1
|
Tamboli AS, Youn JS, Kadam SK, Pak JH, Choo YS. Chloroplast Genome of Arisaema takesimense: Comparative Genomics and Phylogenetic Insights into the Arisaema. Biochem Genet 2025:10.1007/s10528-025-11082-7. [PMID: 40095195 DOI: 10.1007/s10528-025-11082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
Arisaema takesimense (Araceae) is a unique species found exclusively in Ulleung Island of Korea. This study presents the complete chloroplast (cp.) genome of A. takesimense, which comprises 174, 361 base pairs and exhibits a typical tetrad structure. The genome encodes 112 unique genes, including 78 protein-coding genes (CDS), 30 tRNA genes, and 4 rRNA genes. In this study, a total of 49 long repeats and 139 simple sequence repeats (SSRs) were identified, predominantly located in intergenic spacer regions (IGS). Additionally, several hotspot regions, including trnS-G, accD-psaI, ndhF and rps15-ycf1, were identified, which are commonly shared among Araceae species. The analysis of these repeats revealed species-specific SSR types and hotspot regions that can be utilized for population genetic studies and species identification. A comparative genomic analysis of eleven Arisaema taxa revealed that the large single copy region (LSC) exhibits the most variability, with non-coding genes displaying more variation than coding genes. The borders between the LSC-IR-SSC regions in Arisaema taxa were generally well-preserved, and there were notable exceptions in the positions of LSC/IRa, LSC/IRb and SSC/IRb junctions for A. takesimense, A. ringens, and A. nepenthoides. A phylogenetic analysis based on the cp. genome revealed a close relationship between A. takesimense and A. bockii. The outcomes of this study substantially increase the genomic resources available for Araceae, serving as a valuable resource for species identification and evaluating intraspecific diversity within the Arisaema genus.
Collapse
Affiliation(s)
- Asif S Tamboli
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Korea.
| | - Jin-Suk Youn
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Korea
| | - Suhas K Kadam
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Korea
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Korea
| | - Jae Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Korea
| | - Yeon-Sik Choo
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Korea.
- Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Korea.
| |
Collapse
|
2
|
Khattak M, Khan TA, Nazish M, Ishaq MS, Hameed H, Kamal A, Elshikh MS, Al Farraj DA, Anees M. Exploration of reducing and stabilizing phytoconstituents in Arisaema dracontium extract for the effective synthesis of Silver nanoparticles and evaluation of their antibacterial and toxicological proprties. Microb Pathog 2024; 192:106711. [PMID: 38788810 DOI: 10.1016/j.micpath.2024.106711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/02/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Medicinal plants have been widely used for their antimicrobial properties against various microorganisms. Arisaema dracontium a familiar medicinal plant, was analyzed and silver nanoparticles (AgNPs) were synthesized using extracts of different parts of its shoot including leaves and stem. Further, the antimicrobial activity of different solvent extracts such as ethyl acetate, n-hexane, ethanol, methanol, and chloroform extracts were analyzed. AgNPs were prepared using aqueous silver nitrate solution and assessed their antibacterial activity against multidrug-resistant (MDR) and Non-multidrug-resistant bacteria. The characterization of AgNPs was done by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), UV-visible spectroscopy, Fourier Transform Infrared (FTI), and X-ray Diffraction approaches. The leaf extract contained Tannins, Flavonoids, Terpenoids, and Steroids while Alkaloids, Saponins, and Glycosides were undetected. The stem extract contained Alkaloids, Tannins, Flavonoids, Saponins, Steroids, and Glycosides while Terpenoids were not observed. The AgNPs synthesized from stem and leaf extracts in the current study had spherical shapes and ranged in size from 1 to 50 nm and 20-500 nm respectively as were visible in TEM. The leaf extract-prepared AgNPs showed significantly higher activities i.e., 27.75 mm ± 0.86 against the MDR strains as compared to the stem-derived nanoparticles i.e., 24.33 ± 0.33 by comparing the zones of inhibitions which can be attributed to the differences in their phytochemical constituents. The acute toxicity assay confirmed that no mortality was noticed when the dosage was 100 mg per kg which confirms that the confirms that the AgNPs are not toxic when used in low quantities. It is concluded that leaf extract from A. dracontium could be used against pathogenic bacteria offering economic and health benefits compared to the chemical substances.
Collapse
Affiliation(s)
- Mahrukh Khattak
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Taj Ali Khan
- Department of Microbiology, Khyber Medical University, Peshawar, Pakistan
| | - Moona Nazish
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Muhammad Saqib Ishaq
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Hajra Hameed
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060 China
| | - Asif Kamal
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh-11451, Saudi Arabia
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh-11451, Saudi Arabia
| | - Muhammad Anees
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan.
| |
Collapse
|
3
|
Ohiduzzaman M, Khan MNI, Khan KA, Paul B. Green synthesis of silver nanoparticles by using Allium sativum extract and evaluation of their electrical activities in bio-electrochemical cell. NANOTECHNOLOGY 2023; 35:095707. [PMID: 38029451 DOI: 10.1088/1361-6528/ad10e4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
An electrical application of green synthesized silver nanoparticles (Ag NPs) by developing a unique bio-electrochemical cell (BEC) has been addressed in the report. Here, garlic extract (GE) has been used as a reducing agent to synthesize Ag NPs, and as a bio-electrolyte solution of BEC. Ag NPs successfully formed into face-centered cubic structures with average crystallite and particle sizes of 8.49 nm and 20.85 nm, respectively, according to characterization techniques such as the UV-vis spectrophotometer, XRD, FTIR, and FESEM. A broad absorption peak at 410 nm in the UV-visible spectra indicated that GE played a vital role as a reducing agent in the transformation of Ag+ions to Ag NPs. After that four types of BEC were developed by varying the concentration of GE, CuSO4. 5H2O, and Ag NPs electrolyte solution. The open circuit voltage and short circuit current of all cells were examined with the time duration. Moreover, different external loads (1 Ω, 2 Ω, 5 Ω, and 6 Ω) were used to investigate the load voltage and load current of BEC. The results demonstrated that the use of Ag NPs on BEC played a significant role in increasing the electrical performance of BEC. The use of GE-mediated Ag NPs integrated the power, capacity, voltage efficiency, and energy efficiency of BEC by decreasing the internal resistance and voltage regulation. These noteworthy results can take a frontier forward to the development of nanotechnology for renewable and low-cost power production applications.
Collapse
Affiliation(s)
- Md Ohiduzzaman
- Department of Physics, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
| | - M N I Khan
- Materials Science Division, Atomic Energy Centre, Dhaka, Bangladesh
| | - K A Khan
- Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
- Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University, Jamalpur, Bangladesh
| | - Bithi Paul
- Department of Physics, American International University-Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
4
|
Al-Otibi FO, Yassin MT, Al-Askar AA, Maniah K. Green Biofabrication of Silver Nanoparticles of Potential Synergistic Activity with Antibacterial and Antifungal Agents against Some Nosocomial Pathogens. Microorganisms 2023; 11:microorganisms11040945. [PMID: 37110368 PMCID: PMC10144991 DOI: 10.3390/microorganisms11040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Nosocomial bacterial and fungal infections are one of the main causes of high morbidity and mortality worldwide, owing to the high prevalence of multidrug-resistant microbial strains. Hence, the study aims to synthesize, characterize, and investigate the antifungal and antibacterial activity of silver nanoparticles (AgNPs) fabricated using Camellia sinensis leaves against nosocomial pathogens. The biogenic AgNPs revealed a small particle diameter of 35.761 ± 3.18 nm based on transmission electron microscope (TEM) graphs and a negative surface charge of −14.1 mV, revealing the repulsive forces between nanoparticles, which in turn indicated their colloidal stability. The disk diffusion assay confirmed that Escherichia coli was the most susceptible bacterial strain to the biogenic AgNPs (200 g/disk), while the lowest sensitive strain was found to be the Acinetobacter baumannii strain with relative inhibition zones of 36.14 ± 0.67 and 21.04 ± 0.19 mm, respectively. On the other hand, the biogenic AgNPs (200 µg/disk) exposed antifungal efficacy against Candida albicans strain with a relative inhibition zone of 18.16 ± 0.14 mm in diameter. The biogenic AgNPs exposed synergistic activity with both tigecycline and clotrimazole against A. baumannii and C. albicans, respectively. In conclusion, the biogenic AgNPs demonstrated distinct physicochemical properties and potential synergistic bioactivity with tigecycline, linezolid, and clotrimazole against gram-negative, gram-positive, and fungal strains, respectively. This is paving the way for the development of effective antimicrobial combinations for the effective management of nosocomial pathogens in intensive care units (ICUs) and health care settings.
Collapse
Affiliation(s)
- Fatimah O. Al-Otibi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A. Al-Askar
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Maniah
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Biogenic synthesis of spherical-shaped noble metal nanoparticles using Vicia faba extract (X@VF, X = Au, Ag) for photocatalytic degradation of organic hazardous dye and their in vitro antifungal, antibacterial and anticancer activities. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Sekar V, Balakrishnan C, Kathirvel P, Swamiappan S, Alshehri MA, Sayed S, Panneerselvam C. Ultra-sonication-enhanced green synthesis of silver nanoparticles using Barleria buxifolia leaf extract and their possible application. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:177-187. [PMID: 35735785 DOI: 10.1080/21691401.2022.2084100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The main aim of the study, green route to the synthesis of silver nanoparticles (AgNPs) is a new technique that has recently gained popularity due to several advantages over conventional chemical methods. The objective of the study was focused on the green synthesis of AgNPs using Barleria buxifolia leaf extract via a rapid and eco-friendly ultrasonic-assisted technique. The obtained AgNPs were characterized using ultraviolet-visible (UV-Vis) absorption spectrum of the organically reduced silver showed a surface plasmon peak at 435 nm, characteristic for silver colloidal solutions. UV-Vis absorption spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS) analysis showed that the obtained AgNPs were dispersed spheres with a uniform size of 80 nm. Furthermore, the Fourier-transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) analysis indicated that the surface of the obtained AgNPs was covered with organic molecules in plant extracts. Green synthesized AgNPs showed the highest antioxidant, antibacterial and anti-biofilm activity than a plant extract. In vitro anticancer assay demonstrated half-maximal inhibitory concentration (IC50) values of 31.42, 30.67, 51.07 and 56.26 µg/mL against MCF-7, HeLa and HepG2 cancer cell lines, respectively, which confirms its potent anticancer action. The biocompatibility of green synthesized AgNPs is confirmed by their lack of cytotoxicity against normal human cells. The potent bioactivity exhibited by the green synthesized AgNPs leads towards the multiple use as antioxidant, antibacterial, anti-biofilm and cytotoxic agent.
Collapse
Affiliation(s)
- Vanaraj Sekar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cindhu Balakrishnan
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - Preethi Kathirvel
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia;
| | - Samy Sayed
- Department of Science and Technology, University College of Ranyah, Taif University, Taif, Saudi Arabia
| | | |
Collapse
|
7
|
Optimization and evaluation of anticancer, antifungal, catalytic, and antibacterial activities: biosynthesis of spherical-shaped gold nanoparticles using Pistacia vera hull extract (AuNPs@PV). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Khan ZUH, Latif S, Abdulaziz F, Shah NS, Imran M, Muhammad N, Iqbal J, Shahid M, Salam MA, Khasim S, Khan HU. Photocatalytic response in water pollutants with addition of biomedical and anti-leishmanial study of iron oxide nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112544. [PMID: 35994971 DOI: 10.1016/j.jphotobiol.2022.112544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Public health is a major concern globally, owing to the presence of industrial dyes in the effluent. Nanoparticles with green synthesis are an enthralling research field with various applications. This study deals with investigating the photocatalytic potential of Fe-oxide nanoparticles (FeO-NPs) for the degradation of methylene blue dye and their potential biomedical investigations. Biosynthesis using Anthemis tomentosa flower extract showed to be an effective method for the synthesis of FeO-NPs. The freshly prepared FeO-NPs were characterized through UV/Vis spectroscopy showing clear peak at 318 nm. The prepared FeO-NPs were of smaller size and spherical shape having large surface area and porosity with no aggregations. The FeO-NPs were characterized using XRD, FTIR, HRTEM, SEM and EDX. The HRTEM results showed that the particle size of FeO-NPs was 60-90 nm. The antimicrobial properties of FeO-NPs were investigated against two bacterial Staphylococcus aureus 13 (±0.8) and Klebsiella pneumoniae 6(±0.6) and three fungal species Aspergillus Niger, Aspergillus flavus, and Aspergillus fumigatus exhibiting a maximum reduction of 57% 47% and 50%, respectively. Moreover, FeO-NPs exhibited high antioxidant properties evaluated against ascorbic acid. Overall, this study showed high photocatalytic, antimicrobial, and antioxidant properties of FeO-NPs owing to their small size and large surface area. However, the ecotoxicity study of methylene blue degradation products showed potential toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan.
| | - Salman Latif
- Department of Chemistry, College of Science, University of H'ail, H'ail 81451, Saudi Arabia
| | - Fahad Abdulaziz
- Department of Chemistry, College of Science, University of H'ail, H'ail 81451, Saudi Arabia
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Nawshad Muhammad
- Department of Dental Material Sciences, Institute of Basic Medical Sciences Khyber Medical University, Peshawar, KPK, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Mohamed Abdel Salam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O Box 80200, Jeddah 21589, Saudi Arabia
| | - Syed Khasim
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; Nanotechnology Research Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hidayat Ullah Khan
- Department of Chemistry, University of Science and Technology, Bannu 28100, KPK, Pakistan
| |
Collapse
|
9
|
Sharma NK, Vishwakarma J, Rai S, Alomar TS, AlMasoud N, Bhattarai A. Green Route Synthesis and Characterization Techniques of Silver Nanoparticles and Their Biological Adeptness. ACS OMEGA 2022; 7:27004-27020. [PMID: 35967040 PMCID: PMC9366950 DOI: 10.1021/acsomega.2c01400] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/13/2022] [Indexed: 05/13/2023]
Abstract
The development of the most reliable and green techniques for nanoparticle synthesis is an emerging step in the area of green nanotechnology. Many conventional approaches used for nanoparticle (NP) synthesis are expensive, deadly, and nonenvironmental. In this new era of nanotechnology, to overcome such concerns, natural sources which work as capping and reducing agents, including bacteria, fungi, biopolymers, and plants, are suitable candidates for synthesizing AgNPs. The surface morphology and applications of AgNPs are significantly pretentious to the experimental conditions by which they are synthesized. Available scattered information on the synthesis of AgNPs comprises the influence of altered constraints and characterization methods such as FTIR, UV-vis, DLS, SEM, TEM, XRD, EDX, etc. and their properties and applications. This review focuses on all the above-mentioned natural sources that have been used for AgNP synthesis recently. The green routes to synthesize AgNPs have established effective applications in various areas, including biosensors, magnetic resonance imaging (MRI), cancer treatment, surface-enhanced Raman spectroscopy (SERS), antimicrobial agents, drug delivery, gene therapy, DNA analysis, etc. The existing boundaries and prospects for metal nanoparticle synthesis by the green route are also discussed herein.
Collapse
Affiliation(s)
- Nitin Kumar Sharma
- Department
of Chemical Engineering, Indian Institute
of Technology, Kanpur 208016, India
- Shri
Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, India
| | - Jyotsna Vishwakarma
- K. B.
Pharmacy Institute of Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, India
| | - Summi Rai
- Department
of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Taghrid S. Alomar
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Najla AlMasoud
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ajaya Bhattarai
- Department
of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
- or
| |
Collapse
|
10
|
Sharma K, Verma R, Kumar D, Nepovimova E, Kuča K, Kumar A, Raghuvanshi D, Dhalaria R, Puri S. Ethnomedicinal plants used for the treatment of neurodegenerative diseases in Himachal Pradesh, India in Western Himalaya. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115318. [PMID: 35469830 DOI: 10.1016/j.jep.2022.115318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants are considered as a healthcare resource and widely used by rural people in their traditional medicine system for curing neurodegenerative diseases. Neurodegenerative diseases refer to incurable and debilitating conditions that result in progressive degeneration/death of nerve cells or neurons in the human brain. This review is mainly focused on the usage of different ethnomedicinal plants in the treatment of different neurodegenerative diseases in Himachal Pradesh. Study reveals total of 73 ethnomedicinal plants, which are used for treating different neurological disorders in different areas of Himachal Pradesh. The data is compiled from the different sources that described the detailed information of plants in tabular form and highlights the significance of different phytochemicals on neuroprotective function. The present study also provides the scientific data and clinical (in-vivo and in-vitro) studies in support of ethnomedicinal use. AIM OF THE STUDY This review aims to provide information of ethnomedicinal plants which are used for the treatment of neurodegenerative diseases in Himachal Pradesh. MATERIALS AND METHODS Information on the use of ethnomedicinal plants to treat various neurological disorders has been gathered from a variety of sources, including various types of literature, books, and relevant publications in Google Scholar, Research Gate, Science Direct, Scopus, and Pub Med, among others. The collected data is tabulated, including the botanical names of plants, mode of use and the disease for which it is used for curing, etc. RESULTS: There are 73 ethnomedicinal plants that are used to cure various neurological disorders, with the most plants being used to treat epilepsy problem in Himachal Pradesh. CONCLUSION Numerous phytochemicals and extracts from diverse plants were found to have a protective effect against neurodegenerative diseases. Antioxidant activity is known to exist in a variety of herbal plants. The most common bioactive antioxidant chemicals having their significant impacts include flavonoids, flavones, coumarins, lignans, isoflavones, catechins, anthocyanins, and isocatechins.
Collapse
Affiliation(s)
- Kiran Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Dinesh Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec, Kralove, 50003, Czech Republic.
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec, Kralove, 50003, Czech Republic; Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, 50005, Hradec, Kralove, Czech Republic.
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India.
| | - Disha Raghuvanshi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| |
Collapse
|
11
|
Ullah I, Tahir K, Khan AU, Albalawi K, Li B, El-Zahhar AA, Jevtovic V, Al-Shehri HS, Asghar BH, Alghamdi MM. Facile fabrication of Ag nanoparticles: An advanced material for antioxidant, infectious therapy and photocatalytic applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1841. [PMID: 35683697 PMCID: PMC9182092 DOI: 10.3390/nano12111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.
Collapse
Affiliation(s)
- Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Claude K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Joseph Kyana
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
| | - Justin B. Safari
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Grégoire V. Mbusa
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Yannick B. Nuapia
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo;
| | - Jean-Marie I. Liesse
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Christian I. Nkanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
- Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
13
|
Adeyemi JO, Oriola AO, Onwudiwe DC, Oyedeji AO. Plant Extracts Mediated Metal-Based Nanoparticles: Synthesis and Biological Applications. Biomolecules 2022; 12:biom12050627. [PMID: 35625555 PMCID: PMC9138950 DOI: 10.3390/biom12050627] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
The vastness of metal-based nanoparticles has continued to arouse much research interest, which has led to the extensive search and discovery of new materials with varying compositions, synthetic methods, and applications. Depending on applications, many synthetic methods have been used to prepare these materials, which have found applications in different areas, including biology. However, the prominent nature of the associated toxicity and environmental concerns involved in most of these conventional methods have limited their continuous usage due to the desire for more clean, reliable, eco-friendly, and biologically appropriate approaches. Plant-mediated synthetic approaches for metal nanoparticles have emerged to circumvent the often-associated disadvantages with the conventional synthetic routes, using bioresources that act as a scaffold by effectively reducing and stabilizing these materials, whilst making them biocompatible for biological cells. This capacity by plants to intrinsically utilize their organic processes to reorganize inorganic metal ions into nanoparticles has thus led to extensive studies into this area of biochemical synthesis and analysis. In this review, we examined the use of several plant extracts as a mediating agent for the synthesis of different metal-based nanoparticles (MNPs). Furthermore, the associated biological properties, which have been suggested to emanate from the influence of the diverse metabolites found in these plants, were also reviewed.
Collapse
Affiliation(s)
- Jerry O. Adeyemi
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
- Correspondence: (J.O.A.); (A.O.O.)
| | - Ayodeji O. Oriola
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
| | - Damian C. Onwudiwe
- Department of Chemistry, Faculty of Natural and Agricultural Science, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Adebola O. Oyedeji
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
- Correspondence: (J.O.A.); (A.O.O.)
| |
Collapse
|
14
|
Inactivation of Escherichia coli Using Biogenic Silver Nanoparticles and Ultraviolet (UV) Radiation in Water Disinfection Processes. Catalysts 2022. [DOI: 10.3390/catal12040430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This work tested the antimicrobial activity of three different biogenic silver nanoparticles (AgNPs) against Escherichia coli (E. coli) for water disinfection processes. The influence of different AgNP capping or stabilizing agents (e.g., protein or carbohydrate capped) and the use of ultraviolet (UV) radiation on the disinfection process were also assessed. The use of UV radiation was found to enhance the antimicrobial effects of AgNPs on E. coli. The antibacterial effects of AgNPs depended on the type of the capping biomolecules. Protein-capped nanoparticles showed greater antimicrobial effects compared with carbohydrate-capped (cellulose nanofibers, CNF) nanoparticles. Those capped with the fungal secretome proteins were the most active in E. coli inactivation. The least E. coli inactivation was observed for CNF-capped AgNPs. The size of the tested AgNPs also showed an expected effect on their anti-E. coli activity, with the smallest particles being the most active. The antimicrobial effects of biogenic AgNPs on E. coli make them an effective, innovative, and eco-friendly alternative for water disinfection processes, which supports further research into their use in developing sustainable water treatment processes.
Collapse
|
15
|
Qiao ZP, Wang MY, Liu JF, Wang QZ. Green synthesis of silver nanoparticles using a novel endophytic fungus Letendraea sp. WZ07: Characterization and evaluation of antioxidant, antibacterial and catalytic activities (3-in-1 system). INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Su F, Sun Y, Zhu W, Bai C, Zhang W, Luo Y, Yang B, Kuang H, Wang Q. A comprehensive review of research progress on the genus Arisaema: Botany, uses, phytochemistry, pharmacology, toxicity and pharmacokinetics. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114798. [PMID: 34780984 DOI: 10.1016/j.jep.2021.114798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Arisaema belongs to the family Araceae, which includes Chinese herbal medicines with wide-ranging pharmacological functions, including those useful for the treatment of stubborn phlegm, cough, epilepsy, tetanus, snakebite, rheumatoid arthritis, and other ailments. AIM OF THE STUDY The current study aimed to comprehensively review the botany, uses, phytochemistry, pharmacology, toxicity, quality control and pharmacokinetics of plants in the genus Arisaema and to provide novel insights to develop future research in this field. MATERIALS AND METHODS Relevant information on the genus Arisaema was obtained from published scientific materials (including materials from PubMed, Elsevier, Web of Science, Google Scholar, Baidu Scholar, CNKI, and Wiley) and other literature sources (e.g., the Chinese Pharmacopoeia, 2020 edition; Chinese herbal books and PhD and MSc thesis). RESULTS The application information complied with this review and included processing techniques, traditional uses, clinical applications and classic prescriptions. Approximately 260 compounds, including flavonoids, alkaloids, saccharides, steroids, fatty acids, amino acids and volatile oils, have been separated and identified from the genus Arisaema. The isolated compounds exhibit wide-ranging pharmacological activities such as antitumor activity, analgesic and sedative activity, antioxidant activity and anti-inflammatory activity. The toxicity and irritant impacts, quality control, and pharmacokinetics are also discussed in this review. CONCLUSIONS Plants in the genus Arisaema are valuable resources with therapeutic potential for a broad spectrum of ailments. Based on the limited literature, this review comprehensively and systematically summarizes current knowledge regarding the genus Arisaema for the first time. However, there have been insufficient studies on the active ingredients and germplasm and insufficient in-depth mechanistic studies. Therefore, isolation and identification of additional effective components and through research on the germplasm, pharmacodynamic mechanisms, and toxicology should be conducted to assess effectiveness and safety and to ensure the quality of the related drugs.
Collapse
Affiliation(s)
- Fazhi Su
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Yanping Sun
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Wenbo Zhu
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Chenxi Bai
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Wensen Zhang
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Yumeng Luo
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Bingyou Yang
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Haixue Kuang
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China.
| | - Qiuhong Wang
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 232 Outer Ring Road, University Town, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Stalin Dhas T, Sowmiya P, Parthasarathy K, Natarajan A, Narendrakumar G, Kumar R, Samrot AV, Riyaz SUM, Ganesh VK, Karthick V, Rajasekar A. In vitro antibacterial activity of biosynthesized silver nanoparticles against gram negative bacteria. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2034014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Tharmathass Stalin Dhas
- Centre for Ocean Research (DST – FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Prasad Sowmiya
- Centre for Ocean Research (DST – FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Krupakar Parthasarathy
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Anandakumar Natarajan
- Department of Education, The Gandhigram Rural Institute-Deemed to be University, Gandhigram, Dindigul, Tamil Nadu, India
| | - Gopakumaran Narendrakumar
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ramesh Kumar
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Antony Vincent Samrot
- School of Biosciences, Faculty of Medicine, Biosciences and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom, Selangor, Malaysia
| | | | - Vijayakumar Kumar Ganesh
- Centre for Ocean Research (DST – FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Velu Karthick
- Centre for Ocean Research (DST – FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Arulaih Rajasekar
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| |
Collapse
|
18
|
Parmanik A, Das S, Kar B, Bose A, Dwivedi GR, Pandey MM. Current Treatment Strategies Against Multidrug-Resistant Bacteria: A Review. Curr Microbiol 2022; 79:388. [PMID: 36329256 PMCID: PMC9633024 DOI: 10.1007/s00284-022-03061-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
There are several bacteria called superbugs that are resistant to multiple antibiotics which can be life threatening specially for critically ill and hospitalized patients. This article provides up-to-date treatment strategies employed against some major superbugs, like methicillin-resistant Staphylococcus aureus, carbapenem-resistant Enterobacteriaceae, vancomycin-resistant Enterococcus, multidrug-resistant Pseudomonas aeruginosa, and multidrug-resistant Escherichia coli. The pathogen-directed therapeutics decrease the toxicity of bacteria by altering their virulence factors by specific processes. On the other hand, the host-directed therapeutics limits these superbugs by modulating immune cells, enhancing host cell functions, and modifying disease pathology. Several new antibiotics against the global priority superbugs are coming to the market or are in the clinical development phase. Medicinal plants possessing potent secondary metabolites can play a key role in the treatment against these superbugs. Nanotechnology has also emerged as a promising option for combatting them. There is urgent need to continuously figure out the best possible treatment strategy against these superbugs as resistance can also be developed against the new and upcoming antibiotics in future. Rational use of antibiotics and maintenance of proper hygiene must be practiced among patients.
Collapse
Affiliation(s)
- Ankita Parmanik
- grid.412612.20000 0004 1760 9349School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Soumyajit Das
- grid.412612.20000 0004 1760 9349School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Biswakanth Kar
- grid.412612.20000 0004 1760 9349School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Anindya Bose
- grid.412612.20000 0004 1760 9349School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Gaurav Raj Dwivedi
- grid.464904.b0000 0004 0506 3705ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh 273013 India
| | - Murali Monohar Pandey
- grid.418391.60000 0001 1015 3164Birla Institute of Technology and Science (BITS), Pilani, Rajasthan 333031 India
| |
Collapse
|
19
|
Khan AU, Nazir S, El-Keblway A, Tahir K, Abdel-Hafez SH, Al-Abdulkarim HA, Jevtovic V, Ibrahim MM, Al-Shehri HS, Hegab KH. Uncaria rhynchophylla mediated Ag/NiO nanocomposites: A new insight for the evaluation of cytotoxicity, antibacterial and photocatalytic applications. Photodiagnosis Photodyn Ther 2021; 37:102681. [PMID: 34915183 DOI: 10.1016/j.pdpdt.2021.102681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
Abstract
The increase of microbial resistance poses threat to the human health. Therefore, the efficient treatment of the microbial resistance is a global challenge and highly desired to explore it. During this study, the Ag/NiO nanocomposite was fabricated via simple and ecofriendly method, using Uncaria rhynchophylla extract as a reducing and capping agent to avoid the aggregation of as synthesized nanomaterials. Here, a range of characterization techniques were employed to characterize the sample which includes UV-vis spectroscopy, X-ray diffraction, FTIR spectroscopy, electron diffraction spectroscopy (EDX), scanning electron microscopy (SEM). Furthermore, the resultant nanocomposite demonstrated an efficient ability for the inhibition of both gram-positive and gram negative pathogenic multidrug resistant bacteria. Additionally, the Ag/NiO nanocomposite showed a durable antioxidant effect against DPPH that could still reach 63% at very low concentration, i.e. 0.5 mg/mL. Interestingly, the synthesized nanocomposite is efficient for the production of reactive oxygen species (ROS) and shows no hemolytic activity. Likewise, the Ag/NiO nanocomposite displayed excellent photocatalytic activity to degrade 85% methylene blue (MB) by 4 mg/25 mL and could be used for waste water treatment. It is believed that synthesized nanostructure with desirable morphology and preparation simplicity can be promising material for the antimicrobial, antioxidant and catalytic applications.
Collapse
Affiliation(s)
- Afaq Ullah Khan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R China
| | - Sadia Nazir
- Institute of Chemical Sciences, Gomal University, D.I. Khan, KP, Pakistan
| | - Ali El-Keblway
- Department of Applied Biology, Collage of Science, University of Sharjah, Sharjah P. O. Box 27272, Sharjah, United Arab Emirates
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, D.I. Khan, KP, Pakistan
| | - Shams H Abdel-Hafez
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Hessah A Al-Abdulkarim
- Chemistry department, College of Science, King Saud University, P. O. Box 2455, Riyadh-11451
| | - Violeta Jevtovic
- Department of Chemistry, College of Science, University of Hail, Kingdom of Saudi Arabia
| | - Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Hamza S Al-Shehri
- Chemistry Division, King Khalid Military Academy, SANG, 1149, Riyadh, Saudi Arabia
| | - Khaled H Hegab
- Chemistry department, faculty of science, Gazan University, Gizan, KSA
| |
Collapse
|
20
|
Mousavi SF, Hossaini Z, Rostami-Charati F, Nami N. Synthesis of Benzochromene Derivatives Using Reusable Fe 3O 4/ZnO Magnetic Nanoparticles: Study of Antioxidant and Antibacterial Activity. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1991390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Zinatossadat Hossaini
- Department of Chemistry, Islamic Azad University, Qaemshahr Branch, Qaemshahr, Iran
| | - Faramarz Rostami-Charati
- Research Center for Conservation of Culture Relicst (RCCCR), Research institute of Cultural Heritage and Tourism, Tehran, Iran
| | - Navabeh Nami
- Department of Chemistry, Islamic Azad University, Qaemshahr Branch, Qaemshahr, Iran
| |
Collapse
|
21
|
Verma A, Bharadvaja N. Plant-Mediated Synthesis and Characterization of Silver and Copper Oxide Nanoparticles: Antibacterial and Heavy Metal Removal Activity. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02091-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Khan AU, Rahman AU, Yuan Q, Ahmad A, Khan ZUH, Mahnashi MH, Alyami BA, Alqahtani YS, Ullah S, Wirman AP. Facile and eco-benign fabrication of Ag/Fe2O3 nanocomposite using Algaia Monozyga leaves extract and its’ efficient biocidal and photocatalytic applications. Photodiagnosis Photodyn Ther 2020; 32:101970. [DOI: 10.1016/j.pdpdt.2020.101970] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
|
23
|
Gherasim O, Puiu RA, Bîrcă AC, Burdușel AC, Grumezescu AM. An Updated Review on Silver Nanoparticles in Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2318. [PMID: 33238486 PMCID: PMC7700255 DOI: 10.3390/nano10112318] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Silver nanoparticles (AgNPs) represent one of the most explored categories of nanomaterials for new and improved biomaterials and biotechnologies, with impressive use in the pharmaceutical and cosmetic industry, anti-infective therapy and wound care, food and the textile industry. Their extensive and versatile applicability relies on the genuine and easy-tunable properties of nanosilver, including remarkable physicochemical behavior, exceptional antimicrobial efficiency, anti-inflammatory action and antitumor activity. Besides commercially available and clinically safe AgNPs-based products, a substantial number of recent studies assessed the applicability of nanosilver as therapeutic agents in augmented and alternative strategies for cancer therapy, sensing and diagnosis platforms, restorative and regenerative biomaterials. Given the beneficial interactions of AgNPs with living structures and their nontoxic effects on healthy human cells, they represent an accurate candidate for various biomedical products. In the present review, the most important and recent applications of AgNPs in biomedical products and biomedicine are considered.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Rebecca Alexandra Puiu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri Road, 050657 Bucharest, Romania
| |
Collapse
|
24
|
Biosynthesis of silver nanoparticles by Cyperus pangorei and its potential in structural, optical and catalytic dye degradation. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01585-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Peydayesh M, Raisi M, Kaykavousi K, Gharaghani MA, Abdollahpour-Alitappeh M, Mosazade F, Seifalian A, Khatami M. The inhibitory effect of Tamarix hispida mediated silver nanoparticles on Cyclin D1 protein expression of human cancer cells line. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1735432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohades Peydayesh
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Mahammadali Raisi
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Keyghobad Kaykavousi
- Research Scientist, Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Faride Mosazade
- NanoBioelectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London, UK
| | - Mehrdad Khatami
- NanoBioelectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
26
|
Ghasemian Dazmiri M, Alinezhad H, Hossaini Z, Bekhradnia AR. Green synthesis of Fe
3
O
4
/ZnO magnetic core‐shell nanoparticles by
Petasites hybridus
rhizome water extract and their application for the synthesis of pyran derivatives: Investigation of antioxidant and antimicrobial activity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | | | - Ahmad R. Bekhradnia
- Pharmaceutical Sciences Research Center, Department of Medicinal ChemistryMazandaran University of Medical Sciences Sari Iran
- Department of Chemistry and BiochemistryMontana State University Bozeman MT 59717 USA
| |
Collapse
|
27
|
Investigation of Catalytic Potential and Radical Scavenging Efficacy of Terminalia bellerica Roxb Bark Mediated Ecofriendly Silver Nanoparticles. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01865-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Kamarudin N, Jusoh R, Sukor N, Jalil A, Setiabudi H. Intensified photocatalytic degradation of 2, 4–dicholorophenoxyacetic acid using size-controlled silver nanoparticles: Effect of pre-synthesis extraction. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Rocca DM, Silvero C MJ, Aiassa V, Cecilia Becerra M. Rapid and effective photodynamic treatment of biofilm infections using low doses of amoxicillin-coated gold nanoparticles. Photodiagnosis Photodyn Ther 2020; 31:101811. [PMID: 32439578 DOI: 10.1016/j.pdpdt.2020.101811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Bacterial biofilm are complex microbial communities covered by a matrix of extracellular polymeric substances, which develops when a community of microorganisms irreversibly adheres to a living or inert surface. This structure is considered an important virulence factor because it is difficult to eradicate and often responsible for treatment failures. This adherent community represents one of the greatest problems in public health due to the continued emergence of conventional antibiotic-therapy resistance. Photodynamic Antimicrobial Therapy (PACT) is a therapeutic alternative and promises to be an effective treatment against multiresistant bacteria biofilm, demonstrating a broad spectrum of action. This work demonstrates the reduction in biofilms of relevant clinical isolates (as Pseudomonas aeruginosa and Staphylococcus aureus) treated with PACT using low concentrations of amoxicillin-coated gold nanoparticles (amoxi@AuNP) as a photosensitizer. Moreover, the viability reduction of 60% in S. aureus biofilms and 70% in P. aeruginosa biofilms were obtained after three hours of irradiation with white light and amoxi@AuNP. Scanning electron microscopy analysis revealed that amoxi@AuNP could penetrate and cause damage to the biofilm matrix, and interact with bacteria cells. A strong biofilm production in P. aeruginosa was observed by confocal laser scanning microscopy using acridine orange as a probe, and a markedly decrease in live bacteria was appreciated when PACT was applied. The use of amoxi@AuNP for PACT allows the viability reduction of clinical Gram positive and Gram negative biofilms. This novel strategy needs shorter irradiation times and lower concentrations of nanoparticles than other reports described. This could be attributed to two major innovations: the selectivity for the bacterial wall given by the amoxicillin and the polydispersity of size and shapes with seems to contribute to the photo-antibacterial capacity.
Collapse
Affiliation(s)
- Diamela M Rocca
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000. Argentina
| | - M Jazmin Silvero C
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000. Argentina; Instituto Multidisciplinario de Biología Vegetal, IMBIV, CONICET, Argentina
| | - Virginia Aiassa
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000. Argentina; Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, CONICET, Argentina.
| | - M Cecilia Becerra
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000. Argentina; Instituto Multidisciplinario de Biología Vegetal, IMBIV, CONICET, Argentina.
| |
Collapse
|
30
|
Controllable phytosynthesis of gold nanoparticles and investigation of their size and morphology-dependent photocatalytic activity under visible light. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112429] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Bioinspired morphology-controlled silver nanoparticles for antimicrobial application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110421. [DOI: 10.1016/j.msec.2019.110421] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/20/2023]
|
32
|
Miri A, Akbarpour Birjandi S, Sarani M. Survey of cytotoxic and UV protection effects of biosynthesized cerium oxide nanoparticles. J Biochem Mol Toxicol 2020; 34:e22475. [PMID: 32053270 DOI: 10.1002/jbt.22475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/24/2019] [Accepted: 02/06/2020] [Indexed: 11/07/2022]
Abstract
Cerium oxide nanoparticles (CeO2 NPs) are among the important nanoparticles that are extensively utilized in cosmetics, automotive industries, ultraviolet (UV) filtration, gas sensors, and pharmaceutical products. In this study, CeO2 NPs were synthesized using an aqueous extract of Ziziphus jujube fruit. The synthesized nanoparticles were characterized using UV-visible spectroscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive spectroscopy, field energy scanning electron microscopy, and Raman methods. The results indicated that the size of synthesized nanoparticles is between 18 and 25 nm, and they have a spherical shape. UV absorbance of the synthesized nanoparticles was measured through spectrophotometric method in the range of 290 to 320 nm. The cytotoxic activity of synthesized CeO2 NPs against colon (HT-29) cancer cell line was surveyed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results showed that synthesized nanoparticles are nontoxic on HT-29 cells under 400 μg/mL concentrations after 24 hours of treatment time periods. The increase in treatment time cases increases cytotoxic activity of synthesized nanoparticles. Sun protection factor of CeO2 NPs, as a criterion for amount of sunlight radiation protection, was determined by applying Mansur equation. The results demonstrated that synthesized CeO2 NPs have excellent UV protection and sunscreen physical absorption properties.
Collapse
Affiliation(s)
- Abdolhossein Miri
- Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Shiva Akbarpour Birjandi
- Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Mina Sarani
- Zabol Medicinal Plants, Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
33
|
Das P, Karankar VS. New avenues of controlling microbial infections through anti-microbial and anti-biofilm potentials of green mono-and multi-metallic nanoparticles: A review. J Microbiol Methods 2019; 167:105766. [PMID: 31706910 DOI: 10.1016/j.mimet.2019.105766] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
Nanoparticles synthesized through the green route deserve special mention because this green technology is not only energy-efficient and cost-effective but also amenable to the environment. Various biological resources have been used for the generation of these 'green nanoparticles'. Biological wastes have also been focused in this direction thereby promoting the value of waste. Reports indicate that green nanoparticles exhibit remarkable antimicrobial activitiesboth singly as well as in combination with standard antibiotics. The current phenomenon of multi-drug resistance has resulted due to indiscriminate administration of high-doses of antibiotics followed by significant toxicity. In the face of this emergence of drug-resistant microbesthe efficacy of green nanoparticles might prove greatly beneficial. Microbial biofilm is another hurdle in the effective treatment of diseases as the microorganismsbeing embedded in the meshwork of the biofilmevade the antimicrobial agents. Nanoparticles may act as a ray of hope on the face of this challenge tooas they not only destroy the biofilms but also lessen the doses of antibiotics requiredwhen administered in combination with the nanoparticles. It should be further noted that the resistance mechanisms exhibited by the microorganisms seem not that relevant for nanoparticles. The current review, to the best of our knowledgefocuses on the structures of these green nanoparticles along with their biomedical potentials. It is interesting to note how a variety of structures are generated by using resources like microbes or plants or plant products and how the structure affects their activities. This study might pave the way for further development in this arena and future work may be taken up in identifying the detailed mechanism by which 'green' synthesis empowers nanoparticles to kill pathogenic microbes.
Collapse
Affiliation(s)
- Palashpriya Das
- National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India.
| | - Vijayshree S Karankar
- National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| |
Collapse
|
34
|
Khatami M, Iravani S, Varma RS, Mosazade F, Darroudi M, Borhani F. Cockroach wings-promoted safe and greener synthesis of silver nanoparticles and their insecticidal activity. Bioprocess Biosyst Eng 2019; 42:2007-2014. [PMID: 31451901 DOI: 10.1007/s00449-019-02193-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/17/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023]
Abstract
Simpler and biocompatible greener approaches for the assembly of nanoparticles (NPs) have been the focus lately which have minimum environmental damage and often entails the use of natural biomolecules to synthesize NPs. Such greener synthesis of nanoparticles has capitalized on the use of microbes, fungi, and plants using biological resources. In this study, Periplaneta americana (American cockroach) wings' extract (chitin-rich) is studied as a novel biomaterial for the first time to synthesize silver NPs (less than 50 nm); chitin is the second most abundant polymer after cellulose on earth. The physicochemical properties of these NPs were analyzed using UV-visible spectroscopy, X-ray diffraction, and transmission electron microscopy (TEM). The insecticidal effect of ensuing NPs was examined on the mortality of Aphis gossypii under laboratory conditions; 48 h after treatments of A. gossypii with silver NPs (100 μg/ml), the mortality rate in treated aphids was about 40% (an average), while an average percentage of losses in the control sample was about 10%. These results indicate the lethal effect of green-synthesized silver NPs on A. gossypii, in vitro. Greener synthesis of silver nanoparticles using American cockroach wings and their insecticidal activities.
Collapse
Affiliation(s)
- Mehrdad Khatami
- NanoBioelectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran.,Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Farideh Mosazade
- NanoBioelectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Majid Darroudi
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Borhani
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Gong M, Xiao S, Yu X, Dong C, Ji J, Zhang D, Xing M. Research progress of photocatalytic sterilization over semiconductors. RSC Adv 2019; 9:19278-19284. [PMID: 35519411 PMCID: PMC9065562 DOI: 10.1039/c9ra01826c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/12/2019] [Indexed: 11/21/2022] Open
Abstract
With increasingly serious environmental issues, practical applications of semiconductor photocatalysts for environmental purification have attracted broad attention. Semiconductor photocatalysts for the disinfection of soil surfaces, air and water are of great interest.
Collapse
Affiliation(s)
- Mingfu Gong
- Department of Radiology
- Second Affiliated Hospital
- Army Medical University
- Chongqing 400037
- P. R. China
| | - Shilin Xiao
- Department of Radiology
- Second Affiliated Hospital
- Army Medical University
- Chongqing 400037
- P. R. China
| | - Xian Yu
- Department of Radiology
- Second Affiliated Hospital
- Army Medical University
- Chongqing 400037
- P. R. China
| | - Chencheng Dong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jiahui Ji
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Dong Zhang
- Department of Radiology
- Second Affiliated Hospital
- Army Medical University
- Chongqing 400037
- P. R. China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|