1
|
Xiong B, Li Y, Yao J, Wang J, Han L, Ma Q, Deng T, Liao L, Deng L, Sun G, Zhang M, Wan X, He S, He J, Wang Z. Integration of transcriptomic and metabolomic analysis reveals light-regulated anthocyanin accumulation in the peel of 'Yinhongli' plum. BMC PLANT BIOLOGY 2025; 25:391. [PMID: 40148754 PMCID: PMC11948737 DOI: 10.1186/s12870-025-06414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND The 'Yinhongli' cultivar of Chinese plum (Prunus salicina Lindl.) is characterized by a distinctive bicolored peel phenotype, in which anthocyanins serve as crucial determinants of both its visual characteristics and nutritional quality. However, the molecular mechanism of underlying light-dependent anthocyanin biosynthesis of plum, especially its regulatory network and pathway, need to be further studied and explored. RESULTS Comprehensive physiological analyses demonstrated distinct pigmentation patterns, revealing that dark-treated (YD) plum peels retained green coloration, whereas light-exposed (YL) and bag-removed samples (YDL) exhibited red pigmentation. Utilizing an integrated approach combining metabolomic and transcriptomic analyses, we identified 266 differentially accumulated flavonoids (DAFs), among which seven anthocyanin metabolites were established as principal determinants of peel coloration. Transcriptomic profiling revealed 6,900 differentially expressed genes (DEGs) between YD and YL, demonstrating significant correlations between the phenylpropanoid and flavonoid biosynthetic pathways. Through Weighted Gene Co-expression Network Analysis (WGCNA) and correlation heatmap analysis, we identified crucial regulatory networks encompassing five structural genes (PAL, 4CL, F3'H, CHI, and UFGT) and 15 candidate regulatory genes, including six light signal transduction factor genes (UVR8, COP1, PHYBs, PIF3, and HY5) and nine transcription factor genes (MYB1, MYB20, MYB73, MYB111, LHY, DRE2B, ERF5, bHLH35, and NAC87). Subsequent RT-qPCR validation demonstrated significant light-mediated up-regulation of key structural genes (PAL, F3H, CHI, 4CL, and UFGT) involved in anthocyanin biosynthesis along with positive regulatory factors (DRE2B and NAC87). Conversely, a cohort of negative regulators, including HY5, MYB1, MYB20, MYB73, MYB111, LHY, ERF5, and bHLH35, showed marked down-regulation in response to light exposure, suggesting their potential repressive roles in the light-dependent anthocyanin biosynthesis pathway. CONCLUSIONS This investigation provides comprehensive insights into the molecular mechanisms of anthocyanin biosynthesis in light-dependent anthocyanin biosynthesis in 'Yinhongli' plum, identifying critical structural genes and potential regulatory TFs. The findings offer substantial contributions to the understanding of anthocyanin regulation in fruit crops and provide a valuable foundation for molecular breeding initiatives aimed at enhancing quality traits in plum cultivars.
Collapse
Affiliation(s)
- Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yisong Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junfei Yao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jialu Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linlyu Han
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qingqing Ma
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Taimei Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijun Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingfei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xun Wan
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siya He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaxian He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Liu Z, Bernard A, Wang Y, Dirlewanger E, Wang X. Genomes and integrative genomic insights into the genetic architecture of main agronomic traits in the edible cherries. HORTICULTURE RESEARCH 2025; 12:uhae269. [PMID: 39802740 PMCID: PMC11718393 DOI: 10.1093/hr/uhae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/17/2024] [Indexed: 01/16/2025]
Abstract
Cherries are one of the economically important fruit crops in the Rosaceae family, Prunus genus. As the first fruits of the spring season in the northern hemisphere, their attractive appearance, intensely desirable tastes, high nutrients content, and consumer-friendly size captivate consumers worldwide. In the past 30 years, although cherry geneticists and breeders have greatly progressed in understanding the genetic and molecular basis underlying fruit quality, adaptation to climate change, and biotic and abiotic stress resistance, the utilization of cherry genomic data in genetics and molecular breeding has remained limited to date. Here, we thoroughly investigated recent discoveries in constructing genetic linkage maps, identifying quantitative trait loci (QTLs), genome-wide association studies (GWAS), and validating functional genes of edible cherries based on available de novo genomes and genome resequencing data of edible cherries. We further comprehensively demonstrated the genetic architecture of the main agronomic traits of edible cherries by methodically integrating QTLs, GWAS loci, and functional genes into the identical reference genome with improved annotations. These collective endeavors will offer new perspectives on the availability of sequence data and the construction of an interspecific pangenome of edible cherries, ultimately guiding cherry breeding strategies and genetic improvement programs, and facilitating the exploration of similar traits and breeding innovations across Prunus species.
Collapse
Affiliation(s)
- Zhenshan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Anthony Bernard
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d’Ornon 33882, France
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | | | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| |
Collapse
|
3
|
Zhang Z, Liang C, Ren Y, Lv Z, Huang J. Interaction of ubiquitin-like protein SILENCING DEFECTIVE 2 with LIKE HETEROCHROMATIN PROTEIN 1 is required for regulation of anthocyanin biosynthesis in Arabidopsis thaliana in response to sucrose. THE NEW PHYTOLOGIST 2024; 243:1374-1386. [PMID: 38558017 DOI: 10.1111/nph.19725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
The regulatory mechanisms of anthocyanin biosynthesis have been well documented at the transcriptional and translational levels. By contrast, how anthocyanin biosynthesis is epigenetically regulated remains largely unknown. In this study, we employed genetic, molecular biology, and chromatin immunoprecipitation-quantitative polymerase chain reaction assays to identify a regulatory module essential for repressing the expression of genes involved in anthocyanin biosynthesis through chromatin remodeling. We found that SILENCING DEFECTIVE 2 (SDE2), which was previously identified as a negative regulator for sucrose-induced anthocyanin accumulation in Arabidopsis, is cleaved into N-terminal SDE2-UBL and C-terminal SDE2-C fragments at the first diglycine motif, and the cleaved SDE2-C, which can fully complement the sde2 mutant, is localized in the nucleus and physically interacts with LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) in vitro and in vivo. Genetic analyses showed that both SDE2 and LHP1 act as negative factors for anthocyanin biosynthesis. Consistently, immunoblot analysis revealed that the level of LHP1-bound histone H3 lysine 27 trimethylation (H3K27me3) significantly decreases in sde2 and lhp1 mutants, compared to wild-type (WT). In addition, we found that sugar can induce expression of SDE2 and LHP1, and enhance the level of the nucleus-localized SDE2-C. Taken together, our data suggest that the SDE2-C-LHP1 module is required for repression of gene expression through H3K27me3 modification during sugar-induced anthocyanin biosynthesis in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chengcheng Liang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yulong Ren
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhaojun Lv
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
4
|
Clayton-Cuch D, Yu L, McDougal D, Burbidge CA, Bruning JB, Bradley D, Böttcher C, Bulone V. Biochemical and in silico characterization of glycosyltransferases from red sweet cherry ( Prunus avium L.) reveals their broad specificity toward phenolic substrates. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100193. [PMID: 38292011 PMCID: PMC10825616 DOI: 10.1016/j.fochms.2023.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024]
Abstract
Polyphenolic compounds are a class of phytonutrients that play important roles in plants and contribute to human health when incorporated into our diet through fruit consumption. A large proportion occur as glycoconjugates but the enzymes responsible for their glycosylation are poorly characterized. Here, we report the biochemical and structural characterization of two glycosyltransferases from sweet cherry named PaUGT1 and PaUGT2. Both are promiscuous glucosyltransferases active on diverse anthocyanidins and flavonols, as well as phenolic acids in the case of PaUGT1. They also exhibit weaker galactosyltransferase activity. The expression of the gene encoding PaUGT1, the most active of the two proteins, follows anthocyanin accumulation during fruit ripening, suggesting that this enzyme is the primary glycosyltransferase involved in flavonoid glycosylation in sweet cherry. It can potentially be used to synthesize diverse glycoconjugates of flavonoids for integration into bioactive formulations, and for generating new fruit cultivars with enhanced health-promoting properties using breeding methods.
Collapse
Affiliation(s)
- Daniel Clayton-Cuch
- Adelaide Glycomics, University of Adelaide, School of Agriculture, Food and Wine, Waite Campus, Adelaide, South Australia 5064, Australia
- CSIRO, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Long Yu
- Adelaide Glycomics, University of Adelaide, School of Agriculture, Food and Wine, Waite Campus, Adelaide, South Australia 5064, Australia
| | - Daniel McDougal
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - John B. Bruning
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - David Bradley
- Agilent Technologies Australia Pty Ltd, Mulgrave, Melbourne, Victoria 3171, Australia
| | | | - Vincent Bulone
- Adelaide Glycomics, University of Adelaide, School of Agriculture, Food and Wine, Waite Campus, Adelaide, South Australia 5064, Australia
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| |
Collapse
|
5
|
Wang C, Tang Y, Li Y, Hu C, Li J, Lyu A. Genome-wide identification and bioinformatics analysis of the WD40 transcription factor family and candidate gene screening for anthocyanin biosynthesis in Rhododendron simsii. BMC Genomics 2023; 24:488. [PMID: 37633914 PMCID: PMC10463391 DOI: 10.1186/s12864-023-09604-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023] Open
Abstract
WD40 transcription factors (TFs) constitute a large gene family in eukaryotes, playing diverse roles in cellular processes. However, their functions in the major ornamental plant, Rhododendron simsii, remain poorly understood. In this study, we identified 258 WD40 proteins in the R. simsii genome, which exhibited an uneven distribution across chromosomes. Based on domain compositions and phylogenetic analysis, we classified these 258 RsWD40 proteins into 42 subfamilies and 47 clusters. Comparative genomic analysis suggested that the expansion of the WD40 gene family predates the divergence of green algae and higher plants, indicating an ancient origin. Furthermore, by analyzing the duplication patterns of RsWD40 genes, we found that transposed duplication played a major role in their expansion. Notably, the majority of RsWD40 gene duplication pairs underwent purifying selection during evolution. Synteny analysis identified significant orthologous gene pairs between R. simsii and Arabidopsis thaliana, Oryza sativa, Vitis vinifera, and Malus domestica. We also investigated potential candidate genes involved in anthocyanin biosynthesis during different flower development stages in R. simsii using RNA-seq data. Specifically, we identified 10 candidate genes during the bud stage and 7 candidate genes during the full bloom stage. GO enrichment analysis of these candidate genes revealed the potential involvement of the ubiquitination process in anthocyanin biosynthesis. Overall, our findings provide a valuable foundation for further investigation and functional analysis of WD40 genes, as well as research on the molecular mechanisms underlying anthocyanin biosynthesis in Rhododendron species.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Yafang Tang
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Yan Li
- Department of Biology and Chemical Engineering, Weihai Vocational College, Weihai, 264200, China
| | - Chao Hu
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Jingyi Li
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Ang Lyu
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Science, Wuhan, 430064, China.
| |
Collapse
|
6
|
Sun L, Huo J, Liu J, Yu J, Zhou J, Sun C, Wang Y, Leng F. Anthocyanins distribution, transcriptional regulation, epigenetic and post-translational modification in fruits. Food Chem 2023; 411:135540. [PMID: 36701918 DOI: 10.1016/j.foodchem.2023.135540] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Anthocyanins have indispensable functions in plant resistance, human health, and fruit coloring, which arouse people's favorite. It has been reported that anthocyanins are widely found in fruits, and can be affected by numerous factors. In this review, we systematically summarize anthocyanin functions, classifications, distributions, biosynthesis, decoration, transportation, transcriptional regulation, DNA methylation, and post-translational regulation in fruits.
Collapse
Affiliation(s)
- Liping Sun
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Jingtian Huo
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Jieya Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Jiayi Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Jialing Zhou
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | - Feng Leng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
Hong Y, Lv Y, Zhang J, Ahmad N, Li X, Yao N, Liu X, Li H. The safflower MBW complex regulates HYSA accumulation through degradation by the E3 ligase CtBB1. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1277-1296. [PMID: 36598461 DOI: 10.1111/jipb.13444] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2023] [Indexed: 05/13/2023]
Abstract
The regulatory mechanism of the MBW (MYB-bHLH-WD40) complex in safflower (Carthamus tinctorius) remains unclear. In the present study, we show that the separate overexpression of the genes CtbHLH41, CtMYB63, and CtWD40-6 in Arabidopsis thaliana increased anthocyanin and procyanidin contents in the transgenic plants and partially rescued the trichome reduction phenotype of the corresponding bhlh41, myb63, and wd40-6 single mutants. Overexpression of CtbHLH41, CtMYB63, or CtWD40-6 in safflower significantly increased the content of the natural pigment hydroxysafflor yellow A (HYSA) and negatively regulated safflower petal size. Yeast-two-hybrid, functional, and genetic assays demonstrated that the safflower E3 ligase CtBB1 (BIG BROTHER 1) can ubiquitinate CtbHLH41, marking it for degradation through the 26S proteasome and negatively regulating flavonoid accumulation. CtMYB63/CtWD40-6 enhanced the transcriptional activity of CtbHLH41 on the CtDFR (dihydroflavonol 4-reductase) promoter. We propose that the MBW-CtBB1 regulatory module may play an important role in coordinating HYSA accumulation with other response mechanisms.
Collapse
Affiliation(s)
- Yingqi Hong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- College of Tropical Crops, Hainan University, Haikou, 570100, China
| | - Yanxi Lv
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Jianyi Zhang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Naveed Ahmad
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghaijiaotong University, Shanghai, 200240, China
| | - Xiaokun Li
- Institute of Life Sciences, Wenzhou Medical University, Wenzhou, 325000, China
- Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325000, China
| | - Na Yao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Xiuming Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- Institute of Life Sciences, Wenzhou Medical University, Wenzhou, 325000, China
- Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325000, China
| | - Haiyan Li
- College of Tropical Crops, Hainan University, Haikou, 570100, China
| |
Collapse
|
8
|
The Ubiquitin-26S Proteasome Pathway and Its Role in the Ripening of Fleshy Fruits. Int J Mol Sci 2023; 24:ijms24032750. [PMID: 36769071 PMCID: PMC9917055 DOI: 10.3390/ijms24032750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The 26S proteasome is an ATP-dependent proteolytic complex in eukaryotes, which is mainly responsible for the degradation of damaged and misfolded proteins and some regulatory proteins in cells, and it is essential to maintain the balance of protein levels in the cell. The ubiquitin-26S proteasome pathway, which targets a wide range of protein substrates in plants, is an important post-translational regulatory mechanism involved in various stages of plant growth and development and in the maturation process of fleshy fruits. Fleshy fruit ripening is a complex biological process, which is the sum of a series of physiological and biochemical reactions, including the biosynthesis and signal transduction of ripening related hormones, pigment metabolism, fruit texture changes and the formation of nutritional quality. This paper reviews the structure of the 26S proteasome and the mechanism of the ubiquitin-26S proteasome pathway, and it summarizes the function of this pathway in the ripening process of fleshy fruits.
Collapse
|
9
|
Yang N, Zhou Y, Wang Z, Zhang Z, Xi Z, Wang X. Emerging roles of brassinosteroids and light in anthocyanin biosynthesis and ripeness of climacteric and non-climacteric fruits. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34793267 DOI: 10.1080/10408398.2021.2004579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Anthocyanins are important pigments that contribute to fruit quality. The regulation of anthocyanin biosynthesis by several transcription factors via sophisticated regulatory networks has been studied in various plants. Brassinosteroids (BRs), a new class of plant hormone, are involved in regulating anthocyanin biosynthesis in fruits. Furthermore, light directly affects the synthesis and distribution of anthocyanins. Here, we summarize the recent progress toward understanding the impact of BR and light on anthocyanin biosynthesis in climacteric and non-climacteric fruits. We review the BR and light signaling pathways and highlight the important transcription factors that are associated with the synthesis of anthocyanins, such as BZR1 (brassinazole-resistant 1, BR signaling pathway), HY5 (elongated hypocotyl 5) and COP1 (constitutively photomorphogenic 1, light signal transduction pathway), which bind with the target genes involved in anthocyanin synthesis. In addition, we review the mechanism by which light signals interact with hormonal signals to regulate anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Ni Yang
- College of Enology, Northwest A&F University, Yangling, China
| | - Yali Zhou
- College of Enology, Northwest A&F University, Yangling, China.,College of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Zhaoxiang Wang
- College of Enology, Northwest A&F University, Yangling, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Xuefei Wang
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
10
|
Kim B, Piao R, Lee G, Koh E, Lee Y, Woo S, Jiang W, Septiningsih EM, Thomson MJ, Koh HJ. OsCOP1 regulates embryo development and flavonoid biosynthesis in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2587-2601. [PMID: 33950284 PMCID: PMC8277627 DOI: 10.1007/s00122-021-03844-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/22/2021] [Indexed: 06/07/2023]
Abstract
Novel mutations of OsCOP1 were identified to be responsible for yellowish pericarp and embryo lethal phenotype, which revealed that OsCOP1 plays a crucial role in flavonoid biosynthesis and embryogenesis in rice seed. Successful production of viable seeds is a major component of plant life cycles, and seed development is a complex, highly regulated process that affects characteristics such as seed viability and color. In this study, three yellowish-pericarp embryo lethal (yel) mutants, yel-hc, yel-sk, and yel-cc, were produced from three different japonica cultivars of rice (Oryza sativa L). Mutant seeds had yellowish pericarps and exhibited embryonic lethality, with significantly reduced grain size and weight. Morphological aberrations were apparent by 5 days after pollination, with abnormal embryo development and increased flavonoid accumulation observed in the yel mutants. Genetic analysis and mapping revealed that the phenotype of the three yel mutants was controlled by a single recessive gene, LOC_Os02g53140, an ortholog of Arabidopsis thaliana CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1). The yel-hc, yel-sk, and yel-cc mutants carried mutations in the RING finger, coiled-coil, and WD40 repeat domains, respectively, of OsCOP1. CRISPR/Cas9-targeted mutagenesis was used to knock out OsCOP1 by targeting its functional domains, and transgenic seed displayed the yel mutant phenotype. Overexpression of OsCOP1 in a homozygous yel-hc mutant background restored pericarp color, and the aberrant flavonoid accumulation observed in yel-hc mutant was significantly reduced in the embryo and endosperm. These results demonstrate that OsCOP1 is associated with embryo development and flavonoid biosynthesis in rice grains. This study will facilitate a better understanding of the functional roles of OsCOP1 involved in early embryogenesis and flavonoid biosynthesis in rice seeds.
Collapse
Affiliation(s)
- Backki Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 Republic of Korea
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77483 USA
| | - Rihua Piao
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 Republic of Korea
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, 136100 China
| | - Gileung Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 Republic of Korea
| | - Eunbyeol Koh
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yunjoo Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sunmin Woo
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul, 08826 Republic of Korea
| | - Wenzhu Jiang
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 Republic of Korea
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062 China
| | - Endang M. Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77483 USA
| | - Michael J. Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77483 USA
| | - Hee-Jong Koh
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|