1
|
Singh P, Pandit S, Balusamy SR, Madhusudanan M, Singh H, Amsath Haseef HM, Mijakovic I. Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications. Adv Healthc Mater 2025; 14:e2403059. [PMID: 39501968 PMCID: PMC11804848 DOI: 10.1002/adhm.202403059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/07/2024] [Indexed: 01/05/2025]
Abstract
Cancer remains one of the most challenging health issues globally, demanding innovative therapeutic approaches for effective treatment. Nanoparticles, particularly those composed of gold, silver, and iron oxide, have emerged as promising candidates for changing cancer therapy. This comprehensive review demonstrates the landscape of nanoparticle-based oncological interventions, focusing on the remarkable advancements and therapeutic potentials of gold, silver, and iron oxide nanoparticles. Gold nanoparticles have garnered significant attention for their exceptional biocompatibility, tunable surface chemistry, and distinctive optical properties, rendering them ideal candidates for various cancer diagnostic and therapeutic strategies. Silver nanoparticles, renowned for their antimicrobial properties, exhibit remarkable potential in cancer therapy through multiple mechanisms, including apoptosis induction, angiogenesis inhibition, and drug delivery enhancement. With their magnetic properties and biocompatibility, iron oxide nanoparticles offer unique cancer diagnosis and targeted therapy opportunities. This review critically examines the recent advancements in the synthesis, functionalization, and biomedical applications of these nanoparticles in cancer therapy. Moreover, the challenges are discussed, including toxicity concerns, immunogenicity, and translational barriers, and ongoing efforts to overcome these hurdles are highlighted. Finally, insights into the future directions of nanoparticle-based cancer therapy and regulatory considerations, are provided aiming to accelerate the translation of these promising technologies from bench to bedside.
Collapse
Affiliation(s)
- Priyanka Singh
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
| | - Santosh Pandit
- Systems and Synthetic Biology DivisionDepartment of Life SciencesChalmers University of TechnologyGothenburgSE‐412 96Sweden
| | - Sri Renukadevi Balusamy
- Department of Food Science and BiotechnologySejong UniversityGwangjin‐GuSeoul05006Republic of Korea
| | - Mukil Madhusudanan
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
| | - Hina Singh
- Division of Biomedical SciencesSchool of MedicineUniversity of CaliforniaRiversideCA92521USA
| | | | - Ivan Mijakovic
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
- Systems and Synthetic Biology DivisionDepartment of Life SciencesChalmers University of TechnologyGothenburgSE‐412 96Sweden
| |
Collapse
|
2
|
Abouelkheir SS, Mourad MM. Anxiety of microbially synthesized Fe 3O 4-SPIONs on embryonic/larval ontogeny in red tilapia (Oreochromis sp.). Appl Microbiol Biotechnol 2025; 109:3. [PMID: 39777547 PMCID: PMC11706909 DOI: 10.1007/s00253-024-13386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Iron oxide nanoparticles, recognized for their superparamagnetic properties, are promising for future healthcare therapies. However, their extensive use in medicine and electronics contributes to their discharge into our environments, highlighting the need for further research on their cellular damage effects on aquatic organisms. While the detrimental properties of other compounds have been stated in the early-life stages of fish, the cytotoxic consequences of superparamagnetic iron oxide nanoparticles (SPIONs) in these stages are still unexplored. Therefore, using the red tilapia (Oreochromis sp.) as a model organism, this study is the first to talk about the subtle cellular alterations caused by biologically induced biomineralized Fe3O4-SPIONs by Bacillus sp. in the early-life stages. Once the red tilapia eggs were fertilized, they were challenged to different doses of SPIONs (0, 5, 10, 15, and 30 mg/l), and their tenfold increases (50, 100, 150, and 300 mg/l) for 72 h. The hatching rate, malformation rate, body length, and deformities of the larvae were all studied. Our research showed that iron oxide nanoparticles were harmful to the early stages of life in red tilapia embryos and larvae. They slowed hatching delay, a decrease in survival rate, an increase in heart rate, bleeding, arrested development, and membrane damage and changed the axis's physiological structure. Additionally, results indicated numerous deformities of red tilapia larvae, with lordosis, kyphosis, and scoliosis once subjected to 50 and 150 mg/l of SPIONs concentrations, respectively. This study could assist us in recognizing the risk and evaluating the disrupting potential of nanoparticles. The key objective of this inquiry is to describe the existing features of the produced magnetite SPIONs (29.44 g/l) including their morphological, chemical, and magnetic characteristics. Illustrate their current role in medicinal applications and aquatic organisms by studying in vivo cytotoxic effects to motivate the development of enhanced SPIONs systems. As a recommendation, more research is needed to completely understand how various exposure endpoints of SPIONs disturb the bodies of red tilapia in the early stages. KEY POINTS: • Biogenic SPIONs: a material of the future. • Characterization is essential to assess the functional properties of the produced SPIONs. • Fe3O4-SPIONs' impact on the red tilapia ontogeny.
Collapse
Affiliation(s)
| | - Mona M Mourad
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| |
Collapse
|
3
|
Sana SS, Chandel AKS, Raorane CJ, Aly Aly Saad M, Kim SC, Raj V, Sangkil Lee. Recent advances in nano and micro formulations of Ginsenoside to enhance their therapeutic efficacy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156007. [PMID: 39276537 DOI: 10.1016/j.phymed.2024.156007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND AND AIMS Ginsenosides, the main component of Panax ginseng, have long been recognized for their therapeutic benefits and are thought to have neuroprotective, antidiabetic, anti-depressant, antioxidant, anti-cancer, and anti-stress properties. However, due to their low water solubility, low biomembrane permeability, gastrointestinal dysfunction, and total metabolism in the body, ginsenosides have a poor absorption profile that has hindered the therapeutic potential of these organic molecules. METHODS Initially, we broadly illuminated the several techniques of extraction of Ginsenosides using Panax quinquefolius and Panax ginseng. Subsequently, we focused on different delivery methods to improve the stability, permeability, and solubility of natural chemicals, which raises the bioavailability of ginsenoside. Lastly, we explained significance of a variety of nano and microscale delivery systems, including liposomes, ethosomes, transfersomes, metal/metal oxide systems, micro/nanoemulsions, polymeric micro/nanoparticles (NPs), liposomes, transfersomes, and micelles to increase the bioavailability of ginsenosides. RESULTS The utilization of micro/nanoscale delivery methods, such as liposome-based delivery, polymer micro/nanoparticle distribution, and micro/nanoemulsion, to increase the bioavailability of ginsenosides has recently advanced, and we have emphasized these advances in this study. Furthermore, the disadvantages of ginsenosides were also discussed, including the challenges associated with putting these delivery systems into practice in clinical settings and suggestions for further research. CONCLUSION In summary, ginsenosides-based administration has several benefits that make it a potentially useful substance for a range of therapeutic purposes.
Collapse
Affiliation(s)
- Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | | | - Mohamed Aly Aly Saad
- Department of Electrical and Computer Engineering, Georgia Tech Shenzhen Institute (GTSI), Shenzhen, Guangdong 518052, China
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Rajaganesh R, Murugan K. Anti-dengue potential and mosquitocidal effect of marine green algae-stabilized Mn-doped superparamagnetic iron oxide nanoparticles (Mn-SPIONs): an eco-friendly approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19575-19594. [PMID: 38363508 DOI: 10.1007/s11356-024-32413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Vector-borne diseases pose a significant public health challenge in economically disadvantaged nations. Malaria, dengue fever, chikungunya, Zika, yellow fever, Japanese encephalitis, and lymphatic filariasis are spread by mosquitoes. Consequently, the most effective method of preventing these diseases is to eliminate the mosquito population. Historically, the majority of control programs have depended on chemical pesticides, including organochlorines, organophosphates, carbamates, and pyrethroids. Synthetic insecticides used to eradicate pests have the potential to contaminate groundwater, surface water, beneficial soil organisms, and non-target species. Nanotechnology is an innovative technology that has the potential to be used in insect control with great precision. The goal of this study was to test the in vitro anti-dengue potential and mosquitocidal activity of Chaetomorpha aerea and C. aerea-synthesized Mn-doped superparamagnetic iron oxide nanoparticles (CA-Mn-SPIONs). The synthesis of CA-Mn-SPIONs using C. aerea extract was verified by the observable alteration in the colour of the reaction mixture, transitioning from a pale green colour to a brown. The study of UV-Vis spectra revealed absorbance peaks at approximately 290 nm, which can be attributed to the surface Plasmon resonance of the CA-Mn-SPIONs. The SEM, TEM, EDX, FTIR, vibrating sample magnetometry, and XRD analyses provided evidence that confirmed the presence of CA-Mn-SPIONs. In the present study, results revealed that C. aerea aqueous extract LC50 values against Ae. aegypti ranged from 222.942 (first instar larvae) to 349.877 ppm in bioassays (pupae). CA-Mn-SPIONs had LC50 ranging from 20.199 (first instar larvae) to 26.918 ppm (pupae). After treatment with 40 ppm CA-Mn-SPIONs and 500 ppm C. aerea extract in ovicidal tests, egg hatchability was lowered by 100%. Oviposition deterrence experiments showed that in Ae. aegypti, oviposition rates were lowered by more than 66% by 100 ppm of green algal extract and by more than 71% by 10 ppm of CA-Mn-SPIONs (oviposition activity index values were 0.50 and 0.55, respectively). Moreover, in vitro anti-dengue activity of CA-Mn-SPIONs has good anti-viral property against dengue viral cell lines. In addition, GC-MS analysis showed that 21 intriguing chemicals were discovered. Two significant phytoconstituents in the methanol extract of C. aerea include butanoic acid and palmitic acid. These two substances were examined using an in silico methodology against the NS5 methyltransferase protein and demonstrated good glide scores and binding affinities. Finally, we looked into the morphological damage and fluorescent emission of third instar Ae. aegypti larvae treated with CA-Mn-SPIONs. Fluorescent emission is consistent with ROS formation of CA-Mn-SPIONs against Ae. aegypti larvae. The present study determines that the key variables for the successful development of new insecticidal agents are rooted in the eco-compatibility and the provision of alternative tool for the pesticide manufacturing sector.
Collapse
Affiliation(s)
- Rajapandian Rajaganesh
- Division of Medical Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Kadarkarai Murugan
- Division of Medical Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| |
Collapse
|
5
|
Oliveira M, Sousa A, Sá S, Soares S, Pereira AC, Rocha AC, Pais P, Ferreira D, Almeida C, Luís C, Lima C, Almeida F, Gestoso Á, Duarte MC, Barata P, Martins-Mendes D, Baylina P, Pereira CF, Fernandes R. Harvesting the Power of Green Synthesis: Gold Nanoparticles Tailored for Prostate Cancer Therapy. Int J Mol Sci 2024; 25:2277. [PMID: 38396953 PMCID: PMC10889744 DOI: 10.3390/ijms25042277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Biosynthetic gold nanoparticles (bAuNPs) present a promising avenue for enhancing bio-compatibility and offering an economically and environmentally responsible alternative to traditional production methods, achieved through a reduction in the use of hazardous chemicals. While the potential of bAuNPs as anticancer agents has been explored, there is a limited body of research focusing on the crucial physicochemical conditions influencing bAuNP production. In this study, we aim to identify the optimal growth phase of Pseudomonas aeruginosa cultures that maximizes the redox potential and coordinates the formation of bAuNPs with increased efficiency. The investigation employs 2,6-dichlorophenolindophenol (DCIP) as a redox indicator. Simultaneously, we explore the impact of temperature, pH, and incubation duration on the biosynthesis of bAuNPs, with a specific emphasis on their potential application as antitumor agents. Characterization of the resulting bAuNPs is conducted using ATR-FT-IR, TEM, and UV-Vis spectroscopy. To gain insights into the anticancer potential of bAuNPs, an experimental model is employed, utilizing both non-neoplastic (HPEpiC) and neoplastic (PC3) epithelial cell lines. Notably, P. aeruginosa cultures at 9 h/OD600 = 1, combined with biosynthesis at pH 9.0 for 24 h at 58 °C, produce bAuNPs that exhibit smaller, more spherical, and less aggregated characteristics. Crucially, these nanoparticles demonstrate negligible effects on HPEpiC cells while significantly impacting PC3 cells, resulting in reduced viability, migration, and lower IL-6 levels. This research lays the groundwork for the development of more specialized, economical, and ecologically friendly treatment modalities.
Collapse
Affiliation(s)
- Marco Oliveira
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
| | - André Sousa
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- FFCC-Facultad de Ciencias, University of Vigo, 36310 Vigo, Spain
| | - Sara Sá
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- FFCC-Facultad de Ciencias, University of Vigo, 36310 Vigo, Spain
| | - Sílvia Soares
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Ana Cláudia Pereira
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
| | - Ana Catarina Rocha
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Patrick Pais
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- ECVA-UTAD, Escola de Ciências da Vida e do Ambiente, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Diogo Ferreira
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FFCC-Facultad de Ciencias, University of Vigo, 36310 Vigo, Spain
- TBIO, Center for Translational Health and Medical Biotechnology Research, ESS-IPP, Escola S. Saúde, Instituto Politécnico do Porto, 4200-465 Porto, Portugal
| | - Cátia Almeida
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Carla Luís
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Cláudio Lima
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
| | - Fábio Almeida
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
| | - Álvaro Gestoso
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
| | - Miguel-Correa Duarte
- FFCC-Facultad de Ciencias, University of Vigo, 36310 Vigo, Spain
- CINBIO, University of Vigo, 36310 Vigo, Spain
- Southern Galicia Institute of Health Research (IISGS), Biomedical Research Networking Center for Mental Health (CIBERSAM), 36310 Madrid, Spain
| | - Pedro Barata
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Daniela Martins-Mendes
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Pilar Baylina
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- TBIO, Center for Translational Health and Medical Biotechnology Research, ESS-IPP, Escola S. Saúde, Instituto Politécnico do Porto, 4200-465 Porto, Portugal
| | - Carla F. Pereira
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
| | - Rúben Fernandes
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
| |
Collapse
|
6
|
Fazlollahi M, Divsalar A, Masteri-Farahani M, Sahebi U, Rasouli M. Design, characterization and green synthesis of samarium-decorated magnetic Fe 3O 4 nanoparticles: cytotoxicity and DNA binding studies. J Biomol Struct Dyn 2023; 42:13971-13983. [PMID: 37937794 DOI: 10.1080/07391102.2023.2279282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
In this study, we have successfully synthesized magnetic Fe3O4 nanoparticles adorned with samarium (Sm-MNPs) utilizing ginger extract for the very first time. Furthermore, a comprehensive characterization of the nanoparticles along with an exploration of their physicochemical attributes was conducted. The biological functionalities of the synthesized nanoparticles were investigated through a thorough examination of their interaction with calf thymus DNA (ctDNA) using diverse spectroscopic techniques encompassing ultraviolet-visible (UV-Vis) and fluorescence spectroscopy at varying temperatures. Subsequently, we evaluated the cytotoxicity of the magnetic nanoparticles using a colorectal cancer cell model (HCT116 cells) and a tetrazolium colorimetric assay (MTT assay). The characterization of the ginger extract-coated magnetic nanoparticles (ginger-Sm-MNPs) revealed their superparamagnetic nature, nanocrystalline structure, spherical morphology, hydrodynamic size of 155 nm, and uniform distribution. The outcomes from UV-Vis and fluorescence spectroscopy affirmed the binding of ginger-Sm-MNPs with ctDNA. Additionally, the MTT assay demonstrated that the cytotoxicity of ginger-Sm-MNPs surpassed that of both magnetite nanoparticles and ginger extract. Notably, the inhibitory concentrations (IC50) for the green-synthesized nanoparticles after 24 and 48 h of incubation were determined as 198.1 and 135.8 μg/mL, respectively. In conclusion, our study findings suggest the potential utility of ginger-Sm-MNPs as a promising candidate for various biomedical applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Masoume Fazlollahi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Adeleh Divsalar
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Unes Sahebi
- Department of Clinical Biochemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Rasouli
- Department of Physics, Kharazmi University, Tehran, Iran
- Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Chen J, Huang L, Liao X. Protective effects of ginseng and ginsenosides in the development of osteoarthritis (Review). Exp Ther Med 2023; 26:465. [PMID: 37664679 PMCID: PMC10468808 DOI: 10.3892/etm.2023.12164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic inflammatory joint disease. Traditional chinese medicine provides a resource for drug screening for OA treatment. Ginseng and the associated bioactive compound, ginsenosides, may reduce inflammation, which is considered a risk factor for the development of OA. Specifically, ginsenosides may exhibit anti-inflammatory and anti-oxidative stress activities, and inhibit extracellular matrix degradation by suppressing the NF-κB and MAPK signaling pathways. Notably, specific ginsenosides, such as compound K and Rk1, may physically interact with IκB kinase and inhibit the associated phosphorylation. Thus, ginsenosides exhibit potential as therapeutic candidates in the management of OA. However, the low water solubility limits the clinical applications of ginsenosides. Numerous effective strategies have been explored to improve bioavailability; however, further investigations are still required.
Collapse
Affiliation(s)
- Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Lin Huang
- Department of Internal Medicine, Ganzhou Hospital of Traditional Chinese Medicine, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
8
|
Balusamy SR, Perumalsamy H, Huq MA, Yoon TH, Mijakovic I, Thangavelu L, Yang DC, Rahimi S. A comprehensive and systemic review of ginseng-based nanomaterials: Synthesis, targeted delivery, and biomedical applications. Med Res Rev 2023; 43:1374-1410. [PMID: 36939049 DOI: 10.1002/med.21953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/22/2022] [Accepted: 02/26/2023] [Indexed: 03/21/2023]
Abstract
Among 17 Panax species identified across the world, Panax ginseng (Korean ginseng), Panax quinquefolius (American ginseng), and Panax notoginseng (Chinese ginseng) are highly recognized for the presence of bioactive compound, ginsenosides and their pharmacological effects. P. ginseng is widely used for synthesis of different types of nanoparticles compared to P. quinquefolius and P. notoginseng. The use of nano-ginseng could increase the oral bioavailability, membrane permeability, and thus provide effective delivery of ginsenosides to the target sites through transport system. In this review, we explore the synthesis of ginseng nanoparticles using plant extracts from various organs, microbes, and polymers, as well as their biomedical applications. Furthermore, we highlight transporters involved in transport of ginsenoside nanoparticles to the target sites. Size, zeta potential, temperature, and pH are also discussed as the critical parameters affecting the quality of ginseng nanoparticles synthesis.
Collapse
Affiliation(s)
- Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Seoul, Gwangjin-gu, Republic of Korea
| | - Haribalan Perumalsamy
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Md Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Tae Hyun Yoon
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, India
| | - Deok Chun Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
9
|
Wang Z, Wang Y, Li H, Lan Y, Zeng Z, Yao J, Li M, Xia H. Fabrication of Etoposide-loaded superparamagnetic iron oxide nanoparticles (SPIONs) induced apoptosis in glioma cancer cells. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
10
|
Haq Khan ZU, Khan TM, Khan A, Shah NS, Muhammad N, Tahir K, Iqbal J, Rahim A, Khasim S, Ahmad I, Shabbir K, Gul NS, Wu J. Brief review: Applications of nanocomposite in electrochemical sensor and drugs delivery. Front Chem 2023; 11:1152217. [PMID: 37007050 PMCID: PMC10060975 DOI: 10.3389/fchem.2023.1152217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The recent advancement of nanoparticles (NPs) holds significant potential for treating various ailments. NPs are employed as drug carriers for diseases like cancer because of their small size and increased stability. In addition, they have several desirable properties that make them ideal for treating bone cancer, including high stability, specificity, higher sensitivity, and efficacy. Furthermore, they might be taken into account to permit the precise drug release from the matrix. Drug delivery systems for cancer treatment have progressed to include nanocomposites, metallic NPs, dendrimers, and liposomes. Materials’ mechanical strength, hardness, electrical and thermal conductivity, and electrochemical sensors are significantly improved using nanoparticles (NPs). New sensing devices, drug delivery systems, electrochemical sensors, and biosensors can all benefit considerably from the NPs’ exceptional physical and chemical capabilities. Nanotechnology is discussed in this article from a variety of angles, including its recent applications in the medical sciences for the effective treatment of bone cancers and its potential as a promising option for treating other complex health anomalies via the use of anti-tumour therapy, radiotherapy, the delivery of proteins, antibiotics, and vaccines, and other methods. This also brings to light the role that model simulations can play in diagnosing and treating bone cancer, an area where Nanomedicine has recently been formulated. There has been a recent uptick in using nanotechnology to treat conditions affecting the skeleton. Consequently, it will pave the door for more effective utilization of cutting-edge technology, including electrochemical sensors and biosensors, and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
- *Correspondence: Zia Ul Haq Khan, ; Noor Shad Gul,
| | - Taj Malook Khan
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Amjad Khan
- Department of Zoology, University of Lakki Marwat, Lakki Marwat, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Abdur Rahim
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Syed Khasim
- Nanotechnology Research Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Khadija Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Noor Shad Gul
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Zia Ul Haq Khan, ; Noor Shad Gul,
| | - Jianbo Wu
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Cai Y, Karmakar B, Babalghith AO, Batiha GES, AlSalem HS, El-Kott AF, Shati AA, Alfaifi MY, Elbehairi SEI. Decorated Au NPs on lignin coated magnetic nanoparticles: Investigation of its catalytic application in the reduction of aromatic nitro compounds and its performance against human lung cancer. Int J Biol Macromol 2022; 223:1067-1082. [PMID: 36368366 DOI: 10.1016/j.ijbiomac.2022.10.268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
In the recent years, bio-functionalized noble metal doped advanced magnetics nanocomposite materials has been materialized as potential featured catalysts in diverse applications. In this connection, we report herein a novel biogenic lignin driven Au nanoparticle supported Fe3O4 composite material. The procedure is free from any harsh reducing or stabilizing agent. Morphology and structural features were assessed following different physicochemical methodologies like FT-IR, FE-SEM, TEM, EDS, XRD, VSM and ICP-OES techniques. Thereafter, the [Fe3O4/Lignin/Au] material was successfully employed in the efficient reduction of different nitroarenes in aqueous medium. The process was monitored over UV-Vis spectroscopic study. Excellent yields were achieved with a range of diverse functionalized nitroarenes within 10-45 min of reaction. The nanocatalyst was recycled 10 times without any significant loss of catalytic activity. Distinctiveness of the material's activity was validated by comparing the results in the reduction of 4-nitrophenol. Furthermore, the prepared [Fe3O4/Lignin/Au] nanocomposite system exhibited outstanding antioxidant and anticancer effects against five lung cancer cell lines, such as, BICR 3, BICR 78, CALU 1, ChaGo-K-1, and A549. Cytotoxicity assay was determined in terms of % cell viability following MTT protocol. The corresponding IC50 values were obtained as 47, 31, 19, 25, and 31 μg/mL respectively.
Collapse
Affiliation(s)
- Yi Cai
- Department of Medical Oncology, Chinese PLA General Hospital & Medical School, Beijing 100853, China
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, 24 Parganas (North), India
| | - Ahmad O Babalghith
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Huda S AlSalem
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Ali A Shati
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Serag Eldin I Elbehairi
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt.
| |
Collapse
|
12
|
Samrot AV, Bavanilatha M, Krithika Shree S, Sathiyasree M, Vanjinathan J, Shobana N, Thirugnanasambandam R, Kumar C, Wilson S, Rajalakshmi D, Noel Richard Prakash LX, Sanjay Preeth RS. Evaluation of Heavy Metal Removal of Nanoparticles Based Adsorbent Using Danio rerio as Model. TOXICS 2022; 10:742. [PMID: 36548575 PMCID: PMC9783389 DOI: 10.3390/toxics10120742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Nanoparticles are potential candidates for wastewater treatment especially for the removal of heavy metals due to their strong affinity. Many biopolymers are used as adsorbents and encapsulation of nanoparticle onto them can increase their efficiency. In this study, SPIONs, alginate, and SPIONs incorporated on alginate beads have been synthesized and characterized both microscopically and spectroscopically. These were then used for the removal of chromium metal and the percentage of removal was evaluated using a batch adsorption study. The percent removal of chromium using SPIONs, alginate and alginate-SPIONs beads were recorded to be 93%, 91% and 94%, respectively. The adsorption of chromium using SPIONs and alginate-SPIONs beads followed the Tempkin isotherm, whereas adsorption of chromium metal by alginate beads was found to be homogeneous in nature and followed the Langmuir isotherm with an R2 value of 0.9784. An in-vivo study using Danio rerio as a model organism was done to examine the toxicity and the removal efficiency of the samples. It was observed that chromium water treated with alginate-SPIONs beads, which were removed after water treatment showed less damage to the fishes when compared to SPIONs and alginate beads treated with chromium water where the SPIONs and alginate beads were not removed after the treatment period.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Malaysia
| | - Muthiah Bavanilatha
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Sivasuriyan Krithika Shree
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Mahendran Sathiyasree
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Jayaram Vanjinathan
- Department of Civil Engineering, Sathyabama Institute of Science and Technology, School of Building and Environment, Chennai 600119, Tamil Nadu, India
| | - Nagarajan Shobana
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Rajendran Thirugnanasambandam
- Centre for Ocean Research (DST—FIST Sponsored Centre), MoES—Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Chandrasekaran Kumar
- Centre for Ocean Research (DST—FIST Sponsored Centre), MoES—Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Samraj Wilson
- Department of Botany, St. John’s College, Tirunelveli 627002, Tamil Nadu, India
| | - Deenadhayalan Rajalakshmi
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Lawrence Xavier Noel Richard Prakash
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Ram Singh Sanjay Preeth
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| |
Collapse
|
13
|
Wang J, Zeng L, Zhang Y, Qi W, Wang Z, Tian L, Zhao D, Wu Q, Li X, Wang T. Pharmacological properties, molecular mechanisms and therapeutic potential of ginsenoside Rg3 as an antioxidant and anti-inflammatory agent. Front Pharmacol 2022; 13:975784. [PMID: 36133804 PMCID: PMC9483152 DOI: 10.3389/fphar.2022.975784] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 12/06/2022] Open
Abstract
Inflammation and oxidative stress lead to various acute or chronic diseases, including pneumonia, liver and kidney injury, cardiovascular and cerebrovascular diseases, metabolic diseases, and cancer. Ginseng is a well-known and widely used ethnic medicine in Asian countries, and ginsenoside Rg3 is a saponin isolated from Panax ginseng C. A. Meyer, Panax notoginseng, or Panax quinquefolius L. This compound has a wide range of pharmacological properties, including antioxidant and anti-inflammatory activities, which have been evaluated in disease models of inflammation and oxidative stress. Rg3 can attenuate lung inflammation, prevent liver and kidney function damage, mitigate neuroinflammation, prevent cerebral and myocardial ischemia–reperfusion injury, and improve hypertension and diabetes symptoms. The multitarget, multipathway mechanisms of action of Rg3 have been gradually deciphered. This review summarizes the existing knowledge on the anti-inflammatory and antioxidant effects and underlying molecular mechanisms of ginsenoside Rg3, suggesting that ginsenoside Rg3 may be a promising candidate drug for the treatment of diseases with inflammatory and oxidative stress conditions.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li Zeng
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ying Zhang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Wenxiu Qi
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Ziyuan Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lin Tian
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
- *Correspondence: Qibiao Wu, ; Xiangyan Li, ; Tan Wang,
| | - Xiangyan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Qibiao Wu, ; Xiangyan Li, ; Tan Wang,
| | - Tan Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Qibiao Wu, ; Xiangyan Li, ; Tan Wang,
| |
Collapse
|
14
|
Teriflunomide Loaded SPION Nanoparticles Induced Apoptosis in MDA-MB-231 Breast Cancer Cells. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02327-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
15
|
High Drug Capacity Doxorubicin-Loaded Iron Oxide Nanocomposites for Cancer Therapy. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8050054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Magnetic nanoparticles (MNPs) have great potential in the drug delivery area. Iron oxide (Fe3O4) MNPs have demonstrated a promising effect due to their ferrimagnetic properties, large surface area, stability, low cost, easy synthesis, and functionalization. Some coating procedures are required to improve stability, biocompatibility, and decrease toxicity for medical applications. Herein, the co-precipitation synthesis of iron oxide MNPs coated with four types of primary surfactants, polyethylene glycol 2000 (PEG 2000), oleic acid (OA), Tween 20 (Tw20), and Tween 80 (Tw80), were investigated. Dynamic light scattering (DLS), ζ-potential, and transmission electron microscopy (TEM) techniques were used for morphology, size, charge, and stability analysis. Methylene blue reactive oxygen species (ROS) detection assay and the toxicity experiment on the lung adenocarcinoma A549 cell line were conducted. Two loading conditions for anticancer drug doxorubicin (DOX) on MNPs were proposed. The first one provides high loading efficiency (~90%) with up to 870 μg/mg (DOX/MNPs) drug capacity. The second is perspective for extremely high capacity 1757 μg/mg with drug wasting (DOX loading efficiency ~24%). For the most perspective MNP_OA and MNP_OA_DOX in cell media, pH 7.4, 5, and 3, the stability experiments are also presented. MNP_OA_DOX shows DOX pH-dependent release in the acidic pH and effective inhibition of A549 cancer cell growth. The IC50 values were calculated as 1.13 ± 0.02 mM in terms of doxorubicin and 0.4 ± 0.03 µg/mL in terms of the amount of the nanoparticles. Considering this, the MNP_OA_DOX nano theranostics agent is a highly potential candidate for cancer treatment.
Collapse
|
16
|
Kumar M, Gupta G, Varghese T, Srivastava PP, Gupta S. Preparation and characterization of glucose-conjugated super-paramagnetic iron oxide nanoparticles (G-SPIONs) for removal of Edwardsiella tarda and Aeromonas hydrophila from water. Microsc Res Tech 2022; 85:1768-1783. [PMID: 35038205 DOI: 10.1002/jemt.24037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022]
Abstract
The present research was conducted to prepare efficient G-SPIONs by co-precipitation to remove Edwardsiella tarda and Aeromonas hydrophila from the aqueous solution. The synthesized G-SPIONs were characterized by UV-Vis spectrophotometer, DLS, FEG-TEM, FT-IR, XRD, and VSM analysis. The results showed that the synthesized G-SPIONs had super-paramagnetic properties (58.31 emu/g) and spherical shape (16 ± 3 nm). The antibacterial activity was assessed in sterilized distilled water at different G-SPIONs concentrations viz. 0, 1.5, 3, 6, 12, 24, 48, 120, and 240 mg/L against E. tarda and A. hydrophila with various bacterial loads viz. 1 × 103 , 1 × 104 , 1 × 105 , 1 × 106 , and 1 × 107 CFU/ml at different time intervals 15, 30, 45, and 60 min. At a lower bacterial load of E. tarda and A. hydrophila 1 × 103 -1 × 104 CFU/ml, 100% bacterial load was removed by 15 min exposure with NPs concentration 6-48 mg/L and 1.5-6 mg/L, respectively. Cent percent bacterial removal was observed in both the bacterial species even at higher bacterial load (1 × 105 -1 × 107 CFU/ml) by increasing exposure time (15-60 min) and nanoparticle concentration as well (24-240 mg/L). At an initial bacterial load of E. tarda and A. hydrophila (1 × 103 -1 × 107 CFU/ml), the EC50 ranged between 0.01-6.51 mg/L and 0.02-3.84 mg/L, respectively, after 15-60 min exposure. Thus, it is concluded that the antibacterial effect of G-SPIONs depends on concentration and exposure time. Hence, G-SPIONs can be used as an antibacterial/biocidal agent to treat Edwardsiellosis and Aeromonosis disease in aquaculture.
Collapse
Affiliation(s)
- Munish Kumar
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Gyandeep Gupta
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Tincy Varghese
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | | | - Subodh Gupta
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
17
|
Al-Mansoori L, Elsinga P, Goda SK. Bio-vehicles of cytotoxic drugs for delivery to tumor specific targets for cancer precision therapy. Biomed Pharmacother 2021; 144:112260. [PMID: 34607105 DOI: 10.1016/j.biopha.2021.112260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/09/2023] Open
Abstract
Abnormal structural and molecular changes in malignant tissues were thoroughly investigated and utilized to target tumor cells, hence rescuing normal healthy tissues and lowering the unwanted side effects as non-specific cytotoxicity. Various ligands for cancer cell specific markers have been uncovered and inspected for directional delivery of the anti-cancer drug to the tumor site, in addition to diagnostic applications. Over the past few decades research related to the ligand targeted therapy (LTT) increased tremendously aiming to treat various pathologies, mainly cancers with well exclusive markers. Malignant tumors are known to induce elevated levels of a variety of proteins and peptides known as cancer "markers" as certain antigens (e.g., Prostate specific membrane antigen "PSMA", carcinoembryonic antigen "CEA"), receptors (folate receptor, somatostatin receptor), integrins (Integrin αvβ3) and cluster of differentiation molecules (CD13). The choice of an appropriate marker to be targeted and the design of effective ligand-drug conjugate all has to be carefully selected to generate the required therapeutic effect. Moreover, since some tumors express aberrantly high levels of more than one marker, some approaches investigated targeting cancer cells with more than one ligand (dual or multi targeting). We aim in this review to report an update on the cancer-specific receptors and the vehicles to deliver cytotoxic drugs, including recent advancements on nano delivery systems and their implementation in targeted cancer therapy. We will discuss the advantages and limitations facing this approach and possible solutions to mitigate these obstacles. To achieve the said aim a literature search in electronic data bases (PubMed and others) using keywords "Cancer specific receptors, cancer specific antibody, tumor specific peptide carriers, cancer overexpressed proteins, gold nanotechnology and gold nanoparticles in cancer treatment" was carried out.
Collapse
Affiliation(s)
- Layla Al-Mansoori
- Qatar University, Biomedical Research Centre, Qatar University, Doha 2713, Qatar.
| | - Philip Elsinga
- University of Groningen, University Medical Center Groningen (UMCG), Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands.
| | - Sayed K Goda
- Cairo University, Faculty of Science, Giza, Egypt; University of Derby, College of Science and Engineering, Derby, UK.
| |
Collapse
|
18
|
Saeed AAH, Harun NY, Sufian S, Bilad MR, Zakaria ZY, Jagaba AH, Ghaleb AAS, Mohammed HG. Pristine and Magnetic Kenaf Fiber Biochar for Cd 2+ Adsorption from Aqueous Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7949. [PMID: 34360240 PMCID: PMC8345446 DOI: 10.3390/ijerph18157949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023]
Abstract
Development of strategies for removing heavy metals from aquatic environments is in high demand. Cadmium is one of the most dangerous metals in the environment, even under extremely low quantities. In this study, kenaf and magnetic biochar composite were prepared for the adsorption of Cd2+. The synthesized biochar was characterized using (a vibrating-sample magnetometer VSM), Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The adsorption batch study was carried out to investigate the influence of pH, kinetics, isotherm, and thermodynamics on Cd2+ adsorption. The characterization results demonstrated that the biochar contained iron particles that help in improving the textural properties (i.e., surface area and pore volume), increasing the number of oxygen-containing groups, and forming inner-sphere complexes with oxygen-containing groups. The adsorption study results show that optimum adsorption was achieved under pH 5-6. An increase in initial ion concentration and solution temperature resulted in increased adsorption capacity. Surface modification of biochar using iron oxide for imposing magnetic property allowed for easy separation by external magnet and regeneration. The magnetic biochar composite also showed a higher affinity to Cd2+ than the pristine biochar. The adsorption data fit well with the pseudo-second-order and the Langmuir isotherm, with the maximum adsorption capacity of 47.90 mg/g.
Collapse
Affiliation(s)
- Anwar Ameen Hezam Saeed
- Department of Chemical Engineering, University Teknologi PETRONAS, Seri Iskandar 31750, Malaysia; (A.A.H.S.); (S.S.)
- Centre of Urban Resource Sustainability, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Noorfidza Yub Harun
- Department of Chemical Engineering, University Teknologi PETRONAS, Seri Iskandar 31750, Malaysia; (A.A.H.S.); (S.S.)
- Centre of Urban Resource Sustainability, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Suriati Sufian
- Department of Chemical Engineering, University Teknologi PETRONAS, Seri Iskandar 31750, Malaysia; (A.A.H.S.); (S.S.)
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, University Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei;
| | - Zaki Yamani Zakaria
- School of Chemical & Energy Engineering, University Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Ahmad Hussaini Jagaba
- Department of Civil and Environmental Engineering, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (A.H.J.); (A.A.S.G.)
| | - Aiban Abdulhakim Saeed Ghaleb
- Department of Civil and Environmental Engineering, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (A.H.J.); (A.A.S.G.)
| | - Haetham G. Mohammed
- Department of Mechanical Engineering, University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
| |
Collapse
|
19
|
Nosrati R, Abnous K, Alibolandi M, Mosafer J, Dehghani S, Taghdisi SM, Ramezani M. Targeted SPION siderophore conjugate loaded with doxorubicin as a theranostic agent for imaging and treatment of colon carcinoma. Sci Rep 2021; 11:13065. [PMID: 34158526 PMCID: PMC8219724 DOI: 10.1038/s41598-021-92391-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, the siderophores have opened new horizons in nanomedicine. The current study aimed to design a theranostic platform based on superparamagnetic iron oxide nanoparticles-pyoverdine (SPION/PVD) conjugates bound to MUC1 aptamer (MUC1Apt) and loaded with doxorubicin (DOX) as an anti-cancer agent. The SPION/PVD complex was covalently conjugated to MUC1Apt and loaded with DOX to prepare a targeted drug delivery system (SPION/PVD/MUC1Apt/DOX). The investigation of cellular cytotoxicity and uptake of formulations by MTT and flow cytometry in both MUC1 positive (C26) and MUC1 negative (CHO) cell lines revealed that MUC1Apt could improve both cellular uptake and toxicity in the C26 cell line. The evaluation of tumor-targeting activity by in vivo bio-distribution showed that the targeted formulation could enhance tumor inhibitory growth effect and survival rate in C26 tumor-bearing mice. Furthermore, the potential of synthesized SPION/PVD/MUC1Apt/DOX complex as diagnostic agents was investigated by magnetic resonance imaging (MRI) which improved the contrast of tumor site in MRI. Our findings confirm that aptamer-targeted PVD chelated the SPION as a diagnostic agent and loaded with DOX as a chemotherapeutic drug, would be beneficial as a novel theranostic platform.
Collapse
Affiliation(s)
- Rahim Nosrati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jafar Mosafer
- Department of Nanomedicine, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Department of Radiology, 9 Dey Educational Hospital, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Sadegh Dehghani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Yu Z, Gao L, Chen K, Zhang W, Zhang Q, Li Q, Hu K. Nanoparticles: A New Approach to Upgrade Cancer Diagnosis and Treatment. NANOSCALE RESEARCH LETTERS 2021; 16:88. [PMID: 34014432 PMCID: PMC8137776 DOI: 10.1186/s11671-021-03489-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/27/2021] [Indexed: 05/07/2023]
Abstract
Traditional cancer therapeutics have been criticized due to various adverse effects and insufficient damage to targeted tumors. The breakthrough of nanoparticles provides a novel approach for upgrading traditional treatments and diagnosis. Actually, nanoparticles can not only solve the shortcomings of traditional cancer diagnosis and treatment, but also create brand-new perspectives and cutting-edge devices for tumor diagnosis and treatment. However, most of the research about nanoparticles stays in vivo and in vitro stage, and only few clinical researches about nanoparticles have been reported. In this review, we first summarize the current applications of nanoparticles in cancer diagnosis and treatment. After that, we propose the challenges that hinder the clinical applications of NPs and provide feasible solutions in combination with the updated literature in the last two years. At the end, we will provide our opinions on the future developments of NPs in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Zhongyang Yu
- Beijing University of Chinese Medicine, 11 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Lei Gao
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Fangguyuan Rd, Fengtai District, Beijing, 100078, China
| | - Kehan Chen
- College of Engineering, China Agricultural University, Tsinghua East Rd, Haidian District, Beijing, 100083, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Tsinghua East Rd, Haidian District, Beijing, 100083, China
| | - Qihang Zhang
- Department of Management, Fredericton Campus, University of New Brunswick, 3 Bailey Drive, Fredericton, NB, E3B 5A3, Canada
| | - Quanwang Li
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Fangguyuan Rd, Fengtai District, Beijing, 100078, China
| | - Kaiwen Hu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Fangguyuan Rd, Fengtai District, Beijing, 100078, China.
| |
Collapse
|
21
|
Investigation of Specific Targeting of Triptorelin-Conjugated Dextran-Coated Magnetite Nanoparticles as a Targeted Probe in GnRH + Cancer Cells in MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:5534848. [PMID: 34104122 PMCID: PMC8149228 DOI: 10.1155/2021/5534848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
In recent years, the conjugation of superparamagnetic iron oxide nanoparticles (SPIONs), as tumor-imaging probes for magnetic resonance imaging (MRI), with tumor targeting peptides possesses promising advantages for specific delivery of MRI agents. The objective of the current study was to design a targeted contrast agent for MRI based on Fe3O4 nanoparticles conjugated triptorelin (SPION@triptorelin), which has a great affinity to the GnRH receptors. The SPIONs-coated carboxymethyl dextran (SPION@CMD) conjugated triptorelin (SPION@CMD@triptorelin) were synthesized using coprecipitation method and characterized by DLS, TEM, XRD, FTIR, Zeta, and VSM techniques. The relaxivities of synthetized formulations were then calculated using a 1.5 Tesla clinical magnetic field. MRI, quantitative cellular uptake, and cytotoxicity level of them were estimated. The characterization results confirmed that the formation of SPION@CMD@triptorelin has been conjugated with a suitable size. Our results demonstrated the lack of cellular cytotoxicity of SPION@CMD@triptorelin, and it could increase the cellular uptake of SPIONs to MDA-MB-231 cancer cells 6.50-fold greater than to SPION@CMD at the concentration of 75 μM. The relaxivity calculations for SPION@CMD@triptorelin showed a suitable r2 and r2/r1 with values of 31.75 mM−1·s−1 and 10.26, respectively. Our findings confirm that triptorelin-targeted SPIONs could provide a T2-weighted probe contrast agent that has the great potential for the diagnosis of GnRH-positive cancer in MRI.
Collapse
|
22
|
Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int J Biol Macromol 2021; 178:193-228. [PMID: 33631269 DOI: 10.1016/j.ijbiomac.2021.02.123] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Although nanotechnology-driven drug delivery systems are relatively new, they are rapidly evolving since the nanomaterials are deployed as effective means of diagnosis and delivery of assorted therapeutic agents to targeted intracellular sites in a controlled release manner. Nanomedicine and nanoparticulate drug delivery systems are rapidly developing as they play crucial roles in the development of therapeutic strategies for various types of cancer and malignancy. Nevertheless, high costs, associated toxicity and production of complexities are some of the critical barriers for their applications. Green nanomedicines have continually been improved as one of the viable approaches towards tumor drug delivery, thus making a notable impact on which considerably affect cancer treatment. In this regard, the utilization of natural and renewable feedstocks as a starting point for the fabrication of nanosystems can considerably contribute to the development of green nanomedicines. Nanostructures and biopolymers derived from natural and biorenewable resources such as proteins, lipids, lignin, hyaluronic acid, starch, cellulose, gum, pectin, alginate, and chitosan play vital roles in the development of cancer nanotherapy, imaging and management. This review uncovers recent investigations on diverse nanoarchitectures fabricated from natural and renewable feedstocks for the controlled/sustained and targeted drug/gene delivery systems against cancers including an outlook on some of the scientific challenges and opportunities in this field. Various important natural biopolymers and nanomaterials for cancer nanotherapy are covered and the scientific challenges and opportunities in this field are reviewed.
Collapse
Affiliation(s)
- Carolina Carrillo Carrion
- Department of Organic Chemistry, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV-A Km. 396, E-14014 Cordoba, Spain
| | | | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
23
|
Vanyorek L, Ilosvai ÁM, Szőri-Dorogházi E, Váradi C, Kristály F, Prekob Á, Fiser B, Varga T, Kónya Z, Viskolcz B. Synthesis of iron oxide nanoparticles for DNA purification. J DISPER SCI TECHNOL 2021; 42:693-700. [DOI: 10.1080/01932691.2019.1708380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/15/2019] [Indexed: 10/25/2022]
Affiliation(s)
- László Vanyorek
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, Hungary
| | - Ágnes Maria Ilosvai
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, Hungary
| | | | - Csaba Váradi
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, Hungary
| | - Ferenc Kristály
- Institute of Mineralogy and Geology, University of Miskolc, Miskolc-Egyetemváros, Hungary
| | - Ádám Prekob
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, Hungary
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, Hungary
- Ferenc Rákóczi II, Transcarpathian Hungarian Institute, Beregszász, Ukraine
| | - Tamás Varga
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, Hungary
| |
Collapse
|
24
|
Human gastric carcinoma cells targeting peptide-functionalized iron oxide nanoparticles delivery for magnetic resonance imaging. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Sharma A, Lee HJ. Ginsenoside Compound K: Insights into Recent Studies on Pharmacokinetics and Health-Promoting Activities. Biomolecules 2020; 10:E1028. [PMID: 32664389 PMCID: PMC7407392 DOI: 10.3390/biom10071028] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Ginseng (Panax ginseng) is an herb popular for its medicinal and health properties. Compound K (CK) is a secondary ginsenoside biotransformed from major ginsenosides. Compound K is more bioavailable and soluble than its parent ginsenosides and hence of immense importance. The review summarizes health-promoting in vitro and in vivo studies of CK between 2015 and 2020, including hepatoprotective, anti-inflammatory, anti-atherosclerosis, anti-diabetic, anti-cancer, neuroprotective, anti-aging/skin protective, and others. Clinical trial data are minimal and are primarily based on CK-rich fermented ginseng. Besides, numerous preclinical and clinical studies indicating the pharmacokinetic behavior of CK, its parent compound (Rb1), and processed ginseng extracts are also summarized. With the limited evidence available from animal and clinical studies, it can be stated that CK is safe and well-tolerated. However, lower water solubility, membrane permeability, and efflux significantly diminish the efficacy of CK and restrict its clinical application. We found that the use of nanocarriers and cyclodextrin for CK delivery could overcome these limitations as well as improve the health benefits associated with them. However, these derivatives have not been clinically evaluated, thus requiring a safety assessment for human therapy application. Future studies should be aimed at investigating clinical evidence of CK.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea;
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Korea
| |
Collapse
|
26
|
Dewhurst RM, Scalzone A, Buckley J, Mattu C, Rankin KS, Gentile P, Ferreira AM. Development of Natural-Based Bone Cement for a Controlled Doxorubicin-Drug Release. Front Bioeng Biotechnol 2020; 8:754. [PMID: 32733869 PMCID: PMC7363953 DOI: 10.3389/fbioe.2020.00754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) accounts for 60% of all global bone cancer diagnoses. Intravenous administration of Doxorubicin Hydrochloride (DOXO) is the current form of OS treatment, however, systemic delivery has been linked to the onset of DOXO induced cardiomyopathy. Biomaterials including calcium phosphate cements (CPCs) and nanoparticles (NPs) have been tested as localized drug delivery scaffolds for OS cells. However, the tumor microenvironment is critical in cancer progression, with mesenchymal stem cells (MSCs) thought to promote OS metastasis and drug resistance. The extent of MSC assisted survival of OS cells in response to DOXO delivered by CPCs is unknown. In this study, we aimed at investigating the effect of DOXO release from a new formulation of calcium phosphate-based bone cement on the viability of OS cells cocultured with hMSC in vitro. NPs made of PLGA were loaded with DOXO and incorporated in the formulated bone cement to achieve local drug release. The inclusion of PLGA-DOXO NPs into CPCs was also proven to increase the levels of cytotoxicity of U2OS cells in mono- and coculture after 24 and 72 h. Our results demonstrate that a more effective localized DOXO delivery can be achieved via the use of CPCs loaded with PLGA-DOXO NPs compared to CPCs loaded with DOXO, by an observed reduction in metabolic activity of U2OS cells in indirect coculture with hMSCs. The presence of hMSCs offer a degree of DOXO resistance in U2OS cells cultured on PLGA-DOXO NP bone cements. The consideration of the tumor microenvironment via the indirect inclusion of hMSCs in this study can act as a starting point for future direct coculture and in vivo investigations.
Collapse
Affiliation(s)
- Rebecca Marie Dewhurst
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Annachiara Scalzone
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Buckley
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Clara Mattu
- Department of Mechanical and Aerospace, Politecnico di Torino, Turin, Italy
| | - Kenneth S Rankin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
27
|
Ratan ZA, Haidere MF, Hong YH, Park SH, Lee JO, Lee J, Cho JY. Pharmacological potential of ginseng and its major component ginsenosides. J Ginseng Res 2020; 45:199-210. [PMID: 33841000 PMCID: PMC8020288 DOI: 10.1016/j.jgr.2020.02.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/25/2020] [Indexed: 12/25/2022] Open
Abstract
Ginseng has been used as a traditional herb in Asian countries for thousands of years. It contains a large number of active ingredients including steroidal saponins, protopanaxadiols, and protopanaxatriols, collectively known as ginsenosides. In the last few decades, the antioxidative and anticancer effects of ginseng, in addition to its effects on improving immunity, energy and sexuality, and combating cardiovascular diseases, diabetes mellitus, and neurological diseases, have been studied in both basic and clinical research. Ginseng could be a valuable resource for future drug development; however, further higher quality evidence is required. Moreover, ginseng may have drug interactions although the available evidence suggests it is a relatively safe product. This article reviews the bioactive compounds, global distribution, and therapeutic potential of plants in the genus Panax.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh
| | - Mohammad Faisal Haidere
- Department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University, Dhaka, 1000, Bangladesh
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeong-Oog Lee
- Department of Aerospace Information Engineering, Bio-Inspired Aerospace Information Laboratory, Konkuk University, Seoul, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Corresponding author. Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Suwon, 16419, Republic of Korea
- Corresponding author. Department of Integrative Biotechnology, Sungkyunkwan, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea.
| |
Collapse
|
28
|
Markus J, Mathiyalagan R, Kim YJ, Han Y, Jiménez-Pérez ZE, Veronika S, Yang DC. Synthesis of hyaluronic acid or O-carboxymethyl chitosan-stabilized ZnO–ginsenoside Rh2 nanocomposites incorporated with aqueous leaf extract of Dendropanax morbifera Léveille: in vitro studies as potential sunscreen agents. NEW J CHEM 2019. [DOI: 10.1039/c8nj06044d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Synthesis of Rh2–ZnO nanocomposites stabilized with hyaluronic acid or O-carboxymethyl chitosan.
Collapse
Affiliation(s)
- Josua Markus
- Graduate School of Biotechnology
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Yeon-Ju Kim
- Department of Oriental Medicinal Biotechnology
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Yaxi Han
- Department of Oriental Medicinal Biotechnology
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | | | - Soshnikova Veronika
- Department of Oriental Medicinal Biotechnology
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| |
Collapse
|
29
|
Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer. Int J Mol Sci 2018; 19:ijms19071979. [PMID: 29986450 PMCID: PMC6073740 DOI: 10.3390/ijms19071979] [Citation(s) in RCA: 607] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022] Open
Abstract
The application of nanotechnology for the treatment of cancer is mostly based on early tumor detection and diagnosis by nanodevices capable of selective targeting and delivery of chemotherapeutic drugs to the specific tumor site. Due to the remarkable properties of gold nanoparticles, they have long been considered as a potential tool for diagnosis of various cancers and for drug delivery applications. These properties include high surface area to volume ratio, surface plasmon resonance, surface chemistry and multi-functionalization, facile synthesis, and stable nature. Moreover, the non-toxic and non-immunogenic nature of gold nanoparticles and the high permeability and retention effect provide additional benefits by enabling easy penetration and accumulation of drugs at the tumor sites. Various innovative approaches with gold nanoparticles are under development. In this review, we provide an overview of recent progress made in the application of gold nanoparticles in the treatment of cancer by tumor detection, drug delivery, imaging, photothermal and photodynamic therapy and their current limitations in terms of bioavailability and the fate of the nanoparticles.
Collapse
|