1
|
Chen W, Zhang H, Guo B, Tao Y, Zhang J, Wang J, Chen G, Cheng M, Hong Q, Cao Y, Xie F. Melatonin refines ovarian mitochondrial dysfunction in PCOS by regulating the circadian rhythm gene Clock. Cell Mol Life Sci 2025; 82:104. [PMID: 40047877 PMCID: PMC11885701 DOI: 10.1007/s00018-025-05609-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 01/25/2025] [Indexed: 03/09/2025]
Abstract
Mitochondrial dysfunction is present in the ovaries of patients with polycystic ovary syndrome (PCOS). Melatonin (MT) has shown promise in treating PCOS by improving mitochondrial dysfunction, though the underlying mechanisms remain unclear. In this study, we first assessed the levels of proteins associated with mitochondrial autophagy and dynamics in ovary granulosa cells (GCs) of PCOS patients and in the ovaries of DHEA-induced PCOS mice. We found abnormal expression of these proteins, indicating the presence of mitochondrial dysfunction in PCOS ovaries. Notably, the expression of the circadian gene Clock and melatonin synthetic enzymes were also decreased in the ovaries of PCOS patients. Studies have suggested a potential role of circadian rhythm genes in the pathogenesis and progression of PCOS. We subsequently observed that pretreatment with MT could ameliorate the abnormal levels of mitochondrial-related proteins, reverse the low expression of CLOCK, and reduce pyroptosis in PCOS ovaries. Given the potential interaction between MT and Clock, we focused on whether exogenous MT improves mitochondrial dysfunction in PCOS ovaries by regulating the expression of the circadian gene Clock. Through in vitro culture of the human ovarian granulosa cell line KGN, we further found that when CLOCK levels were inhibited, the beneficial effects of MT on abnormal mitochondrial autophagy, disturbed mitochondrial dynamics, and mitochondrial dysfunction in PCOS ovaries were not significant, and there was no notable improvement in ovary GCs pyroptosis. Our study suggests that MT may improve ovary mitochondrial dysfunction by regulating circadian gene Clock while also reducing GCs pyroptosis in PCOS.
Collapse
Affiliation(s)
- Wenxiu Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hongyan Zhang
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Bao Guo
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yumei Tao
- Second Clinical Medical College, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Junhui Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Jiayi Wang
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Guangyi Chen
- Second Clinical Medical College, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Mengting Cheng
- First Clinical Medical College, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qiang Hong
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Yunxia Cao
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Fenfen Xie
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
2
|
Xu Y, Tang Y, Cheng Y, Yang W, Liu J, Guo B, Luo G, Zhu H. Effects of different monochromatic light on growth performance and liver circadian rhythm of Yangzhou geese. Poult Sci 2025; 104:104496. [PMID: 39577174 PMCID: PMC11617679 DOI: 10.1016/j.psj.2024.104496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024] Open
Abstract
The objective of this study is to examine the impact of monochromatic light on the circadian rhythms of blood melatonin and insulin-like growth factor 1 (IGF-1) levels, liver clock genes, and melatonin receptors. A total of 144 male Yangzhou geese were randomly assigned to four groups based on light color, with each group consisting of 36 geese. The geese were provided with ad libitum access to food and water, and were raised for 70 days under a photoperiod of 16 hours of light and 8 hours of darkness. They were weighed every 10 days, and blood, liver, and pituitary gland samples were collected at six time points every four hours when the geese reached 70 days of age. The findings indicated that exposure to green light (GL) had a stimulating impact on weight gain in Yangzhou geese, while not significantly affecting the feed-to-weight ratio. After undergoing the four photochromic treatments, both plasma melatonin levels and liver positive feedback clock gene expression displayed a diurnal low-night high pattern, reaching their peak in the evening. Conversely, plasma IGF-1 and negative feedback clock genes exhibited an opposite trend. However, monochromatic light significantly down-regulated the gene expression, peak and amplitude of retinoic acid receptor-related orphan receptor α (RORα), as well as advancing or delaying the phase of the circadian rhythm. Among them, GL significantly up-regulated the gene expression of the melatonin receptors 1C (MEL1C); blue light (BL) significantly increased plasma melatonin concentration and IGF-1 concentration and significantly decreased the peak and amplitude of period 3 gene (PER3), resulting in almost no difference in the expression of PER3 at the six times; and red light (RL) significantly down-regulated the expression and the peak of MEL1C as well as the peaks and amplitudes of the seven liver clock genes, especially circadian locomotor output cycles kaput factor (CLOCK). Moreover, the peaks and amplitudes of the clock genes for BL and GL are almost identical, except for PER3. The findings of this study offer a theoretical framework for facilitating the development of meat geese and implementing a logical approach to managing lighting conditions.
Collapse
Affiliation(s)
- Yingqing Xu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yi Tang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yiyi Cheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wen Yang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jie Liu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Binbin Guo
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gang Luo
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Huanxi Zhu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
3
|
Tan X, Zhang J, Dong J, Huang M, Zhou Z, Wang D. Novel Insights into the Circadian Rhythms Based on Long Noncoding and Circular RNA Profiling. Int J Mol Sci 2024; 25:1161. [PMID: 38256234 PMCID: PMC10816401 DOI: 10.3390/ijms25021161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Circadian rhythm disorders pose major risks to human health and animal production activity, and the hypothalamus is the center of circadian rhythm regulation. However, the epigenetic regulation of circadian rhythm based on farm animal models has been poorly investigated. We collected chicken hypothalamus samples at seven time points in one light/dark cycle and performed long noncoding RNA (lncRNA), circular RNA (circRNA), and mRNA sequencing to detect biomarkers associated with circadian rhythm. We enhanced the comprehensive expression profiling of ncRNAs and mRNAs in the hypothalamus and found two gene sets (circadian rhythm and retinal metabolism) associated with the light/dark cycle. Noncoding RNA networks with circadian expression patterns were identified by differential expression and circadian analysis was provided that included 38 lncRNAs, 15 circRNAs, and 200 candidate genes. Three lncRNAs (ENSGALT00000098661, ENSGALT00000100816, and MSTRG.16980.1) and one circRNA (novel_circ_010168) in the ncRNA-mRNA regulatory network were identified as key molecules influencing circadian rhythm by regulating AOX1 in retinal metabolism. These ncRNAs were predicted to be related to pernicious anemia, gonadal, eye disease and other disorders in humans. Together, the findings of this study provide insights into the epigenetic mechanisms of circadian rhythm and reveal AOX1 as a promising target of circadian rhythm regulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.T.)
| |
Collapse
|
4
|
Shao R, Wang Y, He C, Chen L. Melatonin and its Emerging Physiological Role in Reproduction: A Review and Update. Curr Mol Med 2024; 24:449-456. [PMID: 37070447 DOI: 10.2174/1566524023666230417103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 04/19/2023]
Abstract
Melatonin is a neuroendocrine hormone secreted by the pineal gland. The secretion of melatonin follows a circadian rhythm controlled by the suprachiasmatic nucleus, and its secretion is synchronized with the changes in light and dark periods in nature, with the highest secretion level at night. Melatonin is a critical hormone that coordinates external light stimulation and cellular responses of the body. It transmits information about the environmental light cycle, including the circadian and seasonal rhythms, to the relevant tissues and organs in the body, which, along with changes in its secretion level, ensures that its regulated functional activities are adapted in response to changes in the outside environment. Melatonin takes beneficial actions mainly through the interaction with specific membrane-bound receptors, termed MT1 and MT2. Melatonin also acts as a scavenger of free radicals via non-receptor-mediated mechanism. For more than half of acentury melatonin has been associated with vertebrate reproduction, especially in the context of seasonal breeding. Though modern humans show little remaining reproductive seasonality, the relationships between melatonin and human reproduction continue to attract extensive attention. Melatonin plays important roles in improving mitochondrial function, reducing the damage of free radicals, inducing oocyte maturation, increasing fertilization rate and promoting embryonic development, which improves the outcomes of in vitro fertilization and embryo transfer. The present article reviews the progress that has been made in our evolving understanding of the physiological role of melatonin in reproduction and its potential clinical applications in reproductive medicine.
Collapse
Affiliation(s)
- Ruifeng Shao
- Reproductive Medicine Center, Jingzhou Hospital affiliated to Yangtze University, No.60 Jingzhong Road, Jingzhou 434020, Hubei, China
| | - Ying Wang
- Reproductive Medicine Center, Jingzhou Hospital affiliated to Yangtze University, No.60 Jingzhong Road, Jingzhou 434020, Hubei, China
| | - Chihua He
- Reproductive Medicine Center, Jingzhou Hospital affiliated to Yangtze University, No.60 Jingzhong Road, Jingzhou 434020, Hubei, China
| | - Ligang Chen
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Jingzhou, No.55 Jianghan North Road, Jingzhou 434021, Hubei, China
| |
Collapse
|
5
|
Wang XJ, Li XT, Chen N, Huang L, Huang SX, Chen TT, Liu GH, Hu RF. Mental health, sleep quality, and hormonal circadian rhythms in pregnant women with threatened preterm labor: a prospective observational study. BMC Pregnancy Childbirth 2023; 23:501. [PMID: 37420176 DOI: 10.1186/s12884-023-05801-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Threatened preterm labor (TPL) is an important obstetrical challenge. Pregnant women with TPL may develop psychological and physical problems such as mental health disorders, sleep disturbance, and hormonal circadian rhythm disruption. This study aimed to investigate the current state of mental health, sleep quality, and circadian rhythms of cortisol and melatonin secretion in pregnant women with TPL and normal pregnant women (NPW). METHODS A prospective observational clinical study was conducted at a maternal and child health hospital in Fuzhou, China, between June and July 2022. A total of 50 women between 32 and 36 weeks of gestation (TPL group, n = 20; NPW group, n = 30) were recruited. Data on anxiety symptom (Zung's Self-rating Anxiety Scale, SAS), depression symptom (Edinburgh Postnatal Depression Scale, EPDS), subjective sleep quality (Pittsburgh Sleep Quality Index, PSQI) and objective sleep outcomes (measured by actigraphy) of the pregnant women were collected at the time of enrolment. Salivary samples were collected once every 6 h (i.e., at 06:00, 12:00, 18:00, and 00:00) during 2 consecutive days to measure the circadian rhythm of hormone (cortisol and melatonin). RESULTS There were no differences found in the total scores of SAS, EPDS scores, subjective sleep quality between the TPL and NPW groups (P > 0.05). In contrast, significant differences were found in sleep efficiency, total sleep time, wake time after sleep onset, and average awakening time between the groups (P < 0.05). The circadian rhythm of melatonin secretion was disrupted in the TPL group (P = 0.350); however, it was maintained in the NPW group (P = 0.044). The circadian rhythm of cortisol secretion was disrupted in both groups (P > 0.05). CONCLUSIONS In the third trimester of pregnancy, women with TPL suffer from poorer sleep quality and disruption of circadian rhythm of melatonin secretion compared with NPW. Nevertheless, there were no differences found in mental health (i.e., anxiety and depression) and circadian rhythm of cortisol secretion. Large-scale studies should be conducted to evaluate these changes in women with TPL. TRIAL REGISTRATION The study was registered from Chinese Clinical Trial Registry (Number: ChiCTR2200060674) on 07/06/2022.
Collapse
Affiliation(s)
- Xiao-Juan Wang
- School of Nursing, Fujian Medical University, 1 Xue Yuan Road, University Town, Fujian, Fuzhou, China
| | - Xiao-Ting Li
- School of Nursing, Fujian Medical University, 1 Xue Yuan Road, University Town, Fujian, Fuzhou, China
| | - Na Chen
- School of Nursing, Fujian Medical University, 1 Xue Yuan Road, University Town, Fujian, Fuzhou, China
| | - Long Huang
- School of Nursing, Fujian Medical University, 1 Xue Yuan Road, University Town, Fujian, Fuzhou, China
| | - Shui-Xiu Huang
- School of Nursing, Fujian Medical University, 1 Xue Yuan Road, University Town, Fujian, Fuzhou, China
| | - Ting-Ting Chen
- School of Nursing, Fujian Medical University, 1 Xue Yuan Road, University Town, Fujian, Fuzhou, China
| | - Gui-Hua Liu
- School of Nursing, Fujian Medical University, 1 Xue Yuan Road, University Town, Fujian, Fuzhou, China.
| | - Rong-Fang Hu
- School of Nursing, Fujian Medical University, 1 Xue Yuan Road, University Town, Fujian, Fuzhou, China.
| |
Collapse
|
6
|
Role of Melatonin in Daily Variations of Plasma Insulin Level and Pancreatic Clock Gene Expression in Chick Exposed to Monochromatic Light. Int J Mol Sci 2023; 24:ijms24032368. [PMID: 36768693 PMCID: PMC9916459 DOI: 10.3390/ijms24032368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
To clarify the effect of monochromatic light on circadian rhythms of plasma insulin level and pancreatic clock gene expression and its mechanism, 216 newly hatched chicks were divided into three groups (intact, sham operation and pinealectomy) and were raised under white (WL), red (RL), green (GL) or blue (BL) light for 21 days. Their plasma and pancreas were sampled at six four-hour intervals. For circadian rhythm analysis, measurements of plasma melatonin, insulin, and clock gene expression (cClock, cBmal1, cBmal2, cCry1, cCry2, cPer2, and cPer3) were made. Plasma melatonin, insulin, and the pancreatic clock gene all expressed rhythmically in the presence of monochromatic light. Red light reduced the mesor and amplitude of plasma melatonin in comparison to green light. The mesor and amplitude of the pancreatic clock gene in chickens exposed to red light were dramatically reduced, which is consistent with the drop in plasma melatonin levels. Red light, on the other hand, clearly raised the level of plasma insulin via raising the expression of cVamp2, but not cInsulin. After the pineal gland was removed, the circadian expressions of plasma melatonin and pancreatic clock gene were significantly reduced, but the plasma insulin level and the pancreatic cVamp2 expression were obviously increased, resulting in the disappearance of differences in insulin level and cVamp2 expression in the monochromatic light groups. Therefore, we hypothesize that melatonin may be crucial in the effect of monochromatic light on the circadian rhythm of plasma insulin level by influencing the expression of clock gene in chicken pancreas.
Collapse
|
7
|
Zhang Y, Wang Z, Dong Y, Cao J, Chen Y. Melatonin Nuclear Receptors Mediate Green-and-Blue-Monochromatic-Light-Combinations-Inhibited B Lymphocyte Apoptosis in the Bursa of Chickens via Reducing Oxidative Stress and Nfκb Expression. Antioxidants (Basel) 2022; 11:antiox11040748. [PMID: 35453433 PMCID: PMC9029876 DOI: 10.3390/antiox11040748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies found that melatonin modulates a combination of green-and-blue-light-induced B-lymphocyte proliferation via its membrane receptors Mel1a and Mel1c. However, in addition to its membrane-bound receptors, melatonin also functions through binding to nuclear receptors RORα/RORβ/RORγ. In this study, we raised 120 chicks under 400–700 nm white (WW), 660 nm red (RR), 560 nm green (GG) and 480 nm blue light (BB) from P0 to P26. From P27 to P42, half of the chickens in green, blue and red were switched to blue (G→B), green (B→G) and red (R→B), respectively. We used immunohistochemistry, Western blotting, qRT-PCR, Elisa and MTT to investigate the influence of various monochromatic light combinations on the bursal B lymphocyte apoptosis and oxidative stress levels as well as estimate whether melatonin and its nuclear receptors were involved in this process. Consistent with the increase in the plasma melatonin concentration and antioxidant enzyme activity, we observed that G→B significantly decreased the RORα, RORγ mRNA level, inhibited Bax, Caspase-3 and p-iκb, p-p65 protein expression, increased the IL-10 level and Nrf2, HO-1 protein expression, down-regulated the MDA and pro-inflammatory IL-6, TNF-α and IFN-γ levels in the bursa compared with WW, RR, GG, BB and R→B, respectively. Our in vitro results showed exogenous melatonin supplementation inhibited B-lymphocyte apoptosis, decreased IL-6, TNF-α, IFN-γ and ROS production, down-regulated RORα, RORγ mRNA level and p-iκb and p-p65 protein expression, whereas it improved the IL-10 level and Nrf2 and the HO-1 protein expression in bursal B lymphocyte. Moreover, these responses were abrogated by RORα agonist SR1078 but were mimicked by RORα antagonist SR3335 or RORγ antagonist GSK2981278. In addition, p65 antagonist BAY reversed RORα/RORγ-mediated G→B-inhibited bursal B lymphocyte apoptosis. Overall, we concluded that melatonin nuclear RORα/RORγ mediates G→B-inhibited bursal B lymphocyte apoptosis via reducing oxidative stress and Nfκb expression.
Collapse
Affiliation(s)
| | | | | | | | - Yaoxing Chen
- Correspondence: ; Tel.: +86-10-6273-3778; Fax: +86-10-6273-3199
| |
Collapse
|
8
|
Song Y, Liu Y, Yuan Y, Jia X, Zhang W, Wang G, Jia Y, Wang X, Liu L, Li W, Li X, Cai N, Liu C, Li Y, Han Y, Zhou Y, Mi X, Shi C, Wang JQ, Vuylsteke A, Guo X, Li Z. Effects of general versus subarachnoid anaesthesia on circadian melatonin rhythm and postoperative delirium in elderly patients undergoing hip fracture surgery: A prospective cohort clinical trial. EBioMedicine 2021; 70:103490. [PMID: 34280784 PMCID: PMC8318871 DOI: 10.1016/j.ebiom.2021.103490] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Circadian rhythm disturbance is common postoperatively in older patients with hip fractures, which may contribute to the development of postoperative delirium (POD). As a reliable biomarker of endogenous circadian rhythms, melatonin regulates the sleep-wake cycle and environmental adaptation, and its secretory rhythm may be modified by anaesthesia and surgery. This study compared the impact of subarachnoid anaesthesia (SA) and general anaesthesia (GA), on the peak of melatonin secretion (primary outcome), the circadian rhythm of melatonin, cortisol and sleep, and the POD incidence (secondary outcome). METHODS In this prospective cohort observational study, hip fracture surgery patients were enrolled and assigned to receive either SA or GA. Postoperative plasma melatonin and cortisol levels were dynamically measured every six hours on seven time-points, and the circadian rhythm parameters including mesor, amplitude, and acrophase were calculated. Subjective and objective sleep assessments were performed by sleep diaries and sleep trackers, respectively. The Confusion Assessment Method was used twice daily by a specific geriatrician to screen for POD occurrence. FINDINGS In a cohort of 138 patients who underwent hip fracture surgery, the circadian rhythm disruption of the patients in the GA group (n=69) was greater than the SA group (n=69). Compared with SA, GA provided the lower peak concentration, mesor, and amplitude of melatonin secretion on postoperative day 1 (p < 0.05). Patients in the GA group experienced higher awakenings, more sleep deprivation, and poor sleep quality on surgery day (p < 0.05). A proportion of 12 patients in the SA group (17.4%) and 24 patients in the GA group (34.8%) experienced POD (p = 0.020). INTERPRETATION These results suggest that SA may be superior to GA in elderly patients undergoing hip fracture surgery as SA is associated with less impairment of the melatonin rhythm and sleep patterns, and fewer POD occurrences. FUNDING The study was supported by the National Natural Science Foundation of China (81971012, 81873726, 81901095, 81701052, and 81801070), Key Clinical Projects of Peking University Third Hospital (BYSYZD2019027), and Peking University "Clinical Medicine plus X" Youth Project (PKU2020LCXQ016).
Collapse
Affiliation(s)
- Yanan Song
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yajie Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yi Yuan
- Department of Anesthesiology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Xixi Jia
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Wenchao Zhang
- Department of Anesthesiology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Geng Wang
- Department of Anesthesiology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Yunyang Jia
- Department of Orthopaedics & Traumatology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Xiaoxiao Wang
- Department of Research Center of Clinical Epidemiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Lei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Shandong 250012, China
| | - Weitian Li
- College of Veterinary Medicine, China Agricultural University, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xinping Li
- Department of Geriatrics, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Nan Cai
- Department of Anesthesiology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Chang Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yang Zhou
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Chengmei Shi
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - John Q Wang
- Department of Anesthesiology, University of Missouri Kansas City, School of Medicine, Kansas 64110, MO, USA
| | - Alain Vuylsteke
- Department of Anaesthesia and Intensive Care, Royal Papworth Hospital NHS Foundation Trust, CB2 0AY Cambridge, UK
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China.
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China.
| |
Collapse
|
9
|
A Green and Blue Monochromatic Light Combination Therapy Reduces Oxidative Stress and Enhances B-Lymphocyte Proliferation through Promoting Melatonin Secretion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5595376. [PMID: 33828639 PMCID: PMC8004379 DOI: 10.1155/2021/5595376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022]
Abstract
Artificial illumination may interfere with biological rhythms and distort physiological homeostasis in avian. Our previous study demonstrated that 660 nm red light exacerbates oxidative stress, but a combination of green and blue lights (G→B) can improve the antibody titer in chickens compared with single monochromatic light. Melatonin acts as an antioxidant which is a critical signaling to the coordination between external light stimulation and the cellular response from the body. This study further clarifies the potential role of melatonin in monochromatic light combination-induced bursa B-lymphocyte proliferation in chickens. A total of 192 chicks were exposed to a single monochromatic light (red (R), green (G), blue (B), or white (W) lights) or various monochromatic light combinations (B→G, G→B, and R→B) from P0 to P42. We used qRT-PCR, MTT, western blotting, immunohistochemistry, and Elisa to explore the effect of a combination of monochromatic light on bursa B-lymphocytes and its intracellular signal pathways. With consistency in the upregulation in melatonin level of plasma and antioxidant enzyme ability, we observed increases in organ index, follicle area, lymphocyte density, B-lymphocyte proliferation, PCNA-positive cells, and cyclin D1 expression in bursa of the G→B group compared with other light-treated groups. Melatonin bound to Mel1a and Mel1c and upregulated p-AKT, p-PKC, and p-ERK expression, thereby activating PI3K/AKT and PKC/ERK signaling and inducing B-lymphocyte proliferation. Overall, these findings suggested that melatonin modulates a combination of green and blue light-induced B-lymphocyte proliferation in chickens by reducing oxidative stress and activating the Mel1a/PI3K/AKT and Mel1c/PKC/ERK pathways.
Collapse
|
10
|
Yuan Y, Song Y, Wang G, Jia Y, Zhou Y, Mi X, Jia X, Wang X, Liu C, Li Y, Shi C, Han Y, Guo X, Zhang W, Li Z. Effects of general versus regional anaesthesia on circadian melatonin rhythm and its association with postoperative delirium in elderly patients undergoing hip fracture surgery: study protocol for a prospective cohort clinical trial. BMJ Open 2021; 11:e043720. [PMID: 33579771 PMCID: PMC7883867 DOI: 10.1136/bmjopen-2020-043720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Postoperative delirium (POD) is a common neurological complication after hip fracture surgery and is associated with high morbidity and mortality in elderly patients. Although the specific mechanism of POD remains unclear, circadian rhythm disruptions have recently drawn increased attention. To date, only limited postoperative time points of plasma melatonin level measurements were recorded in previous studies, and such data cannot represent a comprehensive melatonin rhythm. The process of anaesthesia (either general anaesthesia (GA) or regional anaesthesia (RA)) is known to influence the melatonin rhythm. However, how these two anaesthesia methods differently affect the postoperative melatonin rhythm is still unknown. Therefore, we hypothesise that RA may attenuate the disruption of the melatonin rhythm, which might decrease the incidence of POD in elderly patients undergoing hip surgery. METHODS AND ANALYSIS In this prospective cohort clinical trial, 138 patients scheduled for hip fracture surgery will be divided into two groups to receive either GA or RA. The primary aim is to compare the circadian rhythm of melatonin secretion between the two groups and explore its association with the incidence of POD. ETHICS AND DISSEMINATION The study has been approved by the Medical Science Research Ethics Committees of Beijing Jishuitan Hospital (JLKS201901-04). The results of the study will be published in peer-reviewed international journals. TRIAL REGISTRATION NUMBER ChiCTR1900027393.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Anesthesiology, Beijing Jishuitan Hospital, Beijing, China
| | - Yanan Song
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Geng Wang
- Department of Anesthesiology, Beijing Jishuitan Hospital, Beijing, China
| | - Yunyang Jia
- Department of Orthopaedics & Traumatology, Beijing Jishuitan Hospital, Beijing, China
| | - Yang Zhou
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xixi Jia
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiaoxiao Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Chang Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Chengmei Shi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Wenchao Zhang
- Department of Anesthesiology, Beijing Jishuitan Hospital, Beijing, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
11
|
Bonmati-Carrion MA, Tomas-Loba A. Melatonin and Cancer: A Polyhedral Network Where the Source Matters. Antioxidants (Basel) 2021; 10:antiox10020210. [PMID: 33535472 PMCID: PMC7912767 DOI: 10.3390/antiox10020210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Melatonin is one of the most phylogenetically conserved signals in biology. Although its original function was probably related to its antioxidant capacity, this indoleamine has been “adopted” by multicellular organisms as the “darkness signal” when secreted in a circadian manner and is acutely suppressed by light at night by the pineal gland. However, melatonin is also produced by other tissues, which constitute its extrapineal sources. Apart from its undisputed chronobiotic function, melatonin exerts antioxidant, immunomodulatory, pro-apoptotic, antiproliferative, and anti-angiogenic effects, with all these properties making it a powerful antitumor agent. Indeed, this activity has been demonstrated to be mediated by interfering with various cancer hallmarks, and different epidemiological studies have also linked light at night (melatonin suppression) with a higher incidence of different types of cancer. In 2007, the World Health Organization classified night shift work as a probable carcinogen due to circadian disruption, where melatonin plays a central role. Our aim is to review, from a global perspective, the role of melatonin both from pineal and extrapineal origin, as well as their possible interplay, as an intrinsic factor in the incidence, development, and progression of cancer. Particular emphasis will be placed not only on those mechanisms related to melatonin’s antioxidant nature but also on the recently described novel roles of melatonin in microbiota and epigenetic regulation.
Collapse
Affiliation(s)
- Maria-Angeles Bonmati-Carrion
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable, 28090 Madrid, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| | - Antonia Tomas-Loba
- Circadian Rhythm and Cancer Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| |
Collapse
|
12
|
Yang Y, Liu Q, Wang T, Pan J. Wavelength-specific artificial light disrupts molecular clock in avian species: A power-calibrated statistical approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114206. [PMID: 32599326 DOI: 10.1016/j.envpol.2020.114206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 05/29/2023]
Abstract
Nighttime lighting is an increasingly important anthropogenic environmental stress on plants and animals. Exposure to unnatural lighting environments may disrupt the circadian rhythm of organisms. However, the sample size of relevant studies, e.g. disruption of the molecular circadian clock by light pollution, was small (<10), which led to low statistical power and difficulties in replicating prior results. Here, we developed a power-calibrated statistical approach to overcome these weaknesses. The results showed that the effect size of 2.48 in clock genes expression induced by artificial light would ensure the reproducibility of the results as high as 80%. Long-wavelength light (560-660 nm) entrained expressions of the positive core clock genes (e.g. cClock) and negative core clock genes (e.g. cCry1, cPer2) in robust circadian rhythmicity, whereas those clock genes were arrhythmic in short-wavelength light (380-480 nm). Further, we found artificial light could entrain the transcriptional-translational feedback loop of the molecular clock in a wavelength-dependent manner. The expression of the positive core clock genes (cBmal1, cBmal2 and cClock), cAanat gene and melatonin were the highest in short-wavelength light and lowest in long-wavelength light. For the negative regulators of the molecular clock (cCry1, cCry2, cPer2 and cPer3), the expression of which was the highest in long-wavelength light and lowest in short-wavelength light. Our statistical approach opens new opportunities to understand and strengthen conclusions, comparing with the studies with small sample sizes. We also provide comprehensive insight into the effect of wavelength-specific artificial light on the circadian rhythm of the molecular clock in avian species. Especially, the global lighting is shifting from "yellow" sodium lamps, which is more like the long-wavelength light, toward short-wavelength light (blue light)-enriched "white" light-emitting diodes (LEDs).
Collapse
Affiliation(s)
- Yefeng Yang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qiong Liu
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Tao Wang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jinming Pan
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Kapek Ł, Paprocka J, Kijonka M, Zych M, Emich-Widera E, Rzepka-Migut B, Borys D, Kaczmarczyk-Sedlak I, Sokół M. Circadian Profile of Salivary Melatonin Secretion in Hypoxic Ischemic Encephalopathy. Int J Endocrinol 2020; 2020:6209841. [PMID: 33061967 PMCID: PMC7533010 DOI: 10.1155/2020/6209841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/01/2020] [Accepted: 09/03/2020] [Indexed: 01/21/2023] Open
Abstract
PURPOSE In the present study, the salivary melatonin secretion in the hypoxic ischemic encephalopathy (HIE) children was measured. The logit model was fitted to the data to obtain the salivary dim light melatonin onsets (DLMOs), and the results were compared with the values estimated from the classic threshold method with a linear interpolation and those previously published for the blood measurements. MATERIALS AND METHODS 9 patients suffering from HIE aged from 65 to 80 months were included in the study. The melatonin levels were assessed by a radioimmunoassay (RIA). The diurnal melatonin secretion was estimated using a nonlinear least squares method. Student's t-test and the Mann-Whitney U test were used for the comparisons of the obtained parameters. RESULTS The circadian profiles of the melatonin secretion for both calculation methods do not differ statistically. The DLMO parameters obtained in the blood and saliva samples in children with hypoxic ischemic encephalopathy were similar.
Collapse
Affiliation(s)
- Łukasz Kapek
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
- Faculty of Science and Technology, University of Silesia, Katowice, Poland
| | - Justyna Paprocka
- Department of Paediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marek Kijonka
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Ewa Emich-Widera
- Department of Paediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Beata Rzepka-Migut
- Department of Pediatric Neurology, St. Queen Jadwiga's Regional Clinical Hospital No. 2, Rzeszów, Poland
| | - Damian Borys
- Silesian University of Technology, Department of Systems Biology and Engineering, Gliwice, Poland
| | - Ilona Kaczmarczyk-Sedlak
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Maria Sokół
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| |
Collapse
|
14
|
Fleury G, Masís‐Vargas A, Kalsbeek A. Metabolic Implications of Exposure to Light at Night: Lessons from Animal and Human Studies. Obesity (Silver Spring) 2020; 28 Suppl 1:S18-S28. [PMID: 32700826 PMCID: PMC7497102 DOI: 10.1002/oby.22807] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023]
Abstract
Lately, the incidence of overweight, obesity, and type 2 diabetes has shown a staggering increase. To prevent and treat these conditions, one must look at their etiology. As life on earth has evolved under the conditions of nature's 24-hour light/dark cycle, it seems likely that exposure to artificial light at night (LAN) would affect physiology. Indeed, ample evidence has shown that LAN impacts many metabolic parameters, at least partly via the biological clock in the suprachiasmatic nucleus of the hypothalamus. This review focuses on the impact of chronic and acute effects of LAN of different wavelengths on locomotor activity, food intake, the sleep/wake cycle, body temperature, melatonin, glucocorticoids, and glucose and lipid metabolism. While chronic LAN disturbs daily rhythms in these parameters, experiments using short-term LAN exposure also have shown acute negative effects in metabolically active peripheral tissues. Experiments using LAN of different wavelengths not only have indicated an important role for melanopsin, the photopigment found in intrinsically photosensitive retinal ganglion cells, but also provided evidence that each wavelength may have a specific impact on energy metabolism. Importantly, exposure to LAN has been shown to impact glucose homeostasis also in humans and to be associated with an increased incidence of overweight, obesity, and atherosclerosis.
Collapse
Affiliation(s)
- Giulia Fleury
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Anayanci Masís‐Vargas
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Hypothalamic Integration MechanismsNetherlands Institute for Neuroscience (NIN)Amsterdamthe Netherlands
- Institute of Cellular and Integrative Neurosciences (INCI)UPR‐3212 CNRSUniversity of StrasbourgStrasbourgFrance
| | - Andries Kalsbeek
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Hypothalamic Integration MechanismsNetherlands Institute for Neuroscience (NIN)Amsterdamthe Netherlands
| |
Collapse
|