1
|
Kaplan MJ. Exploring the Role of Neutrophil Extracellular Traps in Systemic Lupus Erythematosus: A Clinical Case Study and Comprehensive Review. Arthritis Rheumatol 2025; 77:247-252. [PMID: 39402725 DOI: 10.1002/art.43019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024]
Affiliation(s)
- Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| |
Collapse
|
2
|
Zawrotniak M, Satala D, Juszczak M, Bras G, Rapala-Kozik M. Candida albicans aspartyl protease (Sap6) inhibits neutrophil function via a "Trojan horse" mechanism. Sci Rep 2025; 15:6946. [PMID: 40011643 DOI: 10.1038/s41598-025-91425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/20/2025] [Indexed: 02/28/2025] Open
Abstract
Candida albicans, a prevalent fungal pathogen, employs aspartyl proteases such as Sap6 to evade immune defenses, challenging our understanding of host‒pathogen interactions. This research examined the impact of Sap6 on neutrophil responses, which are crucial for innate immunity. Employing flow cytometry and fluorescence microscopy, we explored how Sap6 affects neutrophil functions, particularly by focusing on reactive oxygen species (ROS) production, neutrophil extracellular traps release (NETosis), and apoptosis. Our findings revealed Sap6's unique ability to bind and internalize in neutrophils, significantly attenuating ROS production through proteolytic damage to NADPH oxidase, resulting in blocking the ROS-dependent NETosis pathway. This disruption in neutrophil functions by Sap6 suggested the presence of a 'Trojan horse' mechanism by C. albicans. This mechanism reveals a sophisticated immune evasion strategy, shedding light on fungal pathogenicity and host immune interactions. Understanding fungal proteases in immune modulation could inspire new therapeutic approaches for fungal infections.
Collapse
Affiliation(s)
- Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Grażyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
3
|
Azzouz D, Palaniyar N. How Do ROS Induce NETosis? Oxidative DNA Damage, DNA Repair, and Chromatin Decondensation. Biomolecules 2024; 14:1307. [PMID: 39456240 PMCID: PMC11505619 DOI: 10.3390/biom14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, DNA-based, web-like structures adorned with cytotoxic proteins. They play a crucial role in antimicrobial defense but are also implicated in autoimmune diseases and tissue injury. The process of NET formation, known as NETosis, is a regulated cell death mechanism that involves the release of these structures and is unique to neutrophils. NETosis is heavily dependent on the production of reactive oxygen species (ROS), which can be generated either through NADPH oxidase (NOX) or mitochondrial pathways, leading to NOX-dependent or NOX-independent NETosis, respectively. Recent research has revealed an intricate interplay between ROS production, DNA repair, and NET formation in different contexts. UV radiation can trigger a combined process of NETosis and apoptosis, known as apoNETosis, driven by mitochondrial ROS and DNA repair. Similarly, in calcium ionophore-induced NETosis, both ROS and DNA repair are key components, but only play a partial role. In the case of bacterial infections, the early stages of DNA repair are pivotal. Interestingly, in serum-free conditions, spontaneous NETosis occurs through NOX-derived ROS, with early-stage DNA repair inhibition halting the process, while late-stage inhibition increases it. The intricate balance between DNA repair processes and ROS production appears to be a critical factor in regulating NET formation, with different pathways being activated depending on the nature of the stimulus. These findings not only deepen our understanding of the mechanisms behind NETosis but also suggest potential therapeutic targets for conditions where NETs contribute to disease pathology.
Collapse
Affiliation(s)
- Dhia Azzouz
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
4
|
Inaba I, Hiramoto K, Yamate Y, Morita A, Tsutsumi T, Yasuda H, Sato EF. Inhibiting Neutrophil Extracellular Traps Protects against Ultraviolet B-Induced Skin Damage: Effects of Hochu-ekki-to and DNase I. Int J Mol Sci 2024; 25:1723. [PMID: 38339001 PMCID: PMC10855064 DOI: 10.3390/ijms25031723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
UV-B radiation induces sunburn, and neutrophils are pivotal in this inflammation. In this study, we examined the potential involvement of neutrophil extracellular traps (NETs) in ultraviolet B (UVB)-induced skin inflammation, correlating the skin inflammation-mitigating effects of Hochu-ekki-to on UV-B irradiation and NETs. To elucidate NET distribution in the dorsal skin, male ICR mice, exposed to UVB irradiation, were immunohistologically analyzed to detect citrullinated histone H3 (citH3) and peptidylarginine deiminase 4 (PAD4). Reactive oxygen species (ROS) production in the bloodstream was analyzed. To establish the involvement of NET-released DNA in this inflammatory response, mice were UV-B irradiated following the intraperitoneal administration of DNase I. In vitro experiments were performed to scrutinize the impact of Hochu-ekki-to on A23187-induced NETs in neutrophil-like HL-60 cells. UV-B irradiation induced dorsal skin inflammation, coinciding with a significant increase in citH3 and PAD4 expression. Administration of DNase I attenuated UV-B-induced skin inflammation, whereas Hochu-ekki-to administration considerably suppressed the inflammation, correlating with diminished levels of citH3 and PAD4 in the dorsal skin. UV-B irradiation conspicuously augmented ROS and hydrogen peroxide (H2O2) production in the blood. Hochu-ekki-to significantly inhibited ROS and H2O2 generation. In vitro experiments demonstrated that Hochu-ekki-to notably inhibited A23187-induced NETs in differentiated neutrophil-like cells. Hence, NETs have been implicated in UV-B-induced skin inflammation, and their inhibition reduces cutaneous inflammation. Additionally, Hochu-ekki-to mitigated skin inflammation by impeding neutrophil infiltration and NETs in the dorsal skin of mice.
Collapse
Affiliation(s)
- Issei Inaba
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (I.I.); (K.H.); (Y.Y.); (A.M.); (T.T.)
| | - Keiichi Hiramoto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (I.I.); (K.H.); (Y.Y.); (A.M.); (T.T.)
| | - Yurika Yamate
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (I.I.); (K.H.); (Y.Y.); (A.M.); (T.T.)
| | - Akihiro Morita
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (I.I.); (K.H.); (Y.Y.); (A.M.); (T.T.)
| | - Tomonari Tsutsumi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (I.I.); (K.H.); (Y.Y.); (A.M.); (T.T.)
| | - Hiroyuki Yasuda
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi 5, Yamashina, Kyoto 607-8414, Japan;
| | - Eisuke F. Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (I.I.); (K.H.); (Y.Y.); (A.M.); (T.T.)
| |
Collapse
|
5
|
Hajialiasgary Najafabadi A, Soheilifar MH, Masoudi-Khoram N. Exosomes in skin photoaging: biological functions and therapeutic opportunity. Cell Commun Signal 2024; 22:32. [PMID: 38217034 PMCID: PMC10785444 DOI: 10.1186/s12964-023-01451-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024] Open
Abstract
Exosomes are tiny extracellular vesicles secreted by most cell types, which are filled with proteins, lipids, and nucleic acids (non-coding RNAs, mRNA, DNA), can be released by donor cells to subsequently modulate the function of recipient cells. Skin photoaging is the premature aging of the skin structures over time due to repeated exposure to ultraviolet (UV) which is evidenced by dyspigmentation, telangiectasias, roughness, rhytides, elastosis, and precancerous changes. Exosomes are associated with aging-related processes including, oxidative stress, inflammation, and senescence. Anti-aging features of exosomes have been implicated in various in vitro and pre-clinical studies. Stem cell-derived exosomes can restore skin physiological function and regenerate or rejuvenate damaged skin tissue through various mechanisms such as decreased expression of matrix metalloproteinase (MMP), increased collagen and elastin production, and modulation of intracellular signaling pathways as well as, intercellular communication. All these evidences are promising for the therapeutic potential of exosomes in skin photoaging. This review aims to investigate the molecular mechanisms and the effects of exosomes in photoaging.
Collapse
Affiliation(s)
- Amirhossein Hajialiasgary Najafabadi
- Department of Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, 37077, Goettingen, Germany
- Department of Pathology, Research Group Translational Epigenetics, University of Goettingen, 37075, Goettingen, Germany
| | | | - Nastaran Masoudi-Khoram
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Mrowicka M, Mrowicki J, Dragan G, Majsterek I. The importance of thiamine (vitamin B1) in humans. Biosci Rep 2023; 43:BSR20230374. [PMID: 37389565 PMCID: PMC10568373 DOI: 10.1042/bsr20230374] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Thiamine (thiamin, B1) is a vitamin necessary for proper cell function. It exists in a free form as a thiamine, or as a mono-, di- or triphosphate. Thiamine plays a special role in the body as a coenzyme necessary for the metabolism of carbohydrates, fats and proteins. In addition, it participates in the cellular respiration and oxidation of fatty acids: in malnourished people, high doses of glucose result in acute thiamine deficiency. It also participates in energy production in the mitochondria and protein synthesis. In addition, it is also needed to ensure the proper functioning of the central and peripheral nervous system, where it is involved in neurotransmitter synthesis. Its deficiency leads to mitochondrial dysfunction, lactate and pyruvate accumulation, and consequently to focal thalamic degeneration, manifested as Wernicke's encephalopathy or Wernicke-Korsakoff syndrome. It can also lead to severe or even fatal neurologic and cardiovascular complications, including heart failure, neuropathy leading to ataxia and paralysis, confusion, or delirium. The most common risk factor for thiamine deficiency is alcohol abuse. This paper presents current knowledge of the biological functions of thiamine, its antioxidant properties, and the effects of its deficiency in the body.
Collapse
Affiliation(s)
- Małgorzata Mrowicka
- Małgorzata Mrowicka, Jerzy Mrowicki, Grzegorz Dragan, Ireneusz Majsterek, Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Jerzy Mrowicki
- Małgorzata Mrowicka, Jerzy Mrowicki, Grzegorz Dragan, Ireneusz Majsterek, Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Grzegorz Dragan
- Małgorzata Mrowicka, Jerzy Mrowicki, Grzegorz Dragan, Ireneusz Majsterek, Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Małgorzata Mrowicka, Jerzy Mrowicki, Grzegorz Dragan, Ireneusz Majsterek, Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| |
Collapse
|
7
|
Goldberg I, Granot G, Telerman A, Partouche S, Shochat T, Halperin E, Gafter-Gvili A, Shargian L, Yeshurun M, Raanani P, Wolach O, Yahalom V. Extracorporeal photopheresis induces NETosis in neutrophils derived from patients with chronic graft-vs-host disease. J Clin Apher 2023; 38:615-621. [PMID: 37439388 DOI: 10.1002/jca.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Extracorporeal photopheresis (ECP) is considered an effective treatment for patients with chronic graft vs host disease (cGVHD) and demonstrates efficacy in ameliorating GVHD. The mechanism by which ECP acts against cGVHD is not fully understood. Preliminary observations have hinted at the potential involvement of neutrophil extracellular traps (NETs) formation in the pathogenesis of cGVHD. We aimed to assess the influence of ECP on the formation of NETs in patients with cGVHD as a potential mechanism in this setting. METHODS Patients treated with ECP for cGVHD at the Rabin Medical Center were included in this study. Blood samples were obtained at three different time points: before starting an ECP cycle, at the end of the first day of treatment, and 24 h following the initiation of the ECP treatment cycle. Neutrophils were harvested from all blood samples. NET formation was assessed by measurement of NET-bound specific neutrophil elastase activity and by immunofluorescence staining. RESULTS Six patients (two females and four males) with cGVHD were included in the study. We observed a significant increase in NET formation among all six patients following ECP. Net-bound specific neutrophil elastase activity was elevated from a median value of 2.23 mU/mL (interquartile range [IQR] 2.06-2.47 mU/mL) at baseline to a median value of 13.06 mU/mL (IQR 10.27-15.97 mU/mL) immediately after the treatment and to a peak median value of 14.73 mU/mL (IQR 9.6-22.38 mU/mL) 24 h following the initiation of the ECP cycle. A qualitative assessment of NET formation using immunofluorescence staining has demonstrated markedly increased expression of citrullinated histone H3, a marker of NET formation, following ECP treatment. CONCLUSIONS Our preliminary data indicate that ECP induces NET formation among patients with cGVHD. The contribution of increased NET formation to the therapeutic effect of cGVHD should be further investigated.
Collapse
Affiliation(s)
- Idan Goldberg
- Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler School Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine F - Recanati, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Galit Granot
- Felsenstein Medical Research Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Alona Telerman
- Felsenstein Medical Research Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Shirly Partouche
- Felsenstein Medical Research Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Tzippy Shochat
- Statistical Consulting Unit, Beilinson Hospital, Rabin Medical Centre, Petah Tikva, Israel
| | - Erez Halperin
- Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Anat Gafter-Gvili
- Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler School Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine A, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Liat Shargian
- Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler School Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Yeshurun
- Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler School Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pia Raanani
- Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler School Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Wolach
- Institute of Hematology, Davidoff Cancer Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
- Sackler School Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vered Yahalom
- Sackler School Medicine, Tel Aviv University, Tel Aviv, Israel
- Blood Services & Apheresis Institute, Rabin Medical Center, Petah Tikva, Israel
| |
Collapse
|
8
|
Li J, Yin L, Chen S, Li Z, Ding J, Wu J, Yang K, Xu J. The perspectives of NETosis on the progression of obesity and obesity-related diseases: mechanisms and applications. Front Cell Dev Biol 2023; 11:1221361. [PMID: 37649550 PMCID: PMC10465184 DOI: 10.3389/fcell.2023.1221361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Obesity is a disease commonly associated with urbanization and can also be characterized as a systemic, chronic metabolic condition resulting from an imbalance between energy intake and expenditure. The World Health Organization (WHO) has identified obesity as the most serious chronic disease that is increasingly prevalent in the world population. If left untreated, it can lead to dangerous health issues such as hypertension, hyperglycemia, hyperlipidemia, hyperuricemia, nonalcoholic steatohepatitis, atherosclerosis, and vulnerability to cardiovascular and cerebrovascular events. The specific mechanisms by which obesity affects the development of these diseases can be refined to the effect on immune cells. Existing studies have shown that the development of obesity and its associated diseases is closely related to the balance or lack thereof in the number and function of various immune cells, of which neutrophils are the most abundant immune cells in humans, infiltrating and accumulating in the adipose tissues of obese individuals, whereas NETosis, as a newly discovered type of neutrophil-related cell death, its role in the development of obesity and related diseases is increasingly emphasized. The article reviews the significant role that NETosis plays in the development of obesity and related diseases, such as diabetes and its complications. It discusses the epidemiology and negative impacts of obesity, explains the mechanisms of NETosis, and examines its potential as a targeted drug to treat obesity and associated ailments.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijia Yin
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Siyi Chen
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Raghav PK, Mann Z, Ahluwalia SK, Rajalingam R. Potential treatments of COVID-19: Drug repurposing and therapeutic interventions. J Pharmacol Sci 2023; 152:1-21. [PMID: 37059487 PMCID: PMC9930377 DOI: 10.1016/j.jphs.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infection is caused when Spike-protein (S-protein) present on the surface of SARS-CoV-2 interacts with human cell surface receptor, Angiotensin-converting enzyme 2 (ACE2). This binding facilitates SARS-CoV-2 genome entry into the human cells, which in turn causes infection. Since the beginning of the pandemic, many different therapies have been developed to combat COVID-19, including treatment and prevention. This review is focused on the currently adapted and certain other potential therapies for COVID-19 treatment, which include drug repurposing, vaccines and drug-free therapies. The efficacy of various treatment options is constantly being tested through clinical trials and in vivo studies before they are made medically available to the public.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| | | | - Simran Kaur Ahluwalia
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Radiation from UV-A to Red Light Induces ROS-Dependent Release of Neutrophil Extracellular Traps. Int J Mol Sci 2023; 24:ijms24065770. [PMID: 36982847 PMCID: PMC10051944 DOI: 10.3390/ijms24065770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Neutrophils release decondensed chromatin or extracellular traps (NETs) in response to various physiological and pharmacological stimuli. Apart from host defensive functions, NETs play an essential role in the pathogenesis of various autoimmune, inflammatory, and malignant diseases. In recent years, studies have been performed on photo-induced NET formation, mainly activated by UV radiation. Understanding the mechanisms of NET release under the influence of UV and visible light is important to control the consequences of the damaging effects of electromagnetic radiation. Raman spectroscopy was applied to record characteristic Raman frequencies of various reactive oxygen species (ROS) and low-frequency lattice vibrational modes for citrulline. NETosis was induced by irradiation with wavelength-switchable LED sources. Fluorescence microscopy was used to visualize and quantify NET release. The ability of five wavelengths of radiation, from UV-A to red light, to induce NETosis was investigated at three different energy doses. We demonstrated, for the first time, that NET formation is activated not only by UV-A but also by three spectra of visible light: blue, green, and orange, in a dose-dependent manner. Using inhibitory analysis, we established that light-induced NETosis proceeds through NADPH oxidase and PAD4. The development of new drugs designed to suppress NETosis, especially when induced by exposure to intense UV and visible light, can help to mitigate light-induced photoaging and other damaging effects of electromagnetic radiation.
Collapse
|
11
|
Melo CPB, Saito P, Martinez RM, Staurengo-Ferrari L, Pinto IC, Rodrigues CCA, Badaro-Garcia S, Vignoli JA, Baracat MM, Bussmann AJC, Georgetti SR, Verri WA, Casagrande R. Aspirin-Triggered Resolvin D1 (AT-RvD1) Protects Mouse Skin against UVB-Induced Inflammation and Oxidative Stress. Molecules 2023; 28:molecules28052417. [PMID: 36903662 PMCID: PMC10005614 DOI: 10.3390/molecules28052417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Intense exposure to UVB radiation incites excessive production of reactive oxygen species (ROS) and inflammation. The resolution of inflammation is an active process orchestrated by a family of lipid molecules that includes AT-RvD1, a specialized proresolving lipid mediator (SPM). AT-RvD1 is derived from omega-3, which presents anti-inflammatory activity and reduces oxidative stress markers. The present work aims to investigate the protective effect of AT-RvD1 on UVB-induced inflammation and oxidative stress in hairless mice. Animals were first treated with 30, 100, and 300 pg/animal AT-RvD1 (i.v.) and then exposed to UVB (4.14 J/cm2). The results showed that 300 pg/animal of AT-RvD1 could restrict skin edema, neutrophil and mast cell infiltration, COX-2 mRNA expression, cytokine release, and MMP-9 activity and restore skin antioxidant capacity as per FRAP and ABTS assays and control O2•- production, lipoperoxidation, epidermal thickening, and sunburn cells development. AT-RvD1 could reverse the UVB-induced downregulation of Nrf2 and its downstream targets GSH, catalase, and NOQ-1. Our results suggest that by upregulating the Nrf2 pathway, AT-RvD1 promotes the expression of ARE genes, restoring the skin's natural antioxidant defense against UVB exposition to avoid oxidative stress, inflammation, and tissue damage.
Collapse
Affiliation(s)
- Cristina P. B. Melo
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Priscila Saito
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Renata M. Martinez
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Larissa Staurengo-Ferrari
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Immunology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Ingrid C. Pinto
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Camilla C. A. Rodrigues
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Stephanie Badaro-Garcia
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Josiane A. Vignoli
- Department of Biochemistry and Biotechnology, Centre of Exact Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Marcela M. Baracat
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Allan J. C. Bussmann
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
| | - Sandra R. Georgetti
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| |
Collapse
|
12
|
Sun G, Wang J, Xu X, Zhai L, Li Z, Liu J, Zhao D, Jiang R, Sun L. Panax ginseng Meyer cv. Silvatica phenolic acids protect DNA from oxidative damage by activating Nrf2 to protect HFF-1 cells from UVA-induced photoaging. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115883. [PMID: 36328205 DOI: 10.1016/j.jep.2022.115883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Long-wave ultraviolet A (UVA) causes skin aging by damaging the fine structures of the skin, such as elastic fibers and collagen fibers, through oxidation. Currently, the use of plant extracts to protect skin from photoaging is a popular method. Panax ginseng C.A. Meyer exerts commendable anti-photoaging and antioxidant effects. P. ginseng Meyer cv. Silvatica, also known as forest ginseng (FG), is a type of ginseng cultivated by artificially simulating the growth environment of wild ginseng aged >15 years. However, there are only a few reports on its anti-photoaging effect on the skin caused by UVA stimulation. AIM OF THE STUDY To investigate whether isolated and extracted FG can inhibit skin photoaging as well as to explore its action mechanism. METHODS The FG extract (FGE) was obtained from the supernatant of FG after water extraction and alcohol precipitation with the D101 resin. The composition and content of phenolic acids in FGE were determined by high-performance liquid chromatography (HPLC). The MTT assay was performed to detect cell viability. The ratio of SA-β-GAL-positive cells, CoL-I level, 8-OHdG concentration, MDA, GSH, GPx, SOD, and CAT activity were measured using relevant kits. Furthermore, cell cycle alterations and ROS accumulation were assessed by flow cytometry. The expressions of p53, p21, p16, and Keap1 protein were detected by Western blotting. The Nrf2 translocation was monitored by immunofluorescence staining. RESULTS The findings revealed that FGE significantly restored UVA injury-induced cell viability, reduced the proportion of SA-β-GAL-positive cells, and increased the level of CoL-I secretion in a dose-dependent manner, where the main ingredients were chlorogenic acid, protocatechuic acid, salicylic acid, p-hydroxybenzoic acid, vanillic acid, ferulic acid, and caffeic acid. Further studies indicated that this phenolic acid mixture (PAM) could alleviate UVA-induced HFF-1 cell cycle arrest and protect the DNA from oxidative damage caused by UVA stimulation. Moreover, the expressions of cell cycle regulatory proteins p53, p21, and p16 and the accumulation of ROS were inhibited, the translocation of Nrf2 into the nucleus was promoted, the expression of Keap1 protein was inhibited, the activity of intracellular antioxidant indicators GSH, GPx, SOD, and CAT was enhanced, and the expression of malondialdehyde (MDA) was inhibited. CONCLUSIONS Collectively, our results demonstrated that FG phenolic acids protect DNA from oxidative damage by activating Nrf2 to safeguard the skin from photoaging induced by UVA stimulation.
Collapse
Affiliation(s)
- Guang Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Jing Wang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Lu Zhai
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Zhenzhuo Li
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Jianzeng Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China; Jilin Province Traditional Chinese Medicine Characteristic Health Product Research and Development Cross-regional Cooperation Science and Technology Innovation Center, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China.
| |
Collapse
|
13
|
Bai F, Fan C, Lin X, Wang HY, Wu B, Feng CL, Zhou R, Wu YW, Tang W. Hemin protects UVB-induced skin damage through inhibiting keratinocytes apoptosis and reducing neutrophil infiltration. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112604. [PMID: 36525776 DOI: 10.1016/j.jphotobiol.2022.112604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Ultraviolet-B (UVB) exposure on the skin triggers apoptosis, oxidative stress and acute inflammatory responses, which eventually increases the risk of various skin disorders. Hemin, an iron-binding porphyrin, has been clinically used for porphyria treatment. However, whether hemin contributes to the skin protection against UVB injury remains to be elucidated. Here, we found that hemin treatment (10 and 20 mg/kg) by intraperitoneal administration could dramatically relieve UVB irradiation-induced skin damage featured by erythema, edema, epidermal hyperplasia and collagen loss in C57BL/6 J mice. Importantly, hemin treatment attenuated UVB irradiation-triggered cell apoptosis in skin epidermis. Consistently, hemin (10, 20 μM) treatment decreased Caspase-3 activation and protected against UVB-induced apoptosis in HaCaT cells. Besides, hemin treatment reduced the infiltration of neutrophils in skin under UVB irradiation, thus restrained neutrophil extracellular traps (NET) formation and myeloperoxidase (MPO) release. We further revealed that hemin inhibited the expression of inflammation associated cytokines and chemokines in UVB-induced HaCaT cells and blocked the chemotaxis of dHL-60 cells to preconditioned media from HaCaT culture upon UVB irradiation. Furthermore, hemin inhibited the excessive maturation and mobilization of bone marrow neutrophils and rectified the proportion of abnormally elevated neutrophils in the blood under UVB irradiation. In conclusion, our study showed that hemin treatment protects against UVB-induced skin damage through inhibiting keratinocytes apoptosis, and suppressing neutrophils infiltration in the skin via externally restraining the keratinocyte attraction and internally regulating bone marrow neutrophil maturation and mobilization, suggesting that hemin is an effective drug candidate for the therapy of UVB damage.
Collapse
Affiliation(s)
- Fang Bai
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Fan
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xi Lin
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao-Yu Wang
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Chun-Lan Feng
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zhou
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Wei Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wei Tang
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Chen Q, Zhang H, Yang Y, Zhang S, Wang J, Zhang D, Yu H. Metformin Attenuates UVA-Induced Skin Photoaging by Suppressing Mitophagy and the PI3K/AKT/mTOR Pathway. Int J Mol Sci 2022; 23:ijms23136960. [PMID: 35805987 PMCID: PMC9266365 DOI: 10.3390/ijms23136960] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Ultraviolet (UV) radiation is a major cause of photoaging that can induce DNA damage, oxidative stress, and cellular aging. Metformin (MF) can repair DNA damage, scavenge reactive oxygen species (ROS), and protect cells. However, the mechanism by which MF inhibits cell senescence in chronic skin damage induced by UVA is unclear. In this study, human foreskin fibroblasts (HFFs) treated with UVA were used as an in vitro model and UVA-induced skin photoaging in Kunming mice was used as an in vivo model to investigate the potential skin protective mechanism of MF. The results revealed that MF treatment attenuated UVA-induced cell viability, skin aging, and activation of the PI3K/AKT/mTOR signaling pathway. Furthermore, MF treatment alleviated the mitochondrial oxidative stress and decreased mitophagy. Knockdown of Parkin by siRNA increased the clearance of MF in senescent cells. The treatment of Kunming mice with MF at a dose of 10 mg/kg/day significantly reduced UVA-induced skin roughness, epidermal thinning, collagen degradation, and skin aging. In conclusion, our experimental results suggest that MF exerts anti-photoaging effects by inhibiting mitophagy and the PI3K/AKT/mTOR signaling pathway. Therefore, our study improves the current understanding of the protective mechanism of MF against photoaging.
Collapse
Affiliation(s)
- Qiuyan Chen
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
| | - Haiying Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
| | - Yimeng Yang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
| | - Shuming Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
| | - Jing Wang
- Department of Pharmacology, School of Pharmacy, Jilin University, Changchun 130021, China;
| | - Dawei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
| | - Huimei Yu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
- Correspondence: ; Tel.: +86-0-431-8561-9485
| |
Collapse
|
15
|
Hong J, Mu T, Sun H, Blecker C, Richel A. Photoprotective effects of sweet potato leaf polyphenols and caffeic acid against UV-induced skin-damage in BALB/C nude mice. Food Funct 2022; 13:7075-7087. [PMID: 35695741 DOI: 10.1039/d2fo00425a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed at clarifying the mechanism by which sweet potato leaf polyphenols (SPLPs) ameliorate ultraviolet (UV) radiation damage, using the BALB/c hairless female mouse model. The moisture and hydroxyproline (HYP) contents of the model mouse skin and the thickness of the epidermis and dermis were determined by staining and histological examination. Anti-oxidative enzyme activities, malondialdehyde (MDA) content, and protein carbonyl content in skin tissue and serum were investigated. Expression of inflammatory markers and mitogen-activated protein kinase signaling pathways were evaluated. Topical caffeic acid at 30 mg kg-1 most strongly inhibited the decrease in skin moisture, HYP content, and the thickening of the epidermis. Topical SPLP at 100 mg kg-1 most significantly inhibited the dermal thickening, increased the activities of the superoxide dismutase, catalase as well as glutathione peroxidase, and decreased the content of serum MDA and protein carbonyls markedly. Furthermore, the topical SPLP suppressed the UV-induced rise in the inflammatory markers MMP-1, TNF-α, and NF-κB, and alleviated phosphorylation levels of the stress-signaling proteins JNK and p38. Thus, topical SPLP provided the best overall protection for mouse skin from UV-induced damage.
Collapse
Affiliation(s)
- Jingyang Hong
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China. .,University of Liège, Gembloux Agro-Bio Tech, Department of Food Science and Formulation, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, Gembloux, Belgium.,University of Liège, Gembloux Agro-Bio Tech, Biological and Industrial Chemistry Unit, Passage des Déportés, 2, 5030 Gembloux, Belgium
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Christophe Blecker
- University of Liège, Gembloux Agro-Bio Tech, Department of Food Science and Formulation, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, Gembloux, Belgium
| | - Aurore Richel
- University of Liège, Gembloux Agro-Bio Tech, Biological and Industrial Chemistry Unit, Passage des Déportés, 2, 5030 Gembloux, Belgium
| |
Collapse
|
16
|
Snell JA, Jandova J, Wondrak GT. Hypochlorous Acid: From Innate Immune Factor and Environmental Toxicant to Chemopreventive Agent Targeting Solar UV-Induced Skin Cancer. Front Oncol 2022; 12:887220. [PMID: 35574306 PMCID: PMC9106365 DOI: 10.3389/fonc.2022.887220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
A multitude of extrinsic environmental factors (referred to in their entirety as the 'skin exposome') impact structure and function of skin and its corresponding cellular components. The complex (i.e. additive, antagonistic, or synergistic) interactions between multiple extrinsic (exposome) and intrinsic (biological) factors are important determinants of skin health outcomes. Here, we review the role of hypochlorous acid (HOCl) as an emerging component of the skin exposome serving molecular functions as an innate immune factor, environmental toxicant, and topical chemopreventive agent targeting solar UV-induced skin cancer. HOCl [and its corresponding anion (OCl-; hypochlorite)], a weak halogen-based acid and powerful oxidant, serves two seemingly unrelated molecular roles: (i) as an innate immune factor [acting as a myeloperoxidase (MPO)-derived microbicidal factor] and (ii) as a chemical disinfectant used in freshwater processing on a global scale, both in the context of drinking water safety and recreational freshwater use. Physicochemical properties (including redox potential and photon absorptivity) determine chemical reactivity of HOCl towards select biochemical targets [i.e. proteins (e.g. IKK, GRP78, HSA, Keap1/NRF2), lipids, and nucleic acids], essential to its role in innate immunity, antimicrobial disinfection, and therapeutic anti-inflammatory use. Recent studies have explored the interaction between solar UV and HOCl-related environmental co-exposures identifying a heretofore unrecognized photo-chemopreventive activity of topical HOCl and chlorination stress that blocks tumorigenic inflammatory progression in UV-induced high-risk SKH-1 mouse skin, a finding with potential implications for the prevention of human nonmelanoma skin photocarcinogenesis.
Collapse
Affiliation(s)
| | | | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
17
|
Mitigating the negative impacts of marine invasive species – Sargassum muticum - a key seaweed for skincare products development. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Lu PH, Wang JY, Chiu LY, Huang YT, Hung CF, Wu NL. Spleen tyrosine kinase regulates keratinocyte inflammasome activation and skin inflammation induced by UVB irradiation. Free Radic Biol Med 2022; 180:121-133. [PMID: 35007704 DOI: 10.1016/j.freeradbiomed.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 12/31/2022]
Abstract
UVB can induce inflammatory responses contributing to diverse skin damage. UVB-triggered inflammasome activation of human keratinocytes underlies UVB-induced skin sunburn reaction. Pleiotropic functions of spleen tyrosine kinase (Syk) have rendered it as a potential therapeutic target. In immunocytes, Syk modulates immunoreceptor signaling and NLRP3 inflammasome activation. In skin, Syk mediates EGFR signaling, regulates keratinocyte differentiation and is involved in inflammatory disorders. However, roles of Syk in UVB-induced inflammasome activation in keratinocytes remain elusive. We investigated roles of keratinocyte Syk in UVB-triggered photo-responses. Primary normal human epidermal keratinocytes (NHEKs) isolated from skin were used. Syk knockdown or Syk inhibitor R406 was applied to investigate functions of keratinocyte Syk in UVB photobiology. The possible in vivo role of Syk was evaluated by checking UVB-induced skin damage in R406-treated mice. UVB was able to induce Syk phosphorylation in NHEKs that could be regulated by reactive oxygen species (ROS) generation and EGFR. Syk knockdown or Syk inhibitor (R406) treatment reduced UVB-triggered apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) crosslinking, procaspase-1 cleavage, active IL-1β formation, and gasdermin D activation, indicating roles of Syk in UVB-triggered inflammasome activation in keratinocytes. UVB-induced production of IL-8, TNF-α, ROS, and phosphorylation of JNK and p38 were attenuated after Syk knockdown or inhibition. R406 ameliorated UVB-induced mouse skin damage, including erythema and transepidermal water loss (TEWL). Thus, Syk participated in UVB-induced inflammasome activation and inflammatory response in vitro and in vivo, suggesting potential photo-protective effects of Syk inhibition in UVB-induced skin inflammation.
Collapse
Affiliation(s)
- Po-Hsuan Lu
- Department of Dermatology, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan; Department of Medicine, MacKay Medical College, No.46, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 25245, Taiwan.
| | - Jen-Yu Wang
- Department of Dermatology, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, No. 42, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 25245, Taiwan.
| | - Ling-Ya Chiu
- Department of Medical Research, MacKay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan; Department of Pharmacology, College of Medicine, National Taiwan University, No.1 Jen Ai Road Section 1, Taipei, 100233, Taiwan.
| | - Yi-Ting Huang
- Department of Medicine, MacKay Medical College, No.46, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 25245, Taiwan; Department of Medical Research, MacKay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan.
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 242062, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City, 10449, Taiwan; Department of Medicine, MacKay Medical College, No.46, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 25245, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, No. 42, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 25245, Taiwan; Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan.
| |
Collapse
|
19
|
Pihl C, Togsverd-Bo K, Andersen F, Haedersdal M, Bjerring P, Lerche CM. Keratinocyte Carcinoma and Photoprevention: The Protective Actions of Repurposed Pharmaceuticals, Phytochemicals and Vitamins. Cancers (Basel) 2021; 13:cancers13153684. [PMID: 34359586 PMCID: PMC8345172 DOI: 10.3390/cancers13153684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Keratinocyte carcinoma is the most common type of cancer. Sun exposure and ultraviolet radiation are significant contributors to the development of carcinogenesis, mediated by DNA damage, increased oxidative stress, inflammation, immunosuppression and dysregulated signal transduction. Photoprevention involves using different compounds to delay or prevent ultraviolet radiation-induced skin cancer. In this review, we look at new avenues for systemic photoprevention that are based on pharmaceuticals, plant-derived phytochemicals and vitamins. We also investigate the mechanisms underlying these strategies for preventing the onset of carcinogenesis. Abstract Ultraviolet radiation (UVR) arising from sun exposure represents a major risk factor in the development of keratinocyte carcinomas (KCs). UVR exposure induces dysregulated signal transduction, oxidative stress, inflammation, immunosuppression and DNA damage, all of which promote the induction and development of photocarcinogenesis. Because the incidence of KCs is increasing, better prevention strategies are necessary. In the concept of photoprevention, protective compounds are administered either topically or systemically to prevent the effects of UVR and the development of skin cancer. In this review, we provide descriptions of the pathways underlying photocarcinogenesis and an overview of selected photoprotective compounds, such as repurposed pharmaceuticals, plant-derived phytochemicals and vitamins. We discuss the protective potential of these compounds and their effects in pre-clinical and human trials, summarising the mechanisms of action involved in preventing photocarcinogenesis.
Collapse
Affiliation(s)
- Celina Pihl
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence:
| | - Katrine Togsverd-Bo
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Flemming Andersen
- Department of Dermatology, Aalborg University Hospital, 9100 Aalborg, Denmark; (F.A.); (P.B.)
- Private Hospital Molholm, 7100 Vejle, Denmark
| | - Merete Haedersdal
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Peter Bjerring
- Department of Dermatology, Aalborg University Hospital, 9100 Aalborg, Denmark; (F.A.); (P.B.)
| | - Catharina Margrethe Lerche
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Peloi KE, Ratti BA, Nakamura CV, Neal CJ, Sakthivel TS, Singh S, Seal S, de Oliveira Silva Lautenschlager S. Engineered nanoceria modulate neutrophil oxidative response to low doses of UV-B radiation through the inhibition of reactive oxygen species production. J Biomed Mater Res A 2021; 109:2570-2579. [PMID: 34173708 DOI: 10.1002/jbm.a.37251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/06/2022]
Abstract
To avoid aging and ultraviolet mediated skin disease the cell repair machinery must work properly. Neutrophils, also known as polymorphonuclear leukocytes, are the first and most abundant cell types which infiltrate sites of irradiation and play an important role in restoring the microenvironment homeostasis. However, the infiltration of neutrophils in ultraviolet-B (UV-B) irradiated skin might also contribute to the pathophysiology of skin disease. The polymorphonuclear leukocytes activation induced by UV-B exposure may lead to prolonged, sustained NADPH oxidase activation followed by an increase in reactive oxygen species (ROS) production. Our previous work showed that cerium oxide nanoparticles can protect L929 fibroblasts from ultraviolet-B induced damage. Herein, we further our investigation of engineered cerium oxide nanoparticles (CNP) in conferring radiation protection specifically in modulation of neutrophils' oxidative response under low dose of UV-B radiation. Our data showed that even low doses of UV-B radiation activate neutrophils' oxidative response and that the antioxidant, ROS-sensitive redox activities of engineered CNPs are able to inhibit the effects of NADPH oxidase activation while conferring catalase and superoxide dismutase mimetic activity. Further, our investigations revealed similar levels of total ROS scavenging for both CNP formulations, despite substantial differences in cerium redox states and specific enzyme-mimetic reaction activity. We therefore determine that CNP activity in mitigating the effects of neutrophils' oxidative response, through the decrease of ROS and of cell damage such as chromatin condensation, suggests potential utility as a radio-protectant/therapeutic against UV-B damage.
Collapse
Affiliation(s)
- Karen Elaine Peloi
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Bianca Altrão Ratti
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Celso Vataru Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Craig J Neal
- Nanoscience Technology Center, Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Tamil Selvan Sakthivel
- Nanoscience Technology Center, Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Sushant Singh
- Nanoscience Technology Center, Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, Florida, USA.,Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur, Chhattisgarh, India
| | - Sudpita Seal
- Nanoscience Technology Center, Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, Florida, USA.,College of Medicine, University of Central Florida, Orlando, Florida, USA
| | | |
Collapse
|
21
|
Susano P, Silva J, Alves C, Martins A, Gaspar H, Pinteus S, Mouga T, Goettert MI, Petrovski Ž, Branco LB, Pedrosa R. Unravelling the Dermatological Potential of the Brown Seaweed Carpomitra costata. Mar Drugs 2021; 19:135. [PMID: 33671016 PMCID: PMC7997182 DOI: 10.3390/md19030135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
The ever-increasing interest in keeping a young appearance and healthy skin has leveraged the skincare industry. This, coupled together with the increased concern regarding the safety of synthetic products, has boosted the demand for new and safer natural ingredients. Accordingly, the aim of this study was to evaluate the dermatological potential of the brown seaweed Carpomitra costata. The antioxidant, anti-enzymatic, antimicrobial, photoprotective and anti-inflammatory properties of five C. costata fractions (F1-F5) were evaluated. The ethyl acetate fraction (F3) demonstrated the most promising results, with the best ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals (EC50 of 140.1 µg/mL) and the capacity to reduce reactive oxygen species (ROS) production promoted by UVA and UVB radiation in 3T3 cells, revealing its antioxidant and photoprotective potential. This fraction also exhibited the highest anti-enzymatic capacity, inhibiting the activities of collagenase, elastase and tyrosinase (IC50 of 7.2, 4.8 and 85.9 µg/mL, respectively). Moreover, F3 showed anti-inflammatory potential, reducing TNF-α and IL-6 release induced by LPS treatment in RAW 264.7 cells. These bioactivities may be related to the presence of phenolic compounds, such as phlorotannins, as demonstrated by NMR analysis. The results highlight the potential of C. costata as a source of bioactive ingredients for further dermatological applications.
Collapse
Affiliation(s)
- Patrícia Susano
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (P.S.); (J.S.); (A.M.); (H.G.); (S.P.)
| | - Joana Silva
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (P.S.); (J.S.); (A.M.); (H.G.); (S.P.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (P.S.); (J.S.); (A.M.); (H.G.); (S.P.)
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (P.S.); (J.S.); (A.M.); (H.G.); (S.P.)
| | - Helena Gaspar
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (P.S.); (J.S.); (A.M.); (H.G.); (S.P.)
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (P.S.); (J.S.); (A.M.); (H.G.); (S.P.)
| | - Teresa Mouga
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal;
| | - Márcia Ines Goettert
- Cell Culture Laboratory, Postgraduate Programme in Biotechnology, University of Vale do Taquari-Univates, Lajeado, RS 95914-014, Brazil;
| | - Željko Petrovski
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (Ž.P.); (L.B.B.)
| | - Luís B. Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (Ž.P.); (L.B.B.)
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal;
| |
Collapse
|
22
|
Unravelling the Dermatological Potential of the Brown Seaweed Carpomitra costata. Mar Drugs 2021. [DOI: 10.3390/md19030135
expr 985274223 + 856008892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The ever-increasing interest in keeping a young appearance and healthy skin has leveraged the skincare industry. This, coupled together with the increased concern regarding the safety of synthetic products, has boosted the demand for new and safer natural ingredients. Accordingly, the aim of this study was to evaluate the dermatological potential of the brown seaweed Carpomitra costata. The antioxidant, anti-enzymatic, antimicrobial, photoprotective and anti-inflammatory properties of five C. costata fractions (F1–F5) were evaluated. The ethyl acetate fraction (F3) demonstrated the most promising results, with the best ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals (EC50 of 140.1 µg/mL) and the capacity to reduce reactive oxygen species (ROS) production promoted by UVA and UVB radiation in 3T3 cells, revealing its antioxidant and photoprotective potential. This fraction also exhibited the highest anti-enzymatic capacity, inhibiting the activities of collagenase, elastase and tyrosinase (IC50 of 7.2, 4.8 and 85.9 µg/mL, respectively). Moreover, F3 showed anti-inflammatory potential, reducing TNF-α and IL-6 release induced by LPS treatment in RAW 264.7 cells. These bioactivities may be related to the presence of phenolic compounds, such as phlorotannins, as demonstrated by NMR analysis. The results highlight the potential of C. costata as a source of bioactive ingredients for further dermatological applications.
Collapse
|
23
|
Park S, Kang S, Lee WJ. Menopause, Ultraviolet Exposure, and Low Water Intake Potentially Interact with the Genetic Variants Related to Collagen Metabolism Involved in Skin Wrinkle Risk in Middle-Aged Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042044. [PMID: 33669802 PMCID: PMC7922323 DOI: 10.3390/ijerph18042044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/31/2021] [Accepted: 02/11/2021] [Indexed: 12/03/2022]
Abstract
Genetic and environmental factors influence wrinkle development. We evaluated the polygenetic risk score (PRS) by pooling the selected single nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS) for wrinkles and the interaction of PRS with lifestyle factors in middle-aged women. Under the supervision of a dermatologist, the skin status of 128 women aged over 40 years old was evaluated with Mark-Vu, a skin diagnosis system. PRS was generated from the selected SNPs for wrinkle risk from the genome-wide association study. Lifestyle interactions with PRS were also evaluated for wrinkle risk. Participants in the wrinkled group were more likely to be post-menopausal, eat less fruit, take fewer vitamin supplements, exercise less, and be more tired after awakening in the morning than those in the less-wrinkled group. The PRS included EGFR_rs1861003, MMP16_rs6469206, and COL17A1_rs805698. Subjects with high PRS had a wrinkle risk 15.39-fold higher than those with low PRS after adjusting for covariates, and they had a 10.64-fold higher risk of a large skin pore size. Menopause, UV exposure, and water intake interacted with PRS for wrinkle risk: the participants with high PRS had a much higher incidence of wrinkle risk than those with low PRS, only among post-menopausal women and those with UV exposure. Only with low water intake did the participants with medium PRS have increased wrinkle risk. In conclusion, women aged >40 years with high PRS-related collagen metabolism may possibly avoid wrinkle risk by avoiding UV exposure by applying sunscreen, maintaining sufficient water intake, and managing estrogen deficiency.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, Baebang-Yup, Asan-Si, ChungNam-Do 336-795, Korea;
- Correspondence: ; Tel.: +82-41-540-5345; Fax: +82-41-548-0670
| | - Suna Kang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, Baebang-Yup, Asan-Si, ChungNam-Do 336-795, Korea;
| | - Woo Jae Lee
- City Dermatologic Clinic, Daejeon 34141, Korea;
| |
Collapse
|
24
|
Li Y, Li M, Weigel B, Mall M, Werth VP, Liu ML. Nuclear envelope rupture and NET formation is driven by PKCα-mediated lamin B disassembly. EMBO Rep 2020; 21:e48779. [PMID: 32537912 DOI: 10.15252/embr.201948779] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/23/2022] Open
Abstract
The nuclear lamina is essential for the structural integration of the nuclear envelope. Nuclear envelope rupture and chromatin externalization is a hallmark of the formation of neutrophil extracellular traps (NETs). NET release was described as a cellular lysis process; however, this notion has been questioned recently. Here, we report that during NET formation, nuclear lamin B is not fragmented by destructive proteolysis, but rather disassembled into intact full-length molecules. Furthermore, we demonstrate that nuclear translocation of PKCα, which serves as the kinase to induce lamin B phosphorylation and disassembly, results in nuclear envelope rupture. Decreasing lamin B phosphorylation by PKCα inhibition, genetic deletion, or by mutating the PKCα consensus sites on lamin B attenuates extracellular trap formation. In addition, strengthening the nuclear envelope by lamin B overexpression attenuates NET release in vivo and reduces levels of NET-associated inflammatory cytokines in UVB-irradiated skin of lamin B transgenic mice. Our findings advance the mechanistic understanding of NET formation by showing that PKCα-mediated lamin B phosphorylation drives nuclear envelope rupture for chromatin release in neutrophils.
Collapse
Affiliation(s)
- Yubin Li
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Minghui Li
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bettina Weigel
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.,HITBR Hector Institute for Translational Brain Research GmbH, Heidelberg, Germany.,Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Moritz Mall
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.,HITBR Hector Institute for Translational Brain Research GmbH, Heidelberg, Germany.,Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Victoria P Werth
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ming-Lin Liu
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Bernhard GH, Neale RE, Barnes PW, Neale PJ, Zepp RG, Wilson SR, Andrady AL, Bais AF, McKenzie RL, Aucamp PJ, Young PJ, Liley JB, Lucas RM, Yazar S, Rhodes LE, Byrne SN, Hollestein LM, Olsen CM, Young AR, Robson TM, Bornman JF, Jansen MAK, Robinson SA, Ballaré CL, Williamson CE, Rose KC, Banaszak AT, Häder DP, Hylander S, Wängberg SÅ, Austin AT, Hou WC, Paul ND, Madronich S, Sulzberger B, Solomon KR, Li H, Schikowski T, Longstreth J, Pandey KK, Heikkilä AM, White CC. Environmental effects of stratospheric ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2019. Photochem Photobiol Sci 2020; 19:542-584. [PMID: 32364555 PMCID: PMC7442302 DOI: 10.1039/d0pp90011g] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/24/2022]
Abstract
This assessment, by the United Nations Environment Programme (UNEP) Environmental Effects Assessment Panel (EEAP), one of three Panels informing the Parties to the Montreal Protocol, provides an update, since our previous extensive assessment (Photochem. Photobiol. Sci., 2019, 18, 595-828), of recent findings of current and projected interactive environmental effects of ultraviolet (UV) radiation, stratospheric ozone, and climate change. These effects include those on human health, air quality, terrestrial and aquatic ecosystems, biogeochemical cycles, and materials used in construction and other services. The present update evaluates further evidence of the consequences of human activity on climate change that are altering the exposure of organisms and ecosystems to UV radiation. This in turn reveals the interactive effects of many climate change factors with UV radiation that have implications for the atmosphere, feedbacks, contaminant fate and transport, organismal responses, and many outdoor materials including plastics, wood, and fabrics. The universal ratification of the Montreal Protocol, signed by 197 countries, has led to the regulation and phase-out of chemicals that deplete the stratospheric ozone layer. Although this treaty has had unprecedented success in protecting the ozone layer, and hence all life on Earth from damaging UV radiation, it is also making a substantial contribution to reducing climate warming because many of the chemicals under this treaty are greenhouse gases.
Collapse
Affiliation(s)
- G H Bernhard
- Biospherical Instruments Inc., San Diego, California, USA
| | - R E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - P W Barnes
- Biological Sciences and Environment Program, Loyola University, New Orleans, USA
| | - P J Neale
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - R G Zepp
- United States Environmental Protection Agency, Athens, Georgia, USA
| | - S R Wilson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - A L Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - A F Bais
- Department of Physics, Aristotle University of Thessaloniki, Greece
| | - R L McKenzie
- National Institute of Water & Atmospheric Research, Lauder, Central Otago, New Zealand
| | - P J Aucamp
- Ptersa Environmental Consultants, Faerie Glen, South Africa
| | - P J Young
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - J B Liley
- National Institute of Water & Atmospheric Research, Lauder, Central Otago, New Zealand
| | - R M Lucas
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - S Yazar
- Garvan Institute of Medical Research, Sydney, Australia
| | - L E Rhodes
- Faculty of Biology Medicine and Health, University of Manchester, and Salford Royal Hospital, Manchester, UK
| | - S N Byrne
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - L M Hollestein
- Erasmus MC, University Medical Center Rotterdam, Manchester, The Netherlands
| | - C M Olsen
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - A R Young
- St John's Institute of Dermatology, King's College, London, London, UK
| | - T M Robson
- Organismal & Evolutionary Biology, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | - M A K Jansen
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - S A Robinson
- Centre for Sustainable Ecosystem Solutions, University of Wollongong, Wollongong, Australia
| | - C L Ballaré
- Faculty of Agronomy and IFEVA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - C E Williamson
- Department of Biology, Miami University, Oxford, Ohio, USA
| | - K C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - A T Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - D -P Häder
- Department of Biology, Friedrich-Alexander University, Möhrendorf, Germany
| | - S Hylander
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - S -Å Wängberg
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - A T Austin
- Faculty of Agronomy and IFEVA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - W -C Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, Taiwan, China
| | - N D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - S Madronich
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - B Sulzberger
- Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - K R Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - H Li
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - T Schikowski
- Research Group of Environmental Epidemiology, Leibniz Institute of Environmental Medicine, Düsseldorf, Germany
| | - J Longstreth
- Institute for Global Risk Research, Bethesda, Maryland, USA
| | - K K Pandey
- Institute of Wood Science and Technology, Bengaluru, India
| | - A M Heikkilä
- Finnish Meteorological Institute, Helsinki, Finland
| | - C C White
- , 5409 Mohican Rd, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Zou Y, Chen X, He B, Xiao J, Yu Q, Xie B, Yang S, Dai L, Dai Z, Chen Q. Neutrophil extracellular traps induced by cigarette smoke contribute to airway inflammation in mice. Exp Cell Res 2020; 389:111888. [PMID: 32027864 DOI: 10.1016/j.yexcr.2020.111888] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/12/2022]
Abstract
Neutrophil extracellular traps (NETs) were initially identified as an important antimicrobial barrier to capture and kill microorganisms. Emerging evidence suggests that NETs play a crucial role in chronic airway inflammation induced by cigarette smoke (CS). However, how NETs form and the mechanisms by which NETs function in CS-related airway diseases are still unclear. To explore NET formation and its potential role in CS-related airway diseases, we first established a CS-induced subacute airway inflammation model in mice and verified NET formation in the airways. Moreover, NETs degradation by aerosolized DNase I treatment significantly inhibited the airway inflammation induced by CS in mice. More importantly, by in vitro experiments, we found that cigarette smoke extract (CSE) induces NET formation in an NADPH oxidase-dependent manner, and that macrophages and human bronchial epithelial cells (HBEs) are important targets for the NETs-induced secretion of inflammatory cytokines. Therefore, NETs may represent a critical link among neutrophils, macrophages and HBEs under chronic inflammation conditions induced by CS.
Collapse
Affiliation(s)
- Yong Zou
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xi Chen
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Baimei He
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jian Xiao
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qiao Yu
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Bin Xie
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shasha Yang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Longxia Dai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ziyu Dai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
27
|
UVA Photoprotective Activity of Brown Macroalgae Sargassum cristafolium. Biomedicines 2019; 7:biomedicines7040077. [PMID: 31569807 PMCID: PMC6966596 DOI: 10.3390/biomedicines7040077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/15/2019] [Accepted: 09/25/2019] [Indexed: 12/31/2022] Open
Abstract
Sunscreens today contain several synthetic UV (Ultraviolet) filter molecules to protect the skin epidermis from UV radiation damage. However, these molecules may create several negative effects on human skin. Due to this condition, there is an increase in the development of natural products to replace uses of these synthetic chemicals. Brown macroalgae Sargassum has been recently studied for its photoprotective activities. The purpose of this study is to investigate photoprotective activity of one of most abundant Sargassum species in Lombok coast; Sargassum cristaefolium. Spectrophotometry analysis with UV-VIS revealed the UV spectra absorbing capability of Sargassum cristaefolium (SC) in the UVA spectrum range (314–400 nm). Furthermore, spectrometry analyses with LC-MS revealed the existence of UV absorbing compound MAA-palythene. In correlation, SC ethanol extracts also demonstrate that it could protect DNA from UVA irradiation as analyzed in vitro in HeLa cell model. The effects of SC on UVA exposed-dorsal mice skin have also shown interesting results, as mice pretreated with SC before UVA exposure showed protective activity on the epidermal integrity similar as positive control. Whereas, UV exposed mice without SC or commercial products resulted in increased epidermal thickness, which is the common parameter of skin photoaging. In addition, pretreated mice with SC also show protective effects in the formation of collagen connective tissues. Overall, current results show promising photoprotective activity of SC against UV radiation. More advanced investigations of SC as a potential photoprotective agent would be reasonable for development of macroalgae-based natural skin protection products.
Collapse
|