1
|
Roja SS, Sneha Sunil P, Darussalam MM, Manoharan V, Prakash J, Ranjith Kumar R. Benzo[4,5]imidazole[2,1-b]quinazoline-1(2H)-one: An efficient fluorescent probe for the selective and sensitive detection of Cu(II) ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 333:125853. [PMID: 39933485 DOI: 10.1016/j.saa.2025.125853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/15/2025] [Accepted: 02/02/2025] [Indexed: 02/13/2025]
Abstract
Copper (Cu) is essential for biological systems and animal-plant tissues, but Cu2+ ions are also significant environmental pollutants. An imbalance in non-toxic Cu2+ levels can lead to health issues. This study focuses on the development of a novel fluorescent turn-on probe, 3,4-dihydrobenzo[4,5]imidazole[2,1-b]quinazoline-1(2H)-one (HBQ) for the selective and sensitive detection of Cu2+ ions. The synthesis of HBQ was achieved from the reaction of 2-((dimethylamino)methylene)-cyclohexane-1,3-dione and 2-aminobenzimidazole. The photophysical properties of HBQ were investigated in various solvents. The strong binding of HBQ to Cu2+ causes a blue shift in the emission maxima and enhanced fluorescence due to reduced non-radiative decay, highlighting its selectivity for Cu2+ detection. Absorption and emission spectroscopy revealed the binding interactions, sensitivity, and selectivity of HBQ toward Cu2+ ions. The turn-on fluorescence of HBQ shows high sensitivity, with detection (LOD) and quantification (LOQ) limits extending to sub-micron concentrations. The sensor's reliability and applicability were further validated using real samples, with a recovery rate of approximately 100 ± 2 %.
Collapse
Affiliation(s)
- Somi Santharam Roja
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 Tamil Nadu, India
| | - P Sneha Sunil
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610005 Tamil Nadu, India
| | - Muhammad Maqsood Darussalam
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610005 Tamil Nadu, India
| | - Vidhyashree Manoharan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610005 Tamil Nadu, India
| | - John Prakash
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610005 Tamil Nadu, India.
| | - Raju Ranjith Kumar
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610005 Tamil Nadu, India.
| |
Collapse
|
2
|
Elbarbary AA, Kenawy ER, Hamada EGI, Edries TB, Meshrif WS. Quinazolinone-grafted polymers as novel insecticides: Synthesis, activity against Spodoptera littoralis, and environmental safety assessment. Int J Biol Macromol 2025; 308:142323. [PMID: 40120874 DOI: 10.1016/j.ijbiomac.2025.142323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Insecticides are crucial for crop protection against pests; research aims to develop effective and safe insecticides. This study aimed to evaluate 11 quinazolinone-based derivatives grafted with chitosan, polymethylmethacrylate, and carboxymethylcellulose against larvae of the cotton leafworm Spodoptera littoralis. The synthesized 2-hydrazinyl-3-phenylquinazolin-4(3H)-one (compound 2) and its grafted polymers were characterized via 1H NMR, XRD, FT-IR, and TGA analyses. Under laboratory conditions, compound 2 exhibited significantly higher toxicity (LC50 = 153 μg/ml) than other grafted polymers (LC50 range 217-513 μg/ml) against third-instar larvae of S. littoralis. Compared with the control, compound 2 had substantial effects on pest population dynamics at a low-lethal concentration (LC10), such as reducing adult emergence to 76.8 % and egg hatchability to 32 %. The compound showed a favorable environmental profile with a moderate half-life of 51.5 days and exhibited acceptable safety for humans (IC50 = 56 μg/ml in MRC-5 cells). These characteristics suggest its potential for integration into sustainable pest management strategies, balancing effective pest control with environmental considerations. Further investigation of this insecticide candidate under different ecological settings is recommended to assess its field applicability and ecosystem impacts.
Collapse
Affiliation(s)
- Ahmed A Elbarbary
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - El-Refaie Kenawy
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Elsayed G I Hamada
- Cotton Pesticide Evaluation Department, Plant Protection Institute, Agricultural Research Centre, Giza, Egypt
| | - Tarek B Edries
- Cotton Pesticide Evaluation Department, Plant Protection Institute, Agricultural Research Centre, Giza, Egypt
| | - Wesam S Meshrif
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
3
|
Nosova EV, Lipunova GN, Permyakova YV, Charushin VN. Quinazolines annelated at the N(3)-C(4) bond: Synthesis and biological activity. Eur J Med Chem 2024; 271:116411. [PMID: 38669910 DOI: 10.1016/j.ejmech.2024.116411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
This review covers article and patent data obtained mostly within the period 2013-2023 on the synthesis and biological activity of quinazolines [c]-annelated by five- and six-membered heterocycles. Pyrazolo-, benzimidazo-, triazolo- and pyrimido- [c]quinazoline systems have shown multiple potential activities against numerous targets. We highlight that most research efforts are directed to design of anticancer and antibacterial agents of azolo[c]quinazoline nature. This review emphases both on the medicinal chemistry aspects of pyrrolo[c]-, azolo[c]- and azino[c]quinazolines and comprehensive synthetic strategies of quinazolines annelated at N(3)-C(4) bond in the perspective of drug development and discovery.
Collapse
Affiliation(s)
- Emiliya V Nosova
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg, 620002, Russia; Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st. /20 Akademicheskaya st., Ekaterinburg, 620137, Russia.
| | - Galina N Lipunova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st. /20 Akademicheskaya st., Ekaterinburg, 620137, Russia.
| | - Yulia V Permyakova
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg, 620002, Russia
| | - Valery N Charushin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg, 620002, Russia; Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st. /20 Akademicheskaya st., Ekaterinburg, 620137, Russia
| |
Collapse
|
4
|
Sun X, Xie Z, Lei X, Huang S, Tang G, Wang Z. Research and development of N, N'-diarylureas as anti-tumor agents. RSC Med Chem 2023; 14:1209-1226. [PMID: 37484562 PMCID: PMC10357950 DOI: 10.1039/d3md00053b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/08/2023] [Indexed: 07/25/2023] Open
Abstract
Tumor neovascularization provides abundant nutrients for the occurrence and development of tumors, and is also an important factor in tumor invasion and metastasis, which has attracted extensive attention in anti-tumor therapy. Sorafenib is a clinically approved multi-targeted anti-tumor drug that targets vascular endothelial growth factor receptor (VEGFR) and inhibits the formation of tumor angiogenesis, thereby achieving the purpose of suppressing tumor growth. Since the approval of sorafenib, N,N'-diarylureas have received extensive attention as the key pharmacophore in its chemical structure. And a series of N,N'-diarylureas were designed and synthesized to screen a new generation of anti-tumor drug candidates through chemical modification and structural optimization. Moreover, the rational design of targeted drugs is beneficial to reduce toxic side effects and drug resistance and improve the curative effect. Here, this article reviews the research progress in the design, classification, structure-activity relationship (SAR) and biological activity of N,N'-diarylureas, in order to provide some prospective routes for the development of clinically effective anti-tumor drugs.
Collapse
Affiliation(s)
- Xueyan Sun
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Sheng Huang
- Jiuzhitang Co., Ltd Changsha Hunan 410007 China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China Hengyang 421001 Hunan China
| |
Collapse
|
5
|
Ettahiri W, Salim R, Adardour M, Ech-Chihbi E, Yunusa I, Alanazi MM, Lahmidi S, Barnossi AE, Merzouki O, Iraqi Housseini A, Rais Z, Baouid A, Taleb M. Synthesis, Characterization, Antibacterial, Antifungal and Anticorrosion Activities of 1,2,4-Triazolo[1,5-a]quinazolinone. Molecules 2023; 28:5340. [PMID: 37513216 PMCID: PMC10385296 DOI: 10.3390/molecules28145340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The synthesis of 5,6,7,8-tetrahydro-[1,2,4]triazolo[5,1-b]quinazolin-9(4H)-one (THTQ), a potentially biologically active compound, was pursued, and its structure was determined through a sequence of spectral analysis, including 1H-NMR, 13C-NMR, IR, and HRMS. Four bacterial and four fungal strains were evaluated for their susceptibility to the antibacterial and antifungal properties of the THTQ compound using the well diffusion method. The impact of THTQ on the corrosion of mild steel in a 1 M HCl solution was evaluated using various methods such as weight loss, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) analysis. The study revealed that the effectiveness of THTQ as an inhibitor increased with the concentration but decreased with temperature. The PDP analysis suggested that THTQ acted as a mixed-type inhibitor, whereas the EIS data showed that it created a protective layer on the steel surface. This protective layer occurs due to the adsorption behavior of THTQ following Langmuir's adsorption isotherm. The inhibition potential of THTQ is also predicted theoretically using DFT at B3LYP and Monte Carlo simulation.
Collapse
Affiliation(s)
- Walid Ettahiri
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
- Laboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40001, Morocco
| | - Rajae Salim
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Mohamed Adardour
- Laboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40001, Morocco
| | - Elhachmia Ech-Chihbi
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Ismaeel Yunusa
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11541, Saudi Arabia
| | - Sanae Lahmidi
- Laboratory of Heterocyclic Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco
| | - Azeddin El Barnossi
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| | - Oussama Merzouki
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Abdelilah Iraqi Housseini
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| | - Zakia Rais
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Abdesselam Baouid
- Laboratory of Molecular Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40001, Morocco
| | - Mustapha Taleb
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
6
|
Lakshman C, Hari Prakash S, Mohana Roopan S. Materials based on molybdenum disulfide as a catalyst in organic transformations: An overview. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2048859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chetan Lakshman
- Department of Chemistry, Chemistry of Heterocycles and Natural Product Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - Sankar Hari Prakash
- Department of Chemistry, Chemistry of Heterocycles and Natural Product Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - Selvaraj Mohana Roopan
- Department of Chemistry, Chemistry of Heterocycles and Natural Product Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, India
| |
Collapse
|
7
|
Fathalla EM, Altowyan MS, Albering JH, Barakat A, Abu-Youssef MAM, Soliman SM, Badr AMA. Synthesis, X-ray Structure, Hirshfeld, DFT and Biological Studies on a Quinazolinone-Nitrate Complex. Molecules 2022; 27:1089. [PMID: 35164351 PMCID: PMC8840642 DOI: 10.3390/molecules27031089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
The reaction of 4-hydroxyquinazoline (4HQZ) with aqueous solution of nitric acid afforded the corresponding quinazolinone-nitrate (4HQZN) complex in very good yield. The crystal structure of 4HQZN was determined and its structural and supramolecular structural aspects were analyzed. 4HQZN crystallized in the space group P21/c and monoclinic crystal system with one [4HQZ-H]+[NO3]- formula and Z = 4. Its supramolecular structure could be described as a 2D infinite layers in which the 4HQZN molecules are connected via N-H…O and C-H…O hydrogen bridges. Using DFT calculations, the relative stability of five suggested isomers of 4HQZN were predicted. It was found that the medium effects have strong impact not only on the isomers' stability but also on the structure of the 4HQZN. It was found that the structure of 4HQZN in DMSO and methanol matched well with the reported X-ray structure which shed the light on the importance of the intermolecular interactions on the isomers' stability. The structure of 4HQZN could be described as a proton transfer complex in which the nitrate anion acting as an e-donor whiles the protonated 4HQZ is an e-acceptor. In contrast, the structure of the isolated 4HQZN in gas phase and in cyclohexane could be described as a 4HQZ…HNO3 hydrogen bonded complex. Biological screening of the antioxidant, anticancer and antimicrobial activities of 4HQZ and 4HQZN was presented and compared. It was found that, 4HQZN has higher antioxidant activity (IC50 = 36.59 ± 1.23 µg/mL) than 4HQZ. Both of 4HQZ and 4HQZN showed cell growth inhibition against breast (MCF-7) and lung (A-549) carcinoma cell lines with different extents. The 4HQZ has better activity with IC50 of 178.08 ± 6.24 µg/mL and 119.84 ± 4.98 µg/mL, respectively. The corresponding values for 4HQZN are 249.87 ± 9.71 µg/mL and 237.02 ± 8.64 µg/mL, respectively. Also, the antibacterial and antifungal activities of 4HQZN are higher than 4HQZ against all studied microbes. The most promising result is for 4HQZN against A. fumigatus (MIC = 312.5 μg/mL).
Collapse
Affiliation(s)
- Eman M. Fathalla
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt; (E.M.F.); (A.M.A.B.)
| | - Mezna Saleh Altowyan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Jörg H. Albering
- Graz University of Technology, Mandellstr. 11/III, A-8010 Graz, Austria;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Morsy A. M. Abu-Youssef
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt; (E.M.F.); (A.M.A.B.)
| | - Saied M. Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt; (E.M.F.); (A.M.A.B.)
| | - Ahmed M. A. Badr
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt; (E.M.F.); (A.M.A.B.)
| |
Collapse
|
8
|
|
9
|
Abuelizz HA, Al-Salahi R. An overview of triazoloquinazolines: Pharmacological significance and recent developments. Bioorg Chem 2021; 115:105263. [PMID: 34426148 DOI: 10.1016/j.bioorg.2021.105263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/14/2021] [Accepted: 08/07/2021] [Indexed: 01/26/2023]
Abstract
Nitrogen heterocyclic rings have participated to constitute most of the drugs and several pharmacologically related compounds. The existence of such hetero atoms/groups in heterocyclic systems privileged specificities in their biological objectives. Particularly, quinazoline and triazole are biologically imperative platforms known to be linked with various pharmacological activities. Some of the prominent pharmacological responses ascribed to these systems are analgesic, antiinflammatory, anticonvulsant, hypnotic, antihistaminic, antihypertensive, anticancer, antimicrobial, antitubercular, antiviral and antimalarial activities. This diversity in the pharmacological outputs for both triazole and quinazoline systems has encouraged the medicinal chemistry researchers to create several chemical routes aiming at the incorporation of two rings in one molecule named triazoloquinazoline system. This system has shown multiple potential activities against numerous targets. Correlation the specific structural features of triazoloquinazoline system with its pharmacological purposes has successively been achieved by performing several pharmacological examinations and structure-activity relationship studies. The development of triazoloquinazoline derivatives and the understanding of their pharmacological targets offer opportunities for novel therapeutics. This review mainly emphases on the medicinal chemistry aspects of triazoloquinazolines including synthesis, reactivity, biological activity and structure activity relationship studies (SARs). Moreover, this review collates literature reported by researchers on triazoquinazolines and provides detailed attention on their analogs pharmacological activities in the perspective of drug development and discovery.
Collapse
Affiliation(s)
- Hatem A Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
10
|
Abdelghany A, Soliman HA, Khatab TK. Biosynthesized Selenium nanoparticles as a new catalyst in the synthesis of quinazoline derivatives in pentacyclic system with docking validation as (TRPV1) inhibitor. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Antifungal Effects of Fusion Puroindoline B on the Surface and Intracellular Environment of Aspergillus flavus. Probiotics Antimicrob Proteins 2021; 13:249-260. [PMID: 32488675 DOI: 10.1007/s12602-020-09667-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aspergillus flavus infection is a major issue for safe food storage. In this study, we constructed an efficient prokaryotic expression system for puroindoline B (PINB) protein to detect its antifungal activity. The Puroindoline b gene was cloned into pET-28a (+) vector and expressed in Escherichia coli. Treatment with fusion PINB revealed that it inhibits mycelial growth of A. flavus, a common grain mold. Moreover, fusion PINB-treated A. flavus mycelium withered and exhibited a sunken spore head. As fusion PINB concentration increased, electrical conductivity in mycelium also increased, indicative of cell membrane damage. Furthermore, intracellular malate dehydrogenase and succinate dehydrogenase activity decreased, revealing a disruption in the tricarboxylic acid cycle. Moreover, the dampened activity of the ion pump Na+K+-ATPase negatively affected the intracellular regulation of both ions. Catalase and superoxide dismutase activity decreased, thus reducing antioxidant capacity, a result confirmed with an increase in malondialdehyde content. Changes to the GSH/GSSG ratio indicated a shift to an intracellular oxidative state. At the same time, laser scanning confocal microscopy assay showed the accumulation of reactive oxygen species and nuclear damage. Therefore, the PINB fusion protein may have the potential to control A. flavus in grain storage and food preservation.
Collapse
|
12
|
Antifungal properties of recombinant Puroindoline B protein against aflatoxigenic Aspergillus flavus. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Fedotov VV, Rusinov VL, Ulomsky EN, Mukhin EM, Gorbunov EB, Chupakhin ON. Pyrimido[1,2- a]benzimidazoles: synthesis and perspective of their pharmacological use. Chem Heterocycl Compd (N Y) 2021; 57:383-409. [PMID: 34024913 PMCID: PMC8121645 DOI: 10.1007/s10593-021-02916-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/12/2021] [Indexed: 01/26/2023]
Abstract
The review presents data on the synthesis as well as studies of biological activity of new derivatives of pyrimido[1,2-a]benzimidazoles published over the last decade. The bibliography of the review includes 136 sources.
Collapse
Affiliation(s)
- Victor V. Fedotov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St, Yekaterinburg, 620002 Russia
| | - Vladimir L. Rusinov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St, Yekaterinburg, 620002 Russia
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22/20 Sofyi Kovalevskoi St, Yekaterinburg, 620108 Russia
| | - Evgeny N. Ulomsky
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St, Yekaterinburg, 620002 Russia
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22/20 Sofyi Kovalevskoi St, Yekaterinburg, 620108 Russia
| | - Evgeny M. Mukhin
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St, Yekaterinburg, 620002 Russia
| | - Evgeny B. Gorbunov
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22/20 Sofyi Kovalevskoi St, Yekaterinburg, 620108 Russia
| | - Oleg N. Chupakhin
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St, Yekaterinburg, 620002 Russia
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22/20 Sofyi Kovalevskoi St, Yekaterinburg, 620108 Russia
| |
Collapse
|
14
|
Desai N, Shihory N, Khasiya A, Pandit U, Khedkar V. Quinazoline clubbed thiazole and 1,3,4-oxadiazole heterocycles: synthesis, characterization, antibacterial evaluation, and molecular docking studies. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1871732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Nisheeth Desai
- Division of Medicinal Chemistry, Department of Chemistry, (DST-FIST Sponsored and UGC NON-SAP), Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| | - Niraj Shihory
- Division of Medicinal Chemistry, Department of Chemistry, (DST-FIST Sponsored and UGC NON-SAP), Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| | - Ashvinkumar Khasiya
- Division of Medicinal Chemistry, Department of Chemistry, (DST-FIST Sponsored and UGC NON-SAP), Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| | - Unnat Pandit
- Intellectual Property Management Cell, Jawaharlal Nehru University, New Delhi, India
| | - Vijay Khedkar
- Department of Pharmaceutical Chemistry, School of Pharmacy, Vishwakarma University, Pune, Maharashtra, India
| |
Collapse
|
15
|
Effective catalytic approach of NiTiO
3
photosonocatalyst for the synthesis of indazolo[3,2‐
b
]quinazoline and its photophysical property. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Devi Priya D, Mohana Roopan S. Claisen-Schmidt, aza-Michael, cyclization via cascade strategy toward microwave promoted synthesis of imidazo[2,1-b]quinazolines. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1757112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Duraipandi Devi Priya
- Department of Chemistry, Chemistry of Heterocycles and Natural Product Research Laboratory, School of Advanced Science, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - Selvaraj Mohana Roopan
- Department of Chemistry, Chemistry of Heterocycles and Natural Product Research Laboratory, School of Advanced Science, Vellore Institute of Technology, Vellore, Tamilnadu, India
| |
Collapse
|
17
|
Zhao Y, Liu F, He G, Li K, Zhu C, Yu W, Zhang C, Xie M, Lin J, Zhang J, Jin Y. Discovery of arylamide-5-anilinoquinazoline-8-nitro derivatives as VEGFR-2 kinase inhibitors: Synthesis, in vitro biological evaluation and molecular docking. Bioorg Med Chem Lett 2019; 29:126711. [PMID: 31668972 DOI: 10.1016/j.bmcl.2019.126711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/23/2019] [Accepted: 09/19/2019] [Indexed: 01/07/2023]
Abstract
Herein, we embarked on a structural optimization campaign aiming at the discovery of novel anticancer agents with our previously reported XL-6f as a lead compound. A library of 23 compounds has been synthesized based on the highly conserved active site of VEGFR-2. Several title compounds exhibited selective inhibitory activities against VEGFR-2, which also displayed selective anti-proliferation potency against HepG2 cell. All synthesized compounds were evaluated for anti-angiogenesis capability. Compound 7o showed the most potent anti-angiogenesis ability, the efficient cytotoxic activities (in vitro against HUVEC and HepG2 cell lines with IC50 values of 0.58 and 0.23 µM, respectively). The molecular docking analysis revealed 7o is a Type-II inhibitor of VEGFR-2 kinase. In general, these results indicated these arylamide-5-anilinoquinazoline-8-nitro derivatives are promising inhibitors of VEGFR-2 for the potential treatment of anti-angiogenesis.
Collapse
Affiliation(s)
- Yongqiang Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Feifei Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Guojing He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Ke Li
- Biomedical Department, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, PR China.
| | - Changcheng Zhu
- Institute of Drug Research and Development, Kunming Pharmaceutical Corporation, Kunming 650100, PR China
| | - Wei Yu
- Pharmaceutical Department, Kunming General Hospital of Chengdu Military Command, Kunming 650118, PR China
| | - Conghai Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Mingjin Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| | - Jihong Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
18
|
Zi M, Liu F, Wu D, Li K, Zhang D, Zhu C, Zhang Z, Li L, Zhang C, Xie M, Lin J, Zhang J, Jin Y. Discovery of 6-Arylurea-2-arylbenzoxazole and 6-Arylurea-2-arylbenzimidazole Derivatives as Angiogenesis Inhibitors: Design, Synthesis and in vitro Biological Evaluation. ChemMedChem 2019; 14:1291-1302. [PMID: 31131561 DOI: 10.1002/cmdc.201900216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/22/2019] [Indexed: 12/15/2022]
Abstract
We embarked on a structural optimization campaign aimed at the discovery of novel anti-angiogenesis agents with previously reported imidazole kinase inhibitors as a lead compound. A library of 29 compounds was synthesized. Several title compounds exhibited selective inhibitory activities against vascular endothelial growth factor receptor 2 (VEGFR-2) over epidermal growth factor receptor (EGFR) kinase; these compounds also displayed selective and potent antiproliferative activity against three cancer cell lines. The newly synthesized compounds were evaluated for anti-angiogenesis activity by chick chorioallantoic membrane (CAM) assay. Among them, 1-(2-(2-chlorophenyl)benzo[d]oxazol-5-yl)-3-(4-(trifluoromethoxy)phenyl)urea (compound 5 n) showed the most potent anti-angiogenesis capacity, efficient cytotoxic activities (in vitro against human umbilical vein endothelial cells (HUVEC), H1975, A549, and HeLa cell lines, with respective IC50 values of 8.46, 1.40, 7.61, and 0.28 μm), and an acceptable level of VEGFR-2 kinase inhibition (IC50 =0.25 μm). Molecular docking analysis revealed 5 n to be a type II inhibitor of VEGFR-2 kinase. In general, these results indicate that these 6-arylurea-2-arylbenzoxazole/benzimidazole derivatives are promising inhibitors of VEGFR-2 kinase for potential development into anti-angiogenesis drugs.
Collapse
Affiliation(s)
- Mengli Zi
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P.R. China
| | - Feifei Liu
- Laboratory of Molecular Genetics of Aging and Tumors, Medical School, Kunming University of Science and Technology, Kunming, 650500, P.R. China
| | - Di Wu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P.R. China
| | - Ke Li
- Biomedical Department, Yunnan Cancer Hospital, Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, P.R. China
| | - Da Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P.R. China
| | - Changcheng Zhu
- Institute of Drug Research and Development, Kunming Pharmaceutical Corporation, Kunming, 650100, P.R. China
| | - Zhiyun Zhang
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650011, P.R. China
| | - Linghua Li
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650011, P.R. China
| | - Conghai Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P.R. China
| | - Mingjin Xie
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P.R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P.R. China
| | - Jihong Zhang
- Laboratory of Molecular Genetics of Aging and Tumors, Medical School, Kunming University of Science and Technology, Kunming, 650500, P.R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P.R. China
| |
Collapse
|