.)
| |
Collapse
|
9
|
Razjivin AP, Kozlovsky VS, Ashikhmin AA, Pishchalnikov RY. Gaussian Decomposition vs. Semiclassical Quantum Simulation: Obtaining the High-Order Derivatives of a Spectrum in the Case of Photosynthetic Pigment Optical Properties Studying. SENSORS (BASEL, SWITZERLAND) 2023; 23:8248. [PMID: 37837078 PMCID: PMC10574941 DOI: 10.3390/s23198248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
In this paper, a procedure for obtaining undistorted high derivatives (up to the eighth order) of the optical absorption spectra of biomolecule pigments has been developed. To assess the effectiveness of the procedure, the theoretical spectra of bacteriochlorophyll a, chlorophyll a, spheroidene, and spheroidenone were simulated by fitting the experimental spectra using the differential evolution algorithm. The experimental spectra were also approximated using sets of Gaussians to calculate the model absorption spectra. Theoretical and model spectra can be differentiated without smoothing (high-frequency noise filtering) to obtain high derivatives. Superimposition of the noise track on the model spectra allows us to obtain test spectra similar to the experimental ones. Comparison of the high derivatives of the model spectra with those of the test spectra allows us to find the optimal parameters of the filter, the application of which leads to minimal differences between the high derivatives of the model and test spectra. For all four studied pigments, it was shown that smoothing the experimental spectra with optimal filters makes it possible to obtain the eighth derivatives of the experimental spectra, which were close to the eighth derivatives of their theoretical spectra.
Collapse
Affiliation(s)
- Andrei P. Razjivin
- Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia;
| | - Vladimir S. Kozlovsky
- Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia;
| | - Aleksandr A. Ashikhmin
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Roman Y. Pishchalnikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
10
|
Thwaites O, Christianson BM, Cowan AJ, Jäckel F, Liu LN, Gardner AM. Unravelling the Roles of Integral Polypeptides in Excitation Energy Transfer of Photosynthetic RC-LH1 Supercomplexes. J Phys Chem B 2023; 127:7283-7290. [PMID: 37556839 PMCID: PMC10461223 DOI: 10.1021/acs.jpcb.3c04466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Indexed: 08/11/2023]
Abstract
Elucidating the photosynthetic processes that occur within the reaction center-light-harvesting 1 (RC-LH1) supercomplexes from purple bacteria is crucial for uncovering the assembly and functional mechanisms of natural photosynthetic systems and underpinning the development of artificial photosynthesis. Here, we examined excitation energy transfer of various RC-LH1 supercomplexes of Rhodobacter sphaeroides using transient absorption spectroscopy, coupled with lifetime density analysis, and studied the roles of the integral transmembrane polypeptides, PufX and PufY, in energy transfer within the RC-LH1 core complex. Our results show that the absence of PufX increases both the LH1 → RC excitation energy transfer lifetime and distribution due to the role of PufX in defining the interaction and orientation of the RC within the LH1 ring. While the absence of PufY leads to the conformational shift of several LH1 subunits toward the RC, it does not result in a marked change in the excitation energy transfer lifetime.
Collapse
Affiliation(s)
- Owen Thwaites
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Physics, University of Liverpool, Liverpool L69 7ZE, U.K.
| | - Bern M. Christianson
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Alexander J. Cowan
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Frank Jäckel
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Physics, University of Liverpool, Liverpool L69 7ZE, U.K.
| | - Lu-Ning Liu
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
- College
of Marine Life Sciences, and Frontiers Science Center for Deep Ocean
Multispheres and Earth System, Ocean University
of China, Qingdao 266003, China
| | - Adrian M. Gardner
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
- Early Career
Laser Laboratory, University of Liverpool, Liverpool L69 3BX, U.K.
| |
Collapse
|
11
|
Pashkovskiy P, Ivanov Y, Ivanova A, Kartashov A, Zlobin I, Lyubimov V, Ashikhmin A, Bolshakov M, Kreslavski V, Kuznetsov V, Allakhverdiev SI. Effect of Light of Different Spectral Compositions on Pro/Antioxidant Status, Content of Some Pigments and Secondary Metabolites and Expression of Related Genes in Scots Pine. PLANTS (BASEL, SWITZERLAND) 2023; 12:2552. [PMID: 37447113 DOI: 10.3390/plants12132552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The aim of this study was to investigate the effect of light quality (white fluorescent light, WFL, containing UV components), red light (RL, 660 nm), blue light (BL, 450 nm), and white LED light (WL, 450 + 580 nm) on the components of the cellular antioxidant system in Pinus sylvestris L. in needles, roots, and hypocotyls, focusing on the accumulation of key secondary metabolites and the expression of related genes. The qualitative and quantitative composition of carotenoids; the content of the main photosynthetic pigments, phenolic compounds, flavonoids (catechins, proanthocyanidins, anthocyanins), ascorbate, and glutathione; the activity of the main antioxidant enzymes; the content of hydrogen peroxide; and the intensity of lipid peroxidation (MDA and 4-HNE contents) were determined. RL resulted in an increase in the content of hydrogen peroxide and 4-HNE, as well as the total fraction of flavonoids in the needles. It also enhanced the expression of several PR (pathogen-related) genes compared to BL and WL. WFL increased the content of phenols, including flavonoids, and enhanced the overall activity of low-molecular antioxidants in needles and hypocotyls. BL increased the content of ascorbate and glutathione, including reduced glutathione, in the needles and simultaneously decreased the activity of peroxidases. Thus, by modifying the light quality, it is possible to regulate the accumulation of secondary metabolites in pine roots and needles, thereby influencing their resistance to various biotic and abiotic stressors.
Collapse
Affiliation(s)
- Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Yury Ivanov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Alexandra Ivanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Alexander Kartashov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Ilya Zlobin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Valery Lyubimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| | - Aleksandr Ashikhmin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| | - Maksim Bolshakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| |
Collapse
|
12
|
Pashkovskiy P, Sleptsov N, Vereschagin M, Kreslavski V, Rudometova N, Sorokoumov P, Ashikhmin A, Bolshakov M, Kuznetsov V. Post-Harvest Red- and Far-Red-Light Irradiation and Low Temperature Induce the Accumulation of Carotenoids, Capsaicinoids, and Ascorbic Acid in Capsicum annuum L. Green Pepper Fruit. Foods 2023; 12:foods12081715. [PMID: 37107510 PMCID: PMC10137640 DOI: 10.3390/foods12081715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Environmental factors, such as light of different spectral compositions and temperature, can change the level of activated photoreceptors which, in turn, can affect the biosynthesis of secondary metabolites in the cells of green fruit. By briefly irradiating the harvested fruit of Capsicum annuum L. hot peppers with red light (RL, maximum 660 nm) and far-red light (FRL, maximum 730 nm) and by keeping them at a low temperature, we attempted to determine whether the state of phytochromes in fruit affects the biosynthesis of secondary metabolites. Using HPLC, we analysed the qualitative composition and quantitative content of the main carotenoids and alkaloids and the chlorophylls and ascorbate, in pepper fruit exposed to the above factors. We measured the parameters characterising the primary photochemical processes of photosynthesis and the transcript levels of genes encoding capsaicin biosynthesis enzymes. The total carotenoids content in the fruit increased most noticeably after 24 h of RL irradiation (more than 3.5 times compared to the initial value), and the most significant change in the composition of carotenoids occurred when the fruit was irradiated with FRL for 72 h. The capsaicin alkaloid content increased markedly after 72 h of FRL irradiation (more than 8 times compared to the initial value). It was suggested that decrease in the activity of phytochromes due to a low temperature or FRL may result in an increase in the expression of the PAL and CAM genes.
Collapse
Affiliation(s)
- Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Nikolay Sleptsov
- Department of Plant Physiology, Timiryazev Agricultural Academy-Russian State Agrarian University, Timiryazevskaya Street 49, Moscow 127434, Russia
| | - Mikhail Vereschagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia
| | - Natalia Rudometova
- All-Russian Research Institute for Food Additives-Branch of VM Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, St. Petersburg 191014, Russia
| | - Pavel Sorokoumov
- All-Russian Research Institute for Food Additives-Branch of VM Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, St. Petersburg 191014, Russia
| | - Aleksandr Ashikhmin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia
| | - Maksim Bolshakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| |
Collapse
|
13
|
Methylomonas rapida sp. nov., a novel species of fast-growing, carotenoid-producing obligate methanotrophs with high biotechnological potential. Syst Appl Microbiol 2023; 46:126398. [PMID: 36724672 DOI: 10.1016/j.syapm.2023.126398] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
The genus Methylomonas accommodates strictly aerobic, obligate methanotrophs, with their sole carbon and energy sources restricted to methane and methanol. These bacteria inhabit oxic-anoxic interfaces of various freshwater habitats and have attracted considerable attention as potential producers of a single-cell protein. Here, we characterize two fast-growing representatives of this genus, strains 12 and MP1T, which are phylogenetically distinct from the currently described Methylomonas species (94.0-97.3 % 16S rRNA gene sequence similarity). Strains 12 and MP1T were isolated from freshwater sediments collected in Moscow and Krasnodar regions, respectively. Cells of these strains are Gram-negative, red-pigmented, highly motile thick rods that contain a type I intracytoplasmic membrane system and possess a particulate methane monooxygenase (pMMO) enzyme. These bacteria grow between 8 and 45 °C (optimum 35 °C) in a relatively narrow pH range of 5.5-7.3 (optimum pH 6.6-7.2). Major carotenoids synthesized by these methanotrophs are 4,4'-diaplycopene-4,4'-dioic acid, 1,1'-dihydroxy-3,4-didehydrolycopene and 4,4'-diaplycopenoic acid. High biomass yield, of up to 3.26 g CDW/l, is obtained during continuous cultivation of MP1T on natural gas in a bioreactor at a dilution rate of 0.22 h-1. The complete genome sequence of strain MP1T is 4.59 Mb in size; the DNA G + C content is 52.8 mol%. The genome encodes four rRNA operons, one pMMO operon and 4,216 proteins. The genome sequence displays 82-85 % average nucleotide identity to those of earlier described Methylomonas species. We propose to classify these bacteria as representing a novel species of the genus Methylomonas, M. rapida sp. nov., with the type strain MP1T (=KCTC 92586T = VKM B-3663T).
Collapse
|
14
|
Serdyuk OP, Abdullatypov AV, Smolygina LD, Ashikhmin AA, Bolshakov MA. Simultaneous functioning of different light-harvesting complexes-a strategy of adaptation of purple bacterium Rhodopseudomonas palustris to low illumination conditions. PeerJ 2023; 11:e14769. [PMID: 36743963 PMCID: PMC9897067 DOI: 10.7717/peerj.14769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/29/2022] [Indexed: 02/03/2023] Open
Abstract
Novel peripheral light-harvesting (LH) complex designated as LL LH2 was isolated along with LH4 complex from Rhodopseudomonas palustris cells grown under low light intensity (LL). FPLC-MS/MS allowed to reveal PucABd and PucBabc apoproteins in LL LH2 complex, which is different from previously described LH4 complex containing PucABd, PucABa and PucBb. The main carotenoids in LL LH2 complex were rhodopin and 3,4-didehydrorhodopin. Three-dimensional modeling demonstrated which amino acid residues of all the β-subunits could interact with carotenoids (Car) and bacteriochlorophyll a (BChl a). Analysis of amino acid sequences of α-subunits of both LL complexes showed presence of different C-terminal motifs, IESSVNVG in αa subunit and IESSIKAV in αd subunit, in the same positions of C-termini, which could reflect different retention force of LL LH2 and LH4 on hydroxyl apatite, facilitating successful isolation of these complexes. Differences of these LL complexes in protein and carotenoid composition, in efficiency of energy transfer from Car to BChl a, which is two times lower in LL LH2 than in LH4, allow to assign it to a novel type of light-harvesting complex in Rhodopseudomonas palustris.
Collapse
Affiliation(s)
- Olga Petrovna Serdyuk
- Institute of Basic Biological Problems of the Russian Academy of Sciences—A Separate Subdivision of PSCBR RAS (IBBP RAS), Pushchino, Moscow Region, Russian Federation
| | - Azat Vadimovich Abdullatypov
- Institute of Basic Biological Problems of the Russian Academy of Sciences—A Separate Subdivision of PSCBR RAS (IBBP RAS), Pushchino, Moscow Region, Russian Federation
| | - Lidiya Dmitrievna Smolygina
- Institute of Basic Biological Problems of the Russian Academy of Sciences—A Separate Subdivision of PSCBR RAS (IBBP RAS), Pushchino, Moscow Region, Russian Federation
| | - Aleksandr Aleksandrovich Ashikhmin
- Institute of Basic Biological Problems of the Russian Academy of Sciences—A Separate Subdivision of PSCBR RAS (IBBP RAS), Pushchino, Moscow Region, Russian Federation
| | - Maxim Alexandrovich Bolshakov
- Institute of Basic Biological Problems of the Russian Academy of Sciences—A Separate Subdivision of PSCBR RAS (IBBP RAS), Pushchino, Moscow Region, Russian Federation
| |
Collapse
|
15
|
Sluchanko NN, Slonimskiy YB, Egorkin NA, Varfolomeeva LA, Faletrov YV, Moysenovich AM, Parshina EY, Friedrich T, Maksimov EG, Boyko KM, Popov VO. Silkworm carotenoprotein as an efficient carotenoid extractor, solubilizer and transporter. Int J Biol Macromol 2022; 223:1381-1393. [PMID: 36395947 DOI: 10.1016/j.ijbiomac.2022.11.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Found in many organisms, water-soluble carotenoproteins are prospective antioxidant nanocarriers for biomedical applications. Yet, the toolkit of characterized carotenoproteins is rather limited: such proteins are either too specific binders of only few different carotenoids, or their ability to transfer carotenoids to various acceptor systems is unknown. Here, by focusing on a recently characterized recombinant ~27-kDa Carotenoid-Binding Protein from Bombyx mori (BmCBP) [Slonimskiy et al., International Journal of Biological Macromolecules 214 (2022): 664-671], we analyze its carotenoid-binding repertoire and potential as a carotenoid delivery module. We show that BmCBP forms productive complexes with both hydroxyl- and ketocarotenoids - lutein, zeaxanthin, astaxanthin, canthaxanthin and a smaller antioxidant, aporhodoxanthinone, but not with β-carotene or retinal, which defines its broad ligand specificity toward xanthophylls valuable to human health. Moreover, the His-tagged BmCBP apoform is capable of cost-efficient and scalable enrichment of xanthophylls from various crude methanolic herbal extracts. Upon carotenoid binding, BmCBP remains monomeric and shows a remarkable ability to dynamically shuttle carotenoids to biological membrane models and to unrelated carotenoproteins, which in particular makes from the cyanobacterial Orange Carotenoid Protein a blue-light controlled photoswitch. Furthermore, administration of BmCBP loaded by zeaxanthin stimulates fibroblast growth, which is attractive for cell- and tissue-based assays.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation.
| | - Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Yaroslav V Faletrov
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus
| | - Anastasia M Moysenovich
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russian Federation
| | - Evgenia Yu Parshina
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russian Federation
| | - Thomas Friedrich
- Technical University of Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russian Federation
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; M.V. Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russian Federation
| |
Collapse
|
16
|
Kolpakova VV, Ulanova RV, Kulikov DS, Gulakova VA, Vasilyeva LV, Berestovskaya YY, Cheremnykh EG, Ashikhmin AA. Use of environmentally safe micromycetes of the genus <i>Rhodotorula</i> to obtain fodder carotene‐containing concentrate. SOUTH OF RUSSIA: ECOLOGY, DEVELOPMENT 2022. [DOI: 10.18470/1992-1098-2022-4-61-78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aim. The aim of the work was to study the possibility of using an environmentally friendly strain of yeast of the genus Rhodotorula for the bioconversion into fodder carotenoid‐containing biomass of the secondary product of processing pea flour into a protein concentrate (whey).Material and Methods. We used a new strain of Rhodotorula mucilaginosa 111 and by‐products of processing pea and chickpea flour into protein concentrates and potatoes into starch (whey). We used standard and special methods for the analysis of serum and microbial‐vegetable concentrate (FMVC) namely: chemical; biochemical; microbiological; and the determination of toxicity with ciliates.Results. Optimal conditions for growing R. mucilaginosa 111 on pea whey were determined (temperature 16.9°C, pH 7.8, amount of inoculum 1.85%). More biomass was synthesized on pea whey than on chickpea and potato whey – 81 g/dm3. The mass fraction of protein in the biomass is 58.90±3.03% on dry matter and the rate of essential amino acids is 119– 243%. Lipids included 20% saturated and 78% unsaturated fatty acids, linoleic acid – 45.26±0.70%, oleic – 24.04±0.76%, palmitoleic – 6.46±0.31%, palmitic – 13.70±0.81%. The yeast produced phytoin derivatives, torulene, β‐carotene, torularodin and phytoin. FMVC from pea whey stimulated the growth of ciliates Tetrahymena pyriformis by 29.1%, from chickpea whey (by 18.6% more intensively than distilled water), while potato whey reduced its growth rate.Conclusion. The dry biomass of the ecologically safe new yeast strain R. mucilaginosa 111 contained complete proteins, lipids, minerals, and carotenoids necessary for feeding animals. Thus liquid pea whey can be used for its biokonversions, while avoiding environmental pollution.
Collapse
Affiliation(s)
- V. V. Kolpakova
- All‐Russian Research Institute of Starch and Processing of Starch‐Containing Raw Materials – Branch of A.G. Lorkha Federal Potato Research Centre
| | - R. V. Ulanova
- All‐Russian Research Institute of Starch and Processing of Starch‐Containing Raw Materials – Branch of A.G. Lorkha Federal Potato Research Centre; S.N. Vinogradsky Institute of Microbiology, Fundamental Foundations of Biotechnology Federal Research Centre, Russian Academy of Sciences
| | - D. S. Kulikov
- All‐Russian Research Institute of Starch and Processing of Starch‐Containing Raw Materials – Branch of A.G. Lorkha Federal Potato Research Centre
| | - V. A. Gulakova
- All‐Russian Research Institute of Starch and Processing of Starch‐Containing Raw Materials – Branch of A.G. Lorkha Federal Potato Research Centre
| | - L. V. Vasilyeva
- S.N. Vinogradsky Institute of Microbiology, Fundamental Foundations of Biotechnology Federal Research Centre, Russian Academy of Sciences
| | - Yu. Yu. Berestovskaya
- S.N. Vinogradsky Institute of Microbiology, Fundamental Foundations of Biotechnology Federal Research Centre, Russian Academy of Sciences
| | | | - A. A. Ashikhmin
- Institute of Physicochemical and Biological Problems in Soil Science, Pushchino Scientific Centre for Biological Research, Russian Academy of Sciences
| |
Collapse
|
17
|
Slonimskiy YB, Egorkin NA, Ashikhmin AA, Friedrich T, Maksimov EG, Sluchanko NN. Reconstitution of the functional carotenoid-binding protein from silkworm in E. coli. Int J Biol Macromol 2022; 214:664-671. [PMID: 35753519 DOI: 10.1016/j.ijbiomac.2022.06.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 12/16/2022]
Abstract
Natural water-soluble carotenoproteins are promising antioxidant nanocarriers for biomedical applications. The Carotenoid-Binding Protein from silkworm Bombyx mori (BmCBP) is responsible for depositing carotenoids in cocoons. This determines the silk coloration, which is relevant for sericulture for four thousand years. While BmCBP function is well-characterized by molecular genetics, its structure and carotenoid-binding mechanism remain to be studied. To facilitate this, here we report on successful production of soluble BmCBP in Escherichia coli, its purification and characterization. According to CD spectroscopy and SEC-MALS, this protein folds into a ~ 27-kDa monomer capable of dose-dependent binding of lutein, a natural BmCBP ligand, in vitro. Binding leads to a >10 nm red-shift of the carotenoid absorbance and quenches tryptophan fluorescence of BmCBP. Using zeaxanthin, a close lutein isomer that can be stably produced in engineered E.coli strains, we successfully reconstitute the BmCBP holoform and characterize its properties. While BmCBP successfully matures into the holoform, BmCBP-zeaxanthin complexes are contaminated by the apoform. We demonstrate that the yield of the holoform can be increased by adding bovine serum albumin during cell lysis and that the remaining BmCBP apoform is efficiently removed using hydroxyapatite chromatography. Bacterial production of BmCBP paves the way for its structural studies and applications.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Aleksandr A Ashikhmin
- Federal Research Center Pushchino Scientific Center Russian Academy of Sciences, Institute of Basic Biological Problems of Russian Academy of Sciences, Institutskaya, 2, Pushchino, Moscow 142290, Russia
| | - Thomas Friedrich
- Technical University of Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russian Federation
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation.
| |
Collapse
|
18
|
Pashkovskiy P, Kreslavski V, Khudyakova A, Ashikhmin A, Bolshakov M, Kozhevnikova A, Kosobryukhov A, Kuznetsov VV, Allakhverdiev SI. Effect of high-intensity light on the photosynthetic activity, pigment content and expression of light-dependent genes of photomorphogenetic Solanum lycopersicum hp mutants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:91-100. [PMID: 34340026 DOI: 10.1016/j.plaphy.2021.07.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The relationship between photosynthesis, pigment accumulation, and the expression of key light-regulated genes in Solanum lycopersicum hp-1, hp-2 and hp-1.2 photomorphogenetic mutants under conditions of high-intensity light (2000 μm (photons) m-2s-1) was studied. The hp-2 mutant (LA3006) and the hp-1 mutants (LA4012 and LA3538) are deficient in DET1 (De-etiolated 1 and DDB1 (DNA DAMAGE-BINDING PROTEIN 1), respectively, which are components of the CDD complex (COP10, DDB1, DET1). HP mutants are superproducers of various pigments and are sensitive to light. We have shown that HIL (high-intensity light) causes a decrease in PSII activity after 24 and 72 h of irradiation, which was partially restored after 72 h in the WT. The photosynthetic rate noticeably decreased only in LA4012 and LA3538 after 24 h of irradiation. After 72 h, the photosynthetic rate decreased in all mutants, with the exception of hp-1.2 LA0279, but the decrease was most noticeable in LA4012, yet significant changes in the respiration rate were absent. The LA0279 mutant was more capable of accumulating anthocyanin in the cells of the subepidermal parenchyma and chlorenchyma, as well as in the cells at the base of large multicellular glandular trichomes and in the mesophyll. Another important difference was the accumulation of increased amounts of antheraxanthin and phenolic compounds in the leaves of LA0279 after 72 h of HIL irradiation. Unlike LA4012, LA3006, LA0279, and LA3538 sowed a significant increase in the expression levels of CHS, HY5, and FLS genes after 24 h, which may be one of the reasons for the higher adaptive potential of those three mutants. In addition to that in LA3538, strong light-induced stress led to an increased level of flavonol synthase (FLS) expression in the LA3006, LA0279, and LA4012 mutants. We hypothesize that the photosynthetic apparatus (PA) of the LA0279 mutant, which is deficient in the DET1 and DDB1 genes, is most adapted to prolonged HIL. Most likely, the resistance of PA mutants to HIL is due to a variety of factors, which, in addition to the redistribution of carotenoids, may include morphological features associated with the accumulation of anthocyanin in the epidermis, subepidermal layer, mesophyll and trichomes of leaves and with an increase in leaf thickness.
Collapse
Affiliation(s)
- Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, 142290, Russia
| | - Alexandra Khudyakova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, 142290, Russia
| | - Aleksandr Ashikhmin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, 142290, Russia
| | - Maksim Bolshakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, 142290, Russia
| | - Anna Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - Anatoly Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, 142290, Russia
| | - Vladimir V Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| |
Collapse
|
19
|
Razjivin A, Götze J, Lukashev E, Kozlovsky V, Ashikhmin A, Makhneva Z, Moskalenko A, Lokstein H, Paschenko V. Lack of Excitation Energy Transfer from the Bacteriochlorophyll Soret Band to Carotenoids in Photosynthetic Complexes of Purple Bacteria. J Phys Chem B 2021; 125:3538-3545. [PMID: 33818091 DOI: 10.1021/acs.jpcb.1c00719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The excitation energy transfer (EET) from the bacteriochlorophyll (BChl) Soret band to the second excited state(s) (S2) of carotenoids in pigment-protein complexes of purple bacteria was investigated. The efficiency of EET was determined, based on fluorescence excitation and absorption spectra of chromatophores, peripheral light-harvesting complexes (LH2), core complexes (LH1-RC), and pigments in solution. Carotenoid-containing and carotenoid-less samples were compared: LH1-RC and LH2 from Allochromatium minutissimum, Ectothiorhodospira haloalkaliphila, and chromatophores from Rhodobacter sphaeroides and Rhodospirillum rubrum wild type and carotenoid-free strains R-26 and G9. BChl-to-carotenoid EET was absent, or its efficiency was less than the accuracy of the measurements of ∼5%. Quantum chemical calculations support the experimental results: The transition dipole moments of spatially close carotenoid/BChl pairs were found to be nearly orthogonal. The structural arrangements suggest that Soret EET may be lacking for the studied systems, however, EET from carotenoids to Qx appears to be possible.
Collapse
Affiliation(s)
- Andrei Razjivin
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Jan Götze
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Evgeny Lukashev
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir Kozlovsky
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Aleksandr Ashikhmin
- Institute of Basic Biological Problems of Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences", 142290, Pushchino, Russia
| | - Zoya Makhneva
- Institute of Basic Biological Problems of Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences", 142290, Pushchino, Russia
| | - Andrey Moskalenko
- Institute of Basic Biological Problems of Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences", 142290, Pushchino, Russia
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Vladimir Paschenko
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
20
|
Selikhanov G, Fufina T, Vasilieva L, Betzel C, Gabdulkhakov A. Novel approaches for the lipid sponge phase crystallization of the Rhodobacter sphaeroides photosynthetic reaction center. IUCRJ 2020; 7:1084-1091. [PMID: 33209319 PMCID: PMC7642779 DOI: 10.1107/s2052252520012142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
With the recent developments in the field of free-electron-laser-based serial femtosecond crystallography, the necessity to obtain a large number of high-quality crystals has emerged. In this work crystallization techniques were selected, tested and optimized for the lipid mesophase crystallization of the Rhodobacter sphaeroides membrane pigment-protein complex, known as the photosynthetic reaction center (RC). Novel approaches for lipid sponge phase crystallization in comparatively large volumes using Hamilton gas-tight glass syringes and plastic pipetting tips are described. An analysis of RC crystal structures obtained by lipid mesophase crystallization revealed non-native ligands that displaced the native electron-transfer cofactors (carotenoid sphero-idene and a ubi-quinone molecule) from their binding pockets. These ligands were identified and were found to be lipids that are major mesophase components. The selection of distinct co-crystallization conditions with the missing cofactors facilitated the restoration of sphero-idene in its binding site.
Collapse
Affiliation(s)
- Georgii Selikhanov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Puschino, Moscow region 142290, Russian Federation
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, Puschino, Moscow region 142290, Russian Federation
| | - Tatiana Fufina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, Puschino, Moscow region 142290, Russian Federation
| | - Lyudmila Vasilieva
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, Puschino, Moscow region 142290, Russian Federation
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, at Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg, 22607, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, Hamburg, 22761, Germany
| | - Azat Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Puschino, Moscow region 142290, Russian Federation
| |
Collapse
|
21
|
Ashikhmin AA, Benditkis AS, Moskalenko AA, Krasnovsky AA. Phytofluene as a Highly Efficient UVA Photosensitizer of Singlet Oxygen Generation. BIOCHEMISTRY (MOSCOW) 2020; 85:773-780. [PMID: 33040721 DOI: 10.1134/s0006297920070056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phytoene and phytofluene - uncolored C40 carotenoids with short chain of conjugated double bonds (3 and 5, respectively) - are known to be universal precursors in biosynthesis of colored carotenoids in photosynthesizing organisms. It is commonly recognized that C40 carotenoids are photoprotectors of cells and tissues. We have shown that phytofluene is an exception to this rule. By measuring photosensitized phosphorescence of singlet oxygen (1O2) we found out that phytofluene was very effective photosensitizer of 1O2 formation in aerated solutions under UVA irradiation (quantum yield of 85 ± 5%), whereas phytoene was almost inactive in this process. It was demonstrated that both carotenoids quench singlet oxygen in the dark. The obtained quenching rate constants [(4 ± 1) × 106 M-1·s-1 for phytoene and (2 ± 0.5) × 107 M-1·s-1 for phytofluene] were smaller than the rate constant of the diffusion-controlled reactions by 3-4 orders of magnitude. Thus, both carotenoids displayed rather weak protector properties. Moreover, phytofluene due to its high photosensitizing activity might be considered as a promoter of cell photodamage and a promising UVA photosensitizer for medical purposes.
Collapse
Affiliation(s)
- A A Ashikhmin
- Institute of Basic Biological Problems, Federal Research Center "Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - A S Benditkis
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - A A Moskalenko
- Institute of Basic Biological Problems, Federal Research Center "Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - A A Krasnovsky
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
22
|
Seto R, Takaichi S, Kurihara T, Kishi R, Honda M, Takenaka S, Tsukatani Y, Madigan MT, Wang-Otomo ZY, Kimura Y. Lycopene-Family Carotenoids Confer Thermostability on Photocomplexes from a New Thermophilic Purple Bacterium. Biochemistry 2020; 59:2351-2358. [DOI: 10.1021/acs.biochem.0c00192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ryuta Seto
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | | | - Rikako Kishi
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | - Mai Honda
- Faculty of Science, Ibaraki University, Mito 310-8512, Japan
| | - Shinji Takenaka
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | - Yusuke Tsukatani
- Institute for Extra-Cutting-Edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237-0061, Japan
| | - Michael T. Madigan
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois 62901, United States
| | | | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
23
|
Serdyuk OP, Smolygina LD, Ashikhmin AA. A New Type of Light-Harvesting Complex Detected when Growing Rhodopseudomonas palustris under Low Light Intensity Conditions. DOKL BIOCHEM BIOPHYS 2020; 491:101-104. [PMID: 32483762 DOI: 10.1134/s160767292002012x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022]
Abstract
The predominance of the maximum at 800 nm for the light-harvesting complex LH4 (B800) and at 850 nm for LH2 (B800-850) from Rps. palustris is determined by the composition of αβ-polypeptides and pigments. In low light (LL) for Rps. palustris, strain KM 286 (1e5), along with LH4, the LL LH2 complex was synthesized with the same absorption at 800 and 850 nm. It differed from the LH4 and LH2 complex, which is synthesized under high illumination, in the composition and content of carotenoids (Car) and bacteriochlorophyll a (BChl a). LH4 differed from LL LH2 and LH2 by an additional emission maximum at 766 nm in the BChl a fluorescence spectra. All three complexes had approximately the same level (about 45%) of the energy transfer efficiency from Car to BChl a. Isolation of LL LH2 complex from Rps. palustris confirms the hypothesis of the synthesis in these bacteria under low light conditions of other types of complexes, except LH4, which is due to the multiple biosynthesis genes of αβ-polypeptides and the possibility of their various combinations.
Collapse
Affiliation(s)
- O P Serdyuk
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia.
| | - L D Smolygina
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia
| | - A A Ashikhmin
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia
| |
Collapse
|
24
|
Giani M, Miralles-Robledillo JM, Peiró G, Pire C, Martínez-Espinosa RM. Deciphering Pathways for Carotenogenesis in Haloarchaea. Molecules 2020; 25:E1197. [PMID: 32155882 PMCID: PMC7179442 DOI: 10.3390/molecules25051197] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/23/2022] Open
Abstract
Bacterioruberin and its derivatives have been described as the major carotenoids produced by haloarchaea (halophilic microbes belonging to the Archaea domain). Recently, different works have revealed that some haloarchaea synthetize other carotenoids at very low concentrations, like lycopene, lycopersene, cis- and trans-phytoene, cis- and trans-phytofluene, neo-β-carotene, and neo-α-carotene. However, there is still controversy about the nature of the pathways for carotenogenesis in haloarchaea. During the last decade, the number of haloarchaeal genomes fully sequenced and assembled has increased significantly. Although some of these genomes are not fully annotated, and many others are drafts, this information provides a new approach to exploring the capability of haloarchaea to produce carotenoids. This work conducts a deeply bioinformatic analysis to establish a hypothetical metabolic map connecting all the potential pathways involved in carotenogenesis in haloarchaea. Special interest has been focused on the synthesis of bacterioruberin in members of the Haloferax genus. The main finding is that in almost all the genus analyzed, a functioning alternative mevalonic acid (MVA) pathway provides isopentenyl pyrophosphate (IPP) in haloarchaea. Then, the main branch to synthesized carotenoids proceeds up to lycopene from which β-carotene or bacterioruberin (and its precursors: monoanhydrobacterioriberin, bisanhydrobacterioruberin, dihydrobisanhydrobacteriuberin, isopentenyldehydrorhodopsin, and dihydroisopenthenyldehydrorhodopsin) can be made.
Collapse
Affiliation(s)
- Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, 03690 Alicante, Spain; (M.G.); (J.M.M.-R.); (C.P.)
| | - Jose María Miralles-Robledillo
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, 03690 Alicante, Spain; (M.G.); (J.M.M.-R.); (C.P.)
| | - Gloria Peiró
- Pathology Department and Research Unit; University General Hospital of Alicante; Pintor Baeza 12, 03010 Alicante, Spain;
| | - Carmen Pire
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, 03690 Alicante, Spain; (M.G.); (J.M.M.-R.); (C.P.)
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, 03690 Alicante, Spain; (M.G.); (J.M.M.-R.); (C.P.)
| |
Collapse
|
25
|
Pishchalnikov RY, Yaroshevich IA, Slastnikova TA, Ashikhmin AA, Stepanov AV, Slutskaya EA, Friedrich T, Sluchanko NN, Maksimov EG. Structural peculiarities of keto-carotenoids in water-soluble proteins revealed by simulation of linear absorption. Phys Chem Chem Phys 2019; 21:25707-25719. [PMID: 31720635 DOI: 10.1039/c9cp04508b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To prevent irreversible damage caused by an excess of incident light, the photosynthetic machinery of many cyanobacteria uniquely utilizes the water-soluble orange carotenoid protein (OCP) containing a single keto-carotenoid molecule. This molecule is non-covalently embedded into the two OCP domains which are interconnected by a flexible linker. The phenomenon of OCP photoactivation, causing significant changes in carotenoid absorption in the orange and red form of OCP, is currently being thoroughly studied. Numerous additional spectral forms of natural and synthetic OCP-like proteins have been unearthed. The optical properties of carotenoids are strongly determined by the interaction of their electronic states with vibrational modes, the surrounding protein matrix, and the solvent. In this work, the effects of the pigment-protein interaction and vibrational relaxation in OCP were studied by computational simulation of linear absorption. Taking into account Raman spectroscopy data and applying the multimode Brownian oscillator model as well as the cumulant expansion technique, we have calculated a set of characteristic microparameters sufficient to demarcate different carotenoid states in OCP forms, using the model carotenoids spheroidene and spheroidenone in methanol/acetone solution as benchmarks. The most crucial microparameters, which determine the effect of solvent and protein environment, are the Huang-Rhys factors and the frequencies of C[double bond, length as m-dash]C and C-C stretching modes, the low-frequency mode and the FWHM due to inhomogeneous line broadening. Considering the difference of linear absorption between spheroidene and spheroidenone, which remarkably resembles the photoinduced changes of OCP absorption, and applying quantum chemical calculations, we discuss structural and functional determinants of carotenoid binding proteins.
Collapse
Affiliation(s)
- Roman Y Pishchalnikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, 119991, Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tuning the Photophysical Features of Self-Assembling Photoactive Polypeptides for Light-Harvesting. MATERIALS 2019; 12:ma12213554. [PMID: 31671513 PMCID: PMC6862114 DOI: 10.3390/ma12213554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 01/03/2023]
Abstract
The LH1 complex is the major light-harvesting antenna of purple photosynthetic bacteria. Its role is to capture photons, and then store them and transfer the excitation energy to the photosynthetic reaction center. The structure of LH1 is modular and it cooperatively self-assembles from the subunits composed of short transmembrane polypeptides that reversibly bind the photoactive cofactors: bacteriochlorophyll and carotenoid. LH1 assembly, the intra-complex interactions and the light-harvesting features of LH1 can be controlled in micellar media by varying the surfactant concentration and by adding carotenoid and/or a co-solvent. By exploiting this approach, we can manipulate the size of the assembly, the intensity of light absorption, and the energy and lifetime of its first excited singlet state. For instance, via the introduction of Ni-substituted bacteriochlorophyll into LH1, the lifetime of this electronic state of the antenna can be shortened by almost three orders of magnitude. On the other hand, via the exchange of carotenoid, light absorption in the visible range can be tuned. These results show how in a relatively simple self-assembling pigment-polypeptide system a sophisticated functional tuning can be achieved and thus they provide guidelines for the construction of bio-inspired photoactive nanodevices.
Collapse
|
27
|
Ashikhmin AA, Makhneva ZK, Bolshakov MA, Moskalenko AA. The Influence of the Number of Conjugated Double Bonds in Carotenoid Molecules on the Energy Transfer Efficiency to Bacteriochlorophyll in Light-Harvesting Complexes LH2 from Allochromatium vinosum Strain MSU. DOKL BIOCHEM BIOPHYS 2019; 483:321-325. [PMID: 30607730 DOI: 10.1134/s160767291806008x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Indexed: 11/23/2022]
Abstract
Seven different carotenoids with the number of conjugated double bonds (N) from 5 to 11 were incorporated in vitro into carotenoidless complexes LH2 of the sulfur bacterium Allochromatium vinosum strain MSU. The efficiency of their incorporation varied from 4 to 99%. The influence of N in the carotenoid molecules on the energy transfer efficiency from these pigments to bacteriochlorophyll (BChl) in the modified LH2 complexes was studied for the first time. The highest level of energy transfer was recorded for rhodopin (N = 11) and neurosporene (N = 7) (37 and 51%, respectively). In the other carotenoids, this parameter ranged from 11 to 33%. In the LH2 complexes studied, we found no direct correlation between the decrease in N in carotenoids and increase in the energy transfer efficiency from these pigments to BChl.
Collapse
Affiliation(s)
- A A Ashikhmin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia.
| | - Z K Makhneva
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| | - M A Bolshakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| | - A A Moskalenko
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| |
Collapse
|