1
|
Aththanayaka S, Thiripuranathar G, Ekanayake S. Sustainable approach for fabrication of pineapple agro-waste mediated cellulose nanocrystals embedded with Ag/Ag 2O/ZnO nanocomposites for efficient removal of waterborne pathogens in wastewater. Int J Biol Macromol 2025; 310:143272. [PMID: 40254199 DOI: 10.1016/j.ijbiomac.2025.143272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/06/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Biogenic nanocomposites (NCs) effectively purify contaminated water by eliminating pollutants caused by rapid urbanization, unrestrained industrial activities, and the proliferation of pathogenic organisms, addressing the critical water contamination crisis impacting global health. This study describes the synthesis of a sustainable biopolymer NC (BNC) by incorporating pineapple (Murusi variety) crop residue-based Ag/Ag2O/ZnO NCs and cellulose nanocrystals (CNCs) through an eco-friendly and sustainable approach. TEM analysis revealed cross-sectional diameters of 11 nm consisting of spherical-shaped Ag/Ag2O NPs (9 nm) arranged on nanoflower-shaped ZnO NPs (82 nm). XRD analysis confirmed that biogenic Ag, Ag2O, and ZnO NPs exhibit space groups Fm3m, Pn-3m, and P63mc respectively with Ag/Ag2O NPs forming face-centered cubic and ZnO NPs wurtzite crystal structures. FTIR validated the pure CNCs formation, while TGA and differential thermogravimetry (DTG) demonstrated high thermal stability at 370 °C. Ag/Ag2O NPs exhibited outstanding antibacterial activity at 2000 ppm, with inhibition zones of 20 mm against E. coli and 21 mm against S. aureus. In contrast, ZnO NPs demonstrated lower antibacterial activity with inhibition zones of 13 mm against E. coli and 14 mm against S. aureus. The Ag/Ag₂O/ZnO NCs displayed significant antibacterial activity against both strains with inhibition zones of 19 mm. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the NCs were determined to be 31.3 ppm and 62.5 ppm, respectively, for both bacterial strains. These findings highlight the superior antimicrobial properties of silver-based NCs compared to ZnO, suggesting their potential application in antimicrobial treatments. The developed BNC filter comprising of Ag/Ag2O/ZnO NCs 20 mg: CNCs: 50 g effectively removed Salmonella typhi from 1.2 L of contaminated wastewater through sequential filtration, exhibiting significant characteristics including sustainability, low production cost, water stability, easy recoverability, and high bacterial growth inhibition, making it a promising solution for water treatment applications.
Collapse
Affiliation(s)
- Samudrika Aththanayaka
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya 10107, Sri Lanka; Department of Biochemistry, Faculty of Medical Sciences, Sri Jayewardenepura University, Nugegoda, Sri Lanka
| | - Gobika Thiripuranathar
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya 10107, Sri Lanka.
| | - Sagarika Ekanayake
- Department of Biochemistry, Faculty of Medical Sciences, Sri Jayewardenepura University, Nugegoda, Sri Lanka
| |
Collapse
|
2
|
Ahmed MM, Mukheed M, Tariq T, Hasan M, Shaaban M, Mustafa G, Hatami M. Physio-biochemical insights into Arsenic stress mitigation regulated by Selenium nanoparticles in Gossypium hirsutum L. BMC PLANT BIOLOGY 2025; 25:482. [PMID: 40240948 PMCID: PMC12001592 DOI: 10.1186/s12870-025-06514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Arsenic is a nonessential toxic metalloid hampering the growth and development of plants. The cotton (Gossypium hirsutum) is of great economic importance in the textile industry as well as in the production of edible oil. In developing countries, especially Pakistan, the export of cotton has a distinct position. However, there has been a significant decline in cotton production over the past few years due to climate change, heavy metals induction and biotic stresses. A notable decrease in cotton growth and product is observed in response to arsenic stress. Selenium nanoparticles (Se NPS) were prepared by green chemistry approach and characterized by UV-Vis, FTIR, and XRD to mitigate the heavy metals induced toxicity in cotton seedling. Results shows that arsenic toxicity causes a drastic decrease in photosynthesis, phenolics, proteins, growth of seedlings, relative water content, and overall plant biomass. However, these physio-biochemical attributes were upregulated by applications of Se NPs. Moreover, As stress causes severe oxidative damage by overproduction of MDA, H2O2 and reactive oxygen species (ROS). The supplementation of SeNPs positively regulate the As stress in cotton seedlings by altering important antioxidant enzymes involved in ROS detoxification such as SOD, POD, and CAT. Se NPs ameliorate the toxicity by increasing activities of enzymatic and non-enzymatic antioxidants. The accumulation of As in roots alter the architecture of roots including reduced branching of roots. Current results suggest that the applications of selenium nanoparticles especially 20 mg/L concentration confidently alleviate the As induced toxicity in cotton seedlings.
Collapse
Affiliation(s)
- Muhammad Mahmood Ahmed
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Mukheed
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tuba Tariq
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Murtaza Hasan
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Ghazala Mustafa
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
- Institute of Nanoscience and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
3
|
Hussein NM, Mortazavi-Drazkola S. Biosynthesized ZnO-based bimetallic nanocomposite for anticancer, antimicrobial, and photocatalytic applications. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03150-4. [PMID: 40121599 DOI: 10.1007/s00449-025-03150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Industrial wastewater, particularly antibiotic-laden effluents, poses a significant environmental threat, necessitating efficient and sustainable remediation strategies. In this study, ZnO/Au nanocomposites were synthesized using Urtica dioica extract (ZnO/Au@UDE NCs), offering an eco-friendly alternative to conventional chemical methods. The NCs exhibited well-defined spherical and oval morphologies (40-50 nm), as confirmed by FTIR, TEM, and XRD analyses. Their photocatalytic efficiency in degrading penicillin G was optimized by adjusting key parameters, achieving rapid degradation within 130 min. The incorporation of gold nanoparticles significantly enhanced the electron-hole separation, thereby improving photocatalytic performance. Furthermore, ZnO/Au@UDE NCs demonstrated potent antibacterial activity against Escherichia coli and Pseudomonas aeruginosa (MIC: 125 µg/ml) and exhibited strong antioxidant and anticancer properties, with IC50 values of 72.49 µg/ml for MCF-7 and 23.63 µg/ml for AGS cancer cells. The combined photocatalytic and biological functionalities highlight the potential of these NCs for environmental remediation and biomedical applications, demonstrating a sustainable and multifunctional approach to nanomaterial development.
Collapse
Affiliation(s)
- Nidal M Hussein
- Department of Civil Engineering, Faculty of Engineering, University of Petra, Amman, Jordan
| | - Sobhan Mortazavi-Drazkola
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
Sil M, Goswami A. Exploring the functionality of mesoporous silica nanoparticles as a prebiotic agent. Antonie Van Leeuwenhoek 2025; 118:57. [PMID: 40074916 DOI: 10.1007/s10482-025-02071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Mesoporous silica nanoparticles (MSNs), particularly SBA15 and SBA16, provide a versatile platform due to their ordered structures, high surface area, and biocompatibility. This study investigates their role as prebiotic agents by evaluating their effect on the growth of Bacillus coagulans, an industrially significant probiotic. SEM and TEM analyses revealed that SBA15 had mesh-like hexagonal structure, while SBA16 featured hexagonal pores with tubular channels, enhancing surface area and porosity for bacterial attachment and proliferation. BET analysis showed SBA15 had a surface area of 718 m2/g with 8.5 nm pores, whereas SBA16 exhibited 740 m2/g with 5.4 nm pores, influencing nutrient diffusion and bacterial interactions. UV-Vis spectroscopy confirmed structural stability with lambda maxima at 225 nm (SBA15) and 231 nm (SBA16). DLS analysis showed that SBA15 (267.7 nm) and SBA16 (367 nm) had high dispersibility in aqueous media, fostering a stable microenvironment. Optical density measurements and colony-forming unit assays demonstrated significant growth enhancement of Bacillus coagulans in the presence of MSNs, at lower concentrations (0.1-1 ppm). SBA15 promoted bacterial proliferation more effectively than SBA16, due to its larger pore size. The porosity facilitated bacterial adhesion and nutrient absorption, leading to enhanced metabolic activity. Enzyme assays confirmed a rise in ATP levels, suggesting increased energy metabolism, while a paradoxical increase in the Minimum Inhibitory Concentration (MIC) of Ampicillin was observed, attributed to nanoparticle-mediated antibiotic adsorption, reducing the bioavailability of the antibiotic and allowing bacterial survival. These findings highlight MSNs as growth modulators and antibiotic stress mitigators with applications in biotechnology and healthcare.
Collapse
Affiliation(s)
- Moumita Sil
- Biological Sciences Division, Indian Statistical Institute, Kolkata, 700108, India.
| | - Arunava Goswami
- Biological Sciences Division, Indian Statistical Institute, Kolkata, 700108, India
| |
Collapse
|
5
|
Girma A, Mebratie G, Mekuye B, Abera B, Bekele T, Alamnie G. Antibacterial Capabilities of Metallic Nanoparticles and Influencing Factors. NANO SELECT 2024; 5. [DOI: 10.1002/nano.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
ABSTRACTThe increase of antibiotic resistance in bacteria has become a major concern for successful diagnosis and treatment of infectious diseases. Over the past few decades, significant progress has been achieved on the development of nanotechnology‐based medicines for combating multidrug resistance in microorganisms. Among these, metallic nanoparticles (MNPs) hold great promise in addressing this challenge due to their broad‐spectrum and robust antimicrobial properties. This review illustrates the antibacterial activities of MNPs and further elucidates how different factors including synthesis method, size, shape, surface charge, pH, dose, type of capping or stabilizing agents of MNPs, and Gram‐type of the bacteria, impact their antibacterial activities, which are expected to promote the future development of more potent MNP‐based antibacterial agents.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology College of Natural and Computational Science Mekdela Amba University Tulu Awuliya Ethiopia
| | - Gedefaw Mebratie
- Department of Physics College of Natural and Computational Science Mekdela Amba University Tulu Awuliya Ethiopia
- Department of Physics College of Science Bahir Dar University Bahir Dar Ethiopia
| | - Bawoke Mekuye
- Department of Physics College of Natural and Computational Science Mekdela Amba University Tulu Awuliya Ethiopia
| | - Birhanu Abera
- Department of Physics College of Natural and Computational Science Injibara University Injibara Ethiopia
| | - Tigabu Bekele
- Department of Chemistry College of Natural and Computational Science Mekdela Amba University Tulu Awuliya Ethiopia
| | - Getachew Alamnie
- Department of Biology College of Natural and Computational Science Mekdela Amba University Tulu Awuliya Ethiopia
| |
Collapse
|
6
|
Muthukumaran T, Philip J. A review on synthesis, capping and applications of superparamagnetic magnetic nanoparticles. Adv Colloid Interface Sci 2024; 334:103314. [PMID: 39504854 DOI: 10.1016/j.cis.2024.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/09/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024]
Abstract
Magnetic nanoparticles (MNPs) have garnered significant attention from researchers due to their numerous technologically significant applications in diverse fields, including biomedicine, diagnostics, agriculture, optics, mechanics, electronics, sensing technology, catalysis, and environmental remediation. The superparamagnetic nature of MNP is exploited for many applications and remains fascinating to study many fundamental phenomena. The uniqueness of this review is that it gives an in-depth review of different synthesis approaches adopted for preparing magnetic nanoparticles and nanoparticle formation mechanisms, functionalizing them with different capping agents, and applying different functionalized magnetic nanoparticles. The important synthesis techniques covered include coprecipitation, microwave-assisted, sonochemical, sol-gel, microemulsion, hydrothermal/solvothermal, thermal decomposition, and mechano-chemical synthesis. Further, the advantages and disadvantages of each technique are discussed, and tables show important results of prepared particles. Other aspects covered in this review are the dispersion of magnetic nanoparticles in the continuous matrix, the influence of surface capping on high-temperature thermal stability, the long-term stability of ferrofluids, and applications of functionalized magnetic nanoparticles. For effective utilization of the ferrite nanoparticles, it is essential to formulate thermally and colloidally stable magnetic nanoparticles with desired magnetic properties. Capping enhances the phase transition temperature and long-term colloidal stability. Magnetic nanoparticles capped or functionalized with specific binding species, specific components like drugs, or other functional groups make them suitable for applications in biotechnology/biomedicine. Recent studies reveal the tremendous scope of MNPs in therapeutics and theranostics. The requirements for nanoparticle size, morphology, and physio-chemical properties, especially magnetic properties, functionalization, and stability, vary with applications. There are also challenges for precise size control and the cost-effective production of nanoparticles in large quantities. The review should be an ideal material for researchers working on magnetic nanomaterials and an excellent reference for freshers.
Collapse
Affiliation(s)
- T Muthukumaran
- Smart Materials Section, MCG, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu, India
| | - John Philip
- Smart Materials Section, MCG, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu, India; Department of Physics, Cochin University of Science and Technology, Kochi -22, India.
| |
Collapse
|
7
|
El-Seedi HR, Omara MS, Omar AH, Elakshar MM, Shoukhba YM, Duman H, Karav S, Rashwan AK, El-Seedi AH, Altaleb HA, Gao H, Saeed A, Jefri OA, Guo Z, Khalifa SAM. Updated Review of Metal Nanoparticles Fabricated by Green Chemistry Using Natural Extracts: Biosynthesis, Mechanisms, and Applications. Bioengineering (Basel) 2024; 11:1095. [PMID: 39593755 PMCID: PMC11591867 DOI: 10.3390/bioengineering11111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Metallic nanoparticles have found wide applications due to their unique physical and chemical properties. Green biosynthesis using plants, microbes, and plant/microbial extracts provides an environmentally friendly approach for nanoparticle synthesis. This review discusses the mechanisms and factors governing the biosynthesis of metallic nanoparticles such as silver, gold, and zinc using various plant extracts and microorganisms, including bacteria, fungi, and algae. The phytochemicals and biomolecules responsible for reducing metal ions and stabilizing nanoparticles are discussed. Key process parameters like pH, temperature, and precursor concentration affecting particle size are highlighted. Characterization techniques for confirming the formation and properties of nanoparticles are also mentioned. Applications of biosynthesized nanoparticles in areas such as antibacterial delivery, cancer therapy, biosensors, and environmental remediation are reviewed. Challenges in scaling up production and regulating nanoparticle properties are addressed. Power Point 365 was used for creating graphics. Overall, green biosynthesis is an emerging field with opportunities for developing eco-friendly nanomanufacturing platforms using abundant natural resources. Further work on optimizing conditions, standardizing protocols, and exploring new biosources is needed to realize the full potential of this approach.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32111, Egypt
| | - Mohamed S. Omara
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Abdulrahman H. Omar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Mahmoud M. Elakshar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Yousef M. Shoukhba
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey; (H.D.); (S.K.)
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Awg H. El-Seedi
- International IT College of Sweden, Stockholm, Hälsobrunnsgatan 6, Arena Academy, 11361 Stockholm, Sweden;
| | - Hamud A. Altaleb
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Ohoud A. Jefri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Biology, College of Science, Taibah University, Al-Madinah Al Munawarah 42353, Saudi Arabia
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Shaden A. M. Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Neurology and Psychiatry Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 11219 Stockholm, Sweden
| |
Collapse
|
8
|
Ullah J, Gul A, Khan I, Shehzad J, Kausar R, Ahmed MS, Batool S, Hasan M, Ghorbanpour M, Mustafa G. Green synthesized iron oxide nanoparticles as a potential regulator of callus growth, plant physiology, antioxidative and microbial contamination in Oryza sativa L. BMC PLANT BIOLOGY 2024; 24:939. [PMID: 39385076 PMCID: PMC11462915 DOI: 10.1186/s12870-024-05627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
In tissue culture, efficient nutrient availability and effective control of callus contamination are crucial for successful plantlet regeneration. This study was aimed to enhance callogenesis, callus regeneration, control callus contamination, and substitute iron (Fe) source with FeO-NPs in Murashige and Skoog (MS) media. Nanogreen iron oxide (FeO-NPs) were synthesized and well characterized with sizes ranging from 2 to 7.5 nm. FeO-NPs as a supplement in MS media at 15 ppm, significantly controlled callus contamination by (80%). Results indicated that FeCl3-based FeO-NPs induced fast callus induction (72%) and regeneration (43%), in contrast FeSO4-based FeO-NPs resulted in increased callus weight (516%), diameter (300%), number of shoots (200%), and roots (114%). Modified media with FeO-NPs as the Fe source induced fast callogenesis and regeneration compared to normal MS media. FeO-NPs, when applied foliar spray, increased Plant fresh biomass by 133% and spike weight by 350%. Plant height increased by 54% and 33%, the number of spikes by 50% and 265%, and Chlorophyll content by 51% and 34% in IRRI-6 and Kissan Basmati, respectively. Additionally, APX (Ascorbate peroxidase), SOD (Superoxide dismutase), POD (peroxidase), and CAT (catalase) increased in IRRI-6 by 27%, 29%, 283%, 62%, while in Kissan Basmati, APX increased by 70%, SOD decreased by 28%, and POD and CAT increased by 89% and 98%, respectively. Finally, FeO-NPs effectively substituted Fe source in MS media, shorten the plant life cycle, and increase chlorophyll content as well as APX, SOD, POD, and CAT activities. This protocol is applicable for tissue culture in other cereal crops as well.
Collapse
Affiliation(s)
- Jawad Ullah
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Afia Gul
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ilham Khan
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Junaid Shehzad
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rehana Kausar
- Department of Botany, Chatter Klass Campus, University of Azad Jammu & Kashmir, Muzaffarabad, 13100, Pakistan
| | - Muhammad Shahzad Ahmed
- Rice Research Program, Crop Sciences Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan.
| | - Sana Batool
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Murtaza Hasan
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
- Institute of Nanoscience and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran.
| | - Ghazala Mustafa
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Department of Horticulture, State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Aziz SN, Abdulwahab A, Aldeen TS, Alqabili DMA. Synthesis, characterization, and evaluation of antibacterial and antifungal activities of CuO-ZnO-Co 3O 4 nanocomposites. Heliyon 2024; 10:e37802. [PMID: 39315167 PMCID: PMC11417582 DOI: 10.1016/j.heliyon.2024.e37802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
The co-precipitation method was used to prepare CuO, ZnO, Co3O4 nanoparticles and CuO-ZnO-Co3O4 nanocomposite. The structural, morphological, and optical properties of the prepared samples were studied using X-ray diffraction (XRD), total reflection X-ray fluorescence (TXRF), transmission electron microscopy (TEM), selected area electron diffraction (SAED), diffuse reflectance spectroscopy (DRS), and zeta potential. XRD analysis revealed that the crystal structures of CuO, ZnO, and Co3O4 nanoparticles are monoclinic, hexagonal, and cubic, with average crystallite sizes of 30.8 nm, 31.8 nm, and 32.8 nm, respectively. For CuO-ZnO-Co3O4 nanocomposites, the corresponding sizes were 24.9 nm, 13.6 nm, and 16.1 nm. The optical bandgaps of CuO, ZnO, Co3O4 nanoparticles, and CuO-ZnO-Co3O4 nanocomposites were 1.5 eV, 3.14 eV, 1.2 eV, and 1.3 eV, respectively. In this study, the antibacterial activity of CuO-ZnO-Co3O4 nanocomposite against Gram-negative bacteria (E. coli, Klebsiella, pseudomonas, and Salmonella) and Gram-positive bacteria (Staphylococcus aureus) was investigated and compared with the antibiotic Azithromycin. In addition, the effect of the nanocomposite on fungi was studied and compared with the antifungal Mystatin.
Collapse
Affiliation(s)
- Shadha Nasser Aziz
- Physics Department, Faculty of Science, Sana'a University, Sana'a, Yemen
- Al-Darb Community College, Dhamar, Yemen
| | - A.M. Abdulwahab
- Physics Department, Faculty of Applied Science, Thamar University, Dhamar 87246, Yemen
| | - Thana Shuga Aldeen
- Physics Department, Faculty of Science, Sana'a University, Sana'a, Yemen
| | | |
Collapse
|
10
|
Mbuyazi TB, Ajibade PA. Magnetic iron oxides nanocomposites: synthetic techniques and environmental applications for wastewater treatment. DISCOVER NANO 2024; 19:158. [PMID: 39342049 PMCID: PMC11438764 DOI: 10.1186/s11671-024-04102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Nanomaterials are an emerging class of compounds with potential to advance technology for wastewater treatment. There are many toxic substances in industrial wastewater that are dangerous to the aquatic ecosystem and public health. These pollutants require the development of novel techniques to remove them from the environment. Iron oxide nanoparticles are being studied and develop as new technology to address the problem of environmental pollution due to their unique properties and effectiveness against different kind of pollutants. A variety of modified iron oxide nanoparticles have been developed through extensive research that mitigates the shortcomings of aggregation or oxidation and enhances their efficiency as novel remediator against environmental pollutants. In this review, we present synthetic approaches used for the preparation of iron oxide nanoparticles and their corresponding nanocomposites, along with the processes in which the materials are used as adsorbent/photocatalysts for environmental remediation. Applications explored includes adsorption of dyes, photocatalytic degradation of dyes, and adsorption of heavy metal ions. The use of iron oxides nanocomposite in real wastewater samples and recyclability of adsorbents and photocatalysts were also explored.
Collapse
Affiliation(s)
- Thandi B Mbuyazi
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa
| | - Peter A Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
11
|
Hou J, Cai Y, Wang J, Zan S, Li Z, Zhu T. Enhanced bioremediation of cyclohexaneacetic acid in offshore sediments with green synthetic iron oxide and Pseudoalteromonas sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38770-38780. [PMID: 36481851 DOI: 10.1007/s11356-022-24629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Naphthenic acids (NAs) have been found to exert serious threats on offshore sediment ecosystems and human health in recent years, which entails us the urgent need for NAs remediation. Bioremediation is considered an ideal method for sediment remediation due to ecological sustainability and economic feasibility. However, current bioremediation efficiency of offshore sediments suffers from relatively slow and there has never any attempts to bioremediate offshore sediment NAs contamination hitherto. In this study, the green synthetic iron oxides (gFeOx) based on Laminaria extracts was employed to enhance the biodegradation of NAs (Cyclohexylacetic acid, CHAA) in offshore sediments by Pseudoalteromonas sp. JSTW (an indigenous microorganism). The results showed that CHAA (20 mg·kg-1) in offshore sediments was removed almost 100% within 7 days at 30 mg·kg-1 gFeOx and 0.6 mg·kg-1 Strain JSTW. High-throughput sequencing results revealed that the structure and function of sediment microbial community were essentially restored to uncontaminated levels after bioremediation, highlighting the joint remediation approach is an efficient and eco-friendly method. Overall, this work has firstly provided insights into the application for NAs in situ bioremediation in offshore sediments.
Collapse
Affiliation(s)
- Jiaxiang Hou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China
| | - Yingxue Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China.
| | - Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China
| | - Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China
| | - Tongxian Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China
| |
Collapse
|
12
|
Zhan Q, Ahmad A, Arshad H, Yang B, Chaudhari SK, Batool S, Hasan M, Feng G, Mustafa G, Hatami M. The role of reduced graphene oxide on mitigation of lead phytotoxicity in Triticum aestivum L.plants at morphological and physiological levels. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108719. [PMID: 38739962 DOI: 10.1016/j.plaphy.2024.108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Rapid global industrialization and an increase in population have enhanced the risk of heavy metals accumulation in plant bodies to disrupt the morphological, biochemical, and physiological processes of plants. To cope with this situation, reduced graphene oxide (rGO) NPs were used first time to mitigate abiotic stresses caused in plant. In this study, rGO NPs were synthesized and reduced with Tecoma stans plant leave extract through modified Hummer's methods. The well prepared rGO NPs were characterized by ultra-violet visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Zeta potential, and scanning electron microscopy (SEM). However, pot experiment was conducted with four different concentrations (15, 30, 60, 120 mg/L) of rGO NPs and three different concentrations (300, 500,700 mg/L) of lead (Pb) stress were applied. To observe the mitigative effects of rGO NPs, 30 mg/L of rGO NPs and 700 mg/L of Pb were used in combination. Changes in morphological and biochemical characteristics of wheat plants were observed for both Pb stress and rGO NPs treatments. Pb was found to inhibit the morphological and biochemical characteristics of plants. rGO NPs alone as well as in combination with Pb was found to increase the chlorophyll content of wheat plants. Under Pb stress conditions and rGO NPs treatments, antioxidant enzyme activities like ascorbate peroxidases (APX), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were observed. Current findings revealed that greenly reduced graphene oxide NPs can effectively promote growth in wheat plants under Pb stress by elevating chlorophyll content of leaves, reducing the Pb uptake, and suppressing ROS produced due to Pb toxicity.
Collapse
Affiliation(s)
- Qingying Zhan
- School of Health, Guangzhou Vocational University of Science and Technology, 510555, China
| | - Ashfaq Ahmad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Huma Arshad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Sunbal Khalil Chaudhari
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, 42100, Pakistan
| | - Sana Batool
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Murtaza Hasan
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Guangzhu Feng
- School of Health, Guangzhou Vocational University of Science and Technology, 510555, China.
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| | - Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran; Institute of Nanoscience and Nanotechnology, Arak University, 38156-8-8349, Arak, Iran.
| |
Collapse
|
13
|
Sandhu ZA, Raza MA, Alqurashi A, Sajid S, Ashraf S, Imtiaz K, Aman F, Alessa AH, Shamsi MB, Latif M. Advances in the Optimization of Fe Nanoparticles: Unlocking Antifungal Properties for Biomedical Applications. Pharmaceutics 2024; 16:645. [PMID: 38794307 PMCID: PMC11124843 DOI: 10.3390/pharmaceutics16050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, nanotechnology has achieved a remarkable status in shaping the future of biological applications, especially in combating fungal diseases. Owing to excellence in nanotechnology, iron nanoparticles (Fe NPs) have gained enormous attention in recent years. In this review, we have provided a comprehensive overview of Fe NPs covering key synthesis approaches and underlying working principles, the factors that influence their properties, essential characterization techniques, and the optimization of their antifungal potential. In addition, the diverse kinds of Fe NP delivery platforms that command highly effective release, with fewer toxic effects on patients, are of great significance in the medical field. The issues of biocompatibility, toxicity profiles, and applications of optimized Fe NPs in the field of biomedicine have also been described because these are the most significant factors determining their inclusion in clinical use. Besides this, the difficulties and regulations that exist in the transition from laboratory to experimental clinical studies (toxicity, specific standards, and safety concerns) of Fe NPs-based antifungal agents have been also summarized.
Collapse
Affiliation(s)
- Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Abdulmajeed Alqurashi
- Department of Biology, College of Science, Taibah University, Madinah 42353, Saudi Arabia;
| | - Samavia Sajid
- Department of Chemistry, Faculty of Science, University of Engineering and Technology, Lahore 54890, Pakistan;
| | - Sufyan Ashraf
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Kainat Imtiaz
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Farhana Aman
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan;
| | - Abdulrahman H. Alessa
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Monis Bilal Shamsi
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah 42353, Saudi Arabia;
- Department Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah 42353, Saudi Arabia;
- Department Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
14
|
Senthil Rathi B, Ewe LS, S S, S S, Yew WK, R B, Tiong SK. Recent trends and advancement in metal oxide nanoparticles for the degradation of dyes: synthesis, mechanism, types and its application. Nanotoxicology 2024; 18:272-298. [PMID: 38821108 DOI: 10.1080/17435390.2024.2349304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/30/2024] [Indexed: 06/02/2024]
Abstract
Synthetic dyes play a crucial role in our daily lives, especially in clothing, leather accessories, and furniture manufacturing. Unfortunately, these potentially carcinogenic substances are significantly impacting our water systems due to their widespread use. Dyes from various sources pose a serious environmental threat owing to their persistence and toxicity. Regulations underscore the urgency in addressing this problem. In response to this challenge, metal oxide nanoparticles such as titanium dioxide (TiO2), zinc oxide (ZnO), and iron oxide (Fe3O4) have emerged as intriguing options for dye degradation due to their unique characteristics and production methods. This paper aims to explore the types of nanoparticles suitable for dye degradation, various synthesis methods, and the properties of nanoparticles. The study elaborates on the photocatalytic and adsorption-desorption activities of metal oxide nanoparticles, elucidating their role in dye degradation and their application potential. Factors influencing degradation, including nanoparticle properties and environmental conditions, are discussed. Furthermore, the paper provides relevant case studies, practical applications in water treatment, and effluent treatment specifically in the textile sector. Challenges such as agglomeration, toxicity concerns, and cost-effectiveness are acknowledged. Future advancements in nanomaterial synthesis, their integration with other materials, and their impact on environmental regulations are potential areas for development. In conclusion, metal oxide nanoparticles possess immense potential in reducing dye pollution, and further research and development are essential to define their role in long-term environmental management.
Collapse
Affiliation(s)
- B Senthil Rathi
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Kajang, Selangor, Malaysia
| | - Lay Sheng Ewe
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Kajang, Selangor, Malaysia
| | - Sanjay S
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, India
| | - Sujatha S
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, India
| | - Weng Kean Yew
- School of Engineering and Physical Science, Heriot-Watt University Malaysia, Putrajaya, Malaysia
| | | | - Sieh Kiong Tiong
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Kajang, Selangor, Malaysia
| |
Collapse
|
15
|
Hasan M, Liu Q, Kanwal A, Tariq T, Mustafa G, Batool S, Ghorbanpour M. A comparative study on green synthesis and characterization of Mn doped ZnO nanocomposite for antibacterial and photocatalytic applications. Sci Rep 2024; 14:7528. [PMID: 38553550 PMCID: PMC10980724 DOI: 10.1038/s41598-024-58393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Biological and green synthesis of nanomaterial is a superior choice over chemical and physical methods due to nanoscale attributes implanted in a green chemistry matrix, have sparked a lot of interest for their potential uses in a variety of sectors. This research investigates the growing relevance of nanocomposites manufactured using ecologically friendly, green technologies. The transition to green synthesis correlates with the worldwide drive for environmentally sound procedures, limiting the use of traditional harsh synthetic techniques. Herein, manganese was decorated on ZnO NPs via reducing agent of Withania-extract and confirmed by UV-spectrophotometry with highest peak at 1:2 ratio precursors, and having lower bandgap energy (3.3 eV). XRD showed the sharp peaks and confirms the formation of nanoparticles, having particle size in range of 11-14 nm. SEM confirmed amorphous tetragonal structure while EDX spectroscopy showed the presence of Zn and Mn in all composition. Green synthesized Mn-decorated ZnO-NPs screened against bacterial strains and exhibited excellent antimicrobial activities against gram-negative and gram-positive bacteria. To check further, applicability of synthesized Mn-decorated Zn nanocomposites, their photocatalytic activity against toxic water pollutants (methylene blue (MB) dye) were also investigated and results showed that 53.8% degradation of MB was done successfully. Furthermore, the installation of green chemistry in synthesizing nanocomposites by using plant extract matrix optimizes antibacterial characteristics, antioxidant and biodegradability, helping to build sustainable green Mn decorated ZnO nanomaterial. This work, explains how biologically friendly Mn-doped ZnO nanocomposites can help reduce the environmental impact of traditional packaging materials. Based on these findings, it was determined that nanocomposites derived from biological resources should be produced on a wide scale to eradicate environmental and water contaminants through degradation.
Collapse
Affiliation(s)
- Murtaza Hasan
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024, People's Republic of China
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Qiang Liu
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Ayesha Kanwal
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tuba Tariq
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ghazala Mustafa
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Sana Batool
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
- Institute of Nanoscience and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
16
|
Daphedar AB, Kakkalameli S, Faniband B, Bilal M, Bhargava RN, Ferreira LFR, Rahdar A, Gurumurthy DM, Mulla SI. Decolorization of various dyes by microorganisms and green-synthesized nanoparticles: current and future perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124638-124653. [PMID: 35653025 DOI: 10.1007/s11356-022-21196-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Various types of colored pigments have been recovered naturally from biological sources including shells, flowers, insects, and so on in the past. At present, such natural colored substances (dyes) are replaced by manmade dyes. On the other hand, due to their continuous usage in various purpose, these artificial dyes or colored substances persist in the environmental surroundings. For example, industrial wastewater contains diverse pollutant substances including dyes. Several of these (artificial dyes) were found to be toxic to living organisms. In recent times, microbial-based removal of dye(s) has gained more attention. These methods were relatively inexpensive for eliminating such contaminants in the environmental system. Hence, various researchers were isolated microbes from environmental samples having the capability of decolorizing synthetic dyes from industrial wastewater. Furthermore, the microorganisms which are genetically engineered found higher degradative/decolorize capacity to target compounds in the natural environs. Very few reviews are available on specific dye treatment either by chemical treatments or by bacteria and/or fungal treatments. Here, we have enlightened literature reports on the removal of different dyes in microbes like bacteria (including anaerobic and aerobic), fungi, GEM, and microbial enzymes and also green-synthesized nanoparticles. This up-to-date literature survey will help environmental managements to co-up such contaminates in nature and will help in the decolorization of dyes.
Collapse
Affiliation(s)
- Azharuddin B Daphedar
- Department of Studies in Botany, Anjuman Arts, Science and Commerce College, Vijayapura, Karnataka, 586 101, India
| | - Siddappa Kakkalameli
- Department of Studies in Botany, Davangere University, Shivagangotri, Davangere, Karnataka, 577007, India
| | - Basheerabegum Faniband
- Department of Physics, School of Applied Sciences, REVA University, Bangalore, 560064, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ram Naresh Bhargava
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju, Sergipe, 49032‑490, Brazil
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol, 98615538, Iran
| | | | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore , 560064, India.
| |
Collapse
|
17
|
Zúñiga-Miranda J, Guerra J, Mueller A, Mayorga-Ramos A, Carrera-Pacheco SE, Barba-Ostria C, Heredia-Moya J, Guamán LP. Iron Oxide Nanoparticles: Green Synthesis and Their Antimicrobial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2919. [PMID: 37999273 PMCID: PMC10674528 DOI: 10.3390/nano13222919] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
The rise of antimicrobial resistance caused by inappropriate use of these agents in various settings has become a global health threat. Nanotechnology offers the potential for the synthesis of nanoparticles (NPs) with antimicrobial activity, such as iron oxide nanoparticles (IONPs). The use of IONPs is a promising way to overcome antimicrobial resistance or pathogenicity because of their ability to interact with several biological molecules and to inhibit microbial growth. In this review, we outline the pivotal findings over the past decade concerning methods for the green synthesis of IONPs using bacteria, fungi, plants, and organic waste. Subsequently, we delve into the primary challenges encountered in green synthesis utilizing diverse organisms and organic materials. Furthermore, we compile the most common methods employed for the characterization of these IONPs. To conclude, we highlight the applications of these IONPs as promising antibacterial, antifungal, antiparasitic, and antiviral agents.
Collapse
Affiliation(s)
- Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Julio Guerra
- Facultad de Ingeniería en Ciencias Aplicadas, Universidad Técnica del Norte, Ibarra 100107, Ecuador;
| | - Alexander Mueller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| |
Collapse
|
18
|
Geethamala GV, Poonkothai M, Swathilakshmi AV. Assessment on the photocatalytic and phytotoxic activities using ecobenevolently synthesized iron oxide nanoparticles from the root extracts of Glycyrrhiza glabra. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117022-117036. [PMID: 37221292 DOI: 10.1007/s11356-023-27551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
The present study is the first attempt to utilize the root extracts of Glycyrrhiza glabra as a novel biological route for the synthesis of iron oxide nanoparticles (Fe2O3NPs) under optimized conditions. The process variables namely concentration of ferric chloride, root extract of G. glabra and temperature were optimized using Response Surface Methodology (RSM) to obtain high yield. Phytochemicals mediated the reduction process and served as capping and stabilizing agent. The biosynthesized Fe2O3NPs characterized using UV-Vis spectroscopy exhibited a prominent peak at 350 nm. The crystallinity and valence state of Fe2O3NPs was confirmed by XRD and XPS. The surface functionalization of the nanoparticles was confirmed from the presence of functional groups in the FT-IR spectrum. The FESEM analysis revealed the biosynthesized Fe2O3NPs are irregular and the EDX spectrum recorded the presence of iron and oxygen in the synthesized nanoparticles. The biosynthesized Fe2O3NPs exhibited an appreciable photocatalytic activity against methylene blue under sunlight with a maximum decolorisation efficiency of 92% within 180 min of reaction time. The experimental data of adsorption studies well fitted with Langmuir isotherm and pseudo-second order kinetic model. The thermodynamic study proved to be spontaneous, feasible and endothermic in nature. The phytotoxicity study revealed 92% germination and increased seedling growth in the green gram seeds exposed to Fe2O3NPs. Hence the study established the efficiency of biosynthesized of Fe2O3NPs in photocatalytic and phytotoxic activities.
Collapse
Affiliation(s)
- Gunaseelan Vivekananth Geethamala
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Mani Poonkothai
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India.
| | - Ammapettai Varanavasu Swathilakshmi
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| |
Collapse
|
19
|
Kumar DSRS, Puthiran SH, Selvaraju GD, Matthew PA, Senthilkumar P, Kuppusamy S, Mani RR, Hatamleh AA, Ai-Dosary MA, Chang SW, Ravindran B. Preparation and Characterization of Magnetite-Polyvinyl Alcohol Hybrid Nanoparticles (As-PVA-MNPs) Using Acanthophora spicifera Marine Algae Extract for Enhanced Antimicrobial Activity Against Pathogenic Microorganisms. Mol Biotechnol 2023:10.1007/s12033-023-00903-y. [PMID: 37907811 DOI: 10.1007/s12033-023-00903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/28/2023] [Indexed: 11/02/2023]
Abstract
The present study focused on preparing and characterizing magnetite-polyvinyl alcohol (PVA) hybrid nanoparticles using Acanthophora spicifera marine algae extract as a reducing agent. Various analytical techniques, including UV-Visible spectrometry, Fourier-transform infrared (FTIR) analysis, energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis, were used to characterize the nanoparticles. The results showed the successful synthesis of nanoparticles with a characteristic color change and absorption peak at 400 nm in UV-Visible spectrometry. FTIR analysis indicated an interaction between the carboxyl group and magnetite-polyvinyl alcohol hybrid ions. SEM analysis revealed spherical nanoparticles with sizes ranging from 20 to 100 nm. EDX analysis confirmed the presence of strong magnetite peaks in Acanthophora spicifera, validating successful preparation. XRD analysis indicated the crystalline nature of the nanoparticles. Furthermore, the antimicrobial potential of As-PVA-MNPs was evaluated, demonstrating a significant zone of inhibition against tested bacterial and fungal samples at a concentration of 100 µg. These findings suggest the promising antimicrobial activity of the synthesized nanoparticles for potential applications in combating pathogenic microorganisms.
Collapse
Affiliation(s)
| | - S Hari Puthiran
- School of Biotechnology, Dr. G. R. Damodaran College of Science, Coimbatore, Tamil Nadu, 641014, India
| | - Gayathri Devi Selvaraju
- Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, 641402, India
| | - Paul A Matthew
- School of Bioscience and Technology, VIT- Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - P Senthilkumar
- School of Biotechnology, Dr. G. R. Damodaran College of Science, Coimbatore, Tamil Nadu, 641014, India
| | - Sowmya Kuppusamy
- PG and Research Department of Biotechnology & Bioinformatics, Holy Cross College, Tiruchirappalli, Tamil Nadu, 620002, India
| | - Ravishankar Ram Mani
- Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 1155, Riyadh, Saudi Arabia
| | - Munirah Abdullah Ai-Dosary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 1155, Riyadh, Saudi Arabia
| | - Soon Woong Chang
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Balasubramani Ravindran
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602105, India.
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea.
| |
Collapse
|
20
|
Shahid H, Shah AA, Shah Bukhari SNU, Naqvi AZ, Arooj I, Javeed M, Aslam M, Chandio AD, Farooq M, Gilani SJ, Bin Jumah MN. Synthesis, Characterization, and Biological Properties of Iron Oxide Nanoparticles Synthesized from Apis mellifera Honey. Molecules 2023; 28:6504. [PMID: 37764280 PMCID: PMC10534332 DOI: 10.3390/molecules28186504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Green approaches for nanoparticle synthesis have emerged as biocompatible, economical, and environment-friendly alternatives to counteract the menace of microbial drug resistance. Recently, the utilization of honey as a green source to synthesize Fe2O3-NPs has been introduced, but its antibacterial activity against one of the opportunistic MDR pathogens, Klebsiella pneumoniae, has not been explored. Therefore, this study employed Apis mellifera honey as a reducing and capping agent for the synthesis of iron oxide nanoparticles (Fe2O3-NPs). Subsequent to the characterization of nanoparticles, their antibacterial, antioxidant, and anti-inflammatory properties were appraised. In UV-Vis spectroscopic analysis, the absorption band ascribed to the SPR peak was observed at 350 nm. XRD analysis confirmed the crystalline nature of Fe2O3-NPs, and the crystal size was deduced to be 36.2 nm. Elemental analysis by EDX validated the presence of iron coupled with oxygen in the nanoparticle composition. In ICP-MS, the highest concentration was of iron (87.15 ppm), followed by sodium (1.49 ppm) and other trace elements (<1 ppm). VSM analysis revealed weak magnetic properties of Fe2O3-NPs. Morphological properties of Fe2O3-NPs revealed by SEM demonstrated that their average size range was 100-150 nm with a non-uniform spherical shape. The antibacterial activity of Fe2O3-NPs was ascertained against 30 clinical isolates of Klebsiella pneumoniae, with the largest inhibition zone recorded being 10 mm. The MIC value for Fe2O3-NPs was 30 µg/mL. However, when mingled with three selected antibiotics, Fe2O3-NPs did not affect any antibacterial activity. Momentous antioxidant (IC50 = 22 µg/mL) and anti-inflammatory (IC50 = 70 µg/mL) activities of Fe2O3-NPs were discerned in comparison with the standard at various concentrations. Consequently, honey-mediated Fe2O3-NP synthesis may serve as a substitute for orthodox antimicrobial drugs and may be explored for prospective biomedical applications.
Collapse
Affiliation(s)
- Hamna Shahid
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan 66000, Pakistan; (H.S.); (M.J.)
| | - Aqeel Ahmed Shah
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, University Road, Karachi 75270, Pakistan; (A.A.S.); (A.D.C.)
| | - Syed Nizam Uddin Shah Bukhari
- Department of Basic Science and Humanities, Dawood University of Engineering and Technology, Karachi 74800, Pakistan;
| | - Anjum Zehra Naqvi
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Iqra Arooj
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan 66000, Pakistan; (H.S.); (M.J.)
| | - Mehvish Javeed
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan 66000, Pakistan; (H.S.); (M.J.)
| | - Muhammad Aslam
- Institute of Physics and Technology, Ural Federal University, Mira Str. 19, 620002 Yekaterinburg, Russia;
| | - Ali Dad Chandio
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, University Road, Karachi 75270, Pakistan; (A.A.S.); (A.D.C.)
| | - Muhammad Farooq
- Pakistan Council of Scientific and Industrial Research (PCSIR), PCSIR Head Office, 01-Constitution Avenue, Sector G-5/2, Islamabad 44000, Pakistan;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Foundation Year, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - May Nasser Bin Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
21
|
Almutairi T, Al-Rasheed HH, Alaqil ZM, Hajri AK, Elsayed NH. Green Synthesis of Magnetic Supramolecules β-Cyclodextrin/Iron Oxide Nanoparticles for Photocatalytic and Antibacterial Applications. ACS OMEGA 2023; 8:32067-32077. [PMID: 37692231 PMCID: PMC10483690 DOI: 10.1021/acsomega.3c04117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Iron oxide nanoparticles (Fe3O4NPs) are a fascinating field of study due to their wide range of practical applications in environmental and medical contexts. This study presents a straightforward, environmentally friendly method for producing Fe3O4NPs utilizing β-cyclodextrin (β-CD) as a reducing and capping agent. This approach results in the rapid and effective eco-friendly synthesis of β-CD/Fe3O4NPs. The properties and characteristics of β-CD/Fe3O4NPs were investigated using various methods, including ultraviolet-visible (UV/vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetry analysis (TGA), and vibrating-sample magnetometry (VSM). The absorption of β-CD/Fe3O4NPs caused a distinct peak at 349 nm, as evidenced by the results of UV/vis studies. This peak was attributed to the absorption of surface plasmon resonance. The crystalline nature of β-CD/Fe3O4NPs was confirmed through XRD analysis. The SEM and TEM analyses have verified the geometry and structural characteristics of β-CD/Fe3O4NPs. The β-CD/Fe3O4NPs exhibited remarkable effectiveness in the decomposing efficiency (%) of methylene blue (MB) dye with 52.2, 94.1, and 100% for 0.2, 0.4, and 0.6 g β-CD/Fe3O4NPs, respectively. In addition, the highest efficiency in hunting radicals was observed (347.2 ± 8.2 mg/g) at 100 mg/mL β-CD/Fe3O4NPs; the combination of β-CD/Fe3O4NPs exhibited remarkable effectiveness in inhibiting the growth of some bacteria that cause infections. The capabilities of β-CD/Fe3O4NPs for various applications showed that these materials could be used in photocatalytic, antioxidants, and antibacterial. Additionally, the eco-friendly synthesis of these materials makes them a promising option for the remediation of harmful pollutants and microbes.
Collapse
Affiliation(s)
- Tahani
M. Almutairi
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hessa H. Al-Rasheed
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Zainab M. Alaqil
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Amira K. Hajri
- Department
of Chemistry, Alwajh College, University
of Tabuk, Tabuk 47512, Saudi Arabia
| | - Nadia H. Elsayed
- Department
of Polymers and Pigments, National Research
Centre, Dokki, Cairo 12311, Egypt
| |
Collapse
|
22
|
Minhas LA, Kaleem M, Minhas MAH, Waqar R, Al Farraj DA, Alsaigh MA, Badshah H, Haris M, Mumtaz AS. Biogenic Fabrication of Iron Oxide Nanoparticles from Leptolyngbya sp. L-2 and Multiple In Vitro Pharmacogenetic Properties. TOXICS 2023; 11:561. [PMID: 37505527 PMCID: PMC10386423 DOI: 10.3390/toxics11070561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Metallic nanoparticles have received a significant amount of reflection over a period of time, attributed to their electronic, specific surface area, and surface atom properties. The biogenic synthesis of iron oxide nanoparticles (FeONPs) is demonstrated in this study. The green synthesis of metallic nanoparticles (NPs) is acquiring considerable attention due to its environmental and economic superiorities over other methods. Leptolyngbya sp. L-2 extract was employed as a reducing agent, and iron chloride hexahydrate (FeCl3·6H2O) was used as a substrate for the biogenic synthesis of FeONPs. Different spectral methods were used for the characterization of the biosynthesized FeONPs, ultraviolet-visible (UV-Vis) spectroscopy gave a surface plasmon resonance (SPR) peak of FeONPs at 300 nm; Fourier transform infrared (FTIR) spectral analysis was conducted to identify the functional groups responsible for both the stability and synthesis of FeONPs. The morphology of the FeONPs was investigated using scanning electron microscopy (SEM), which shows a nearly spherical shape, and an X-ray diffraction (XRD) study demonstrated their crystalline nature with a calculated crystallinity size of 23 nm. The zeta potential (ZP) and dynamic light scattering (DLS) measurements of FeONPs revealed values of -8.50 mV, suggesting appropriate physical stability. Comprehensive in-vitro pharmacogenetic properties revealed that FeONPs have significant therapeutic potential. FeONPs have been reported to have potential antibacterial and antifungal properties. Dose-dependent cytotoxic activity was shown against Leishmania tropica promastigotes (IC50: 10.73 µg/mL) and amastigotes (IC50: 16.98 µg/mL) using various concentrations of FeONPs. The cytotoxic potential was also investigated using brine shrimps, and their IC50 value was determined to be 34.19 µg/mL. FeONPs showed significant antioxidant results (DPPH: 54.7%, TRP: 49.2%, TAC: 44.5%), protein kinase (IC50: 96.23 µg/mL), and alpha amylase (IC50: 3745 µg/mL). The biosafety of FeONPs was validated by biocompatibility tests using macrophages (IC50: 918.1 µg/mL) and red blood cells (IC50: 2921 µg/mL). In conclusion, biogenic FeONPs have shown potential biomedical properties and should be the focus of more studies to increase their nano-pharmacological significance for biological applications.
Collapse
Affiliation(s)
- Lubna Anjum Minhas
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Kaleem
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, UK
| | - Malik Abrar Hassan Minhas
- Department of Physics, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Rooma Waqar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 24552, Riyadh 11451, Saudi Arabia
| | - Mona Abdullah Alsaigh
- Department of Chemistry, College of Science, King Saud University, P.O. Box 24552, Riyadh 11495, Saudi Arabia
| | - Hussain Badshah
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Haris
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Abdul Samad Mumtaz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
23
|
Ali A, Saeed S, Hussain R, Afzal G, Siddique AB, Parveen G, Hasan M, Caprioli G. Synthesis and Characterization of Silica, Silver-Silica, and Zinc Oxide-Silica Nanoparticles for Evaluation of Blood Biochemistry, Oxidative Stress, and Hepatotoxicity in Albino Rats. ACS OMEGA 2023; 8:20900-20911. [PMID: 37332821 PMCID: PMC10269246 DOI: 10.1021/acsomega.3c01674] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Evaluation of nanoparticles (NPs) for biomedical applications has received a lot of attention for detailed study on pharmacokinetics prior to clinical application. In this study, pure C-SiO2 (crystalline silica) NPs and SiO2 nanocomposites with silver (Ag) and zinc oxide (ZnO) were prepared by utilizing different synthesis routes such as sol-gel and co-precipitation techniques. The prepared NPs showed highly crystalline nature as confirmed by X-ray diffraction analysis where average crystallite sizes of 35, 16, and 57 nm for C-SiO2, Ag-SiO2, and ZnO-SiO2 NPs, respectively, were calculated. Fourier transform infrared analysis confirmed the presence of functional groups related to the chemicals and procedures used for sample preparation. Due to agglomeration of the prepared NPs, the scanning electron microscope images showed large particle sizes when compared to their crystalline sizes. The optical properties of the prepared NPs such as absorption were obtained with UV-Vis spectroscopy. For in vivo biological evaluation, albino rats, both male and female, kept in different groups were exposed to NPs with 500 μg/kg dose. Hematological, serum biochemistry, histo-architecture, oxidative stress biomarkers, and antioxidant parameters in liver tissues along with various biomarkers for the evaluation of erythrocytes were estimated. The results on hemato-biochemistry, histopathological ailments, and oxidative stress parameters exhibited 95% alteration in the liver and erythrocytes of C-SiO2 NPs-treated rats while 75 and 60% alteration in the liver tissues of rats due to exposure to Ag-SiO2 and ZnO-SiO2 NPs, respectively, when compared with the albino rats of the control (untreated) group. Therefore, the current study showed that the prepared NPs had adverse effects on the liver and erythrocytes causing hepatotoxicity in the albino rats in respective order C-SiO2 > Ag SiO2 > ZnO-SiO2. As the C-SiO2 NPs appeared to be the most toxic, it has been concluded that coating SiO2 on Ag and ZnO reduced their toxicological impact on albino rats. Consequently, it is suggested that Ag-SiO2 and ZnO-SiO2 NPs are more biocompatible than C-SiO2 NPs.
Collapse
Affiliation(s)
- Arooj Ali
- Institute
of Physics, Faculty of Physical & Mathematical Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Saba Saeed
- Institute
of Physics, Faculty of Physical & Mathematical Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Riaz Hussain
- Department
of Pathology, Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Gulnaz Afzal
- Department
of Zoology, Faculty of Chemical & Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Abu Baker Siddique
- Department
of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab 38000, Pakistan
| | - Gulnaz Parveen
- Department
of Botany, Faculty of Science, Women University
Swabi, Swabi, Khyber Pakhtunkhwa 23430, Pakistan
| | - Murtaza Hasan
- Department
of Biotechnology, Faculty of Chemical & Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
- College
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, China
| | - Giovanni Caprioli
- Chemistry
Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Camerino 62032, Italy
| |
Collapse
|
24
|
Sharif MS, Hameed H, Waheed A, Tariq M, Afreen A, Kamal A, Mahmoud EA, Elansary HO, Saqib S, Zaman W. Biofabrication of Fe 3O 4 Nanoparticles from Spirogyra hyalina and Ajuga bracteosa and Their Antibacterial Applications. Molecules 2023; 28:3403. [PMID: 37110639 PMCID: PMC10144552 DOI: 10.3390/molecules28083403] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Iron oxide nanoparticles (NPs) have attracted substantial interest due to their superparamagnetic features, biocompatibility, and nontoxicity. The latest progress in the biological production of Fe3O4 NPs by green methods has improved their quality and biological applications significantly. In this study, the fabrication of iron oxide NPs from Spirogyra hyalina and Ajuga bracteosa was conducted via an easy, environmentally friendly, and cost-effective process. The fabricated Fe3O4 NPs were characterized using various analytical methods to study their unique properties. UV-Vis absorption peaks were observed in algal and plant-based Fe3O4 NPs at 289 nm and 306 nm, respectively. Fourier transform infrared (FTIR) spectroscopy analyzed diverse bioactive phytochemicals present in algal and plant extracts that functioned as stabilizing and capping agents in the fabrication of algal and plant-based Fe3O4 NPs. X-ray diffraction of NPs revealed the crystalline nature of both biofabricated Fe3O4 NPs and their small size. Scanning electron microscopy (SEM) revealed that algae and plant-based Fe3O4 NPs are spherical and rod-shaped, averaging 52 nm and 75 nm in size. Energy dispersive X-ray spectroscopy showed that the green-synthesized Fe3O4 NPs require a high mass percentage of iron and oxygen to ensure their synthesis. The fabricated plant-based Fe3O4 NPs exhibited stronger antioxidant properties than algal-based Fe3O4 NPs. The algal-based NPs showed efficient antibacterial potential against E. coli, while the plant-based Fe3O4 NPs displayed a higher zone of inhibition against S. aureus. Moreover, plant-based Fe3O4 NPs exhibited superior scavenging and antibacterial potential compared to the algal-based Fe3O4 NPs. This might be due to the greater number of phytochemicals in plants that surround the NPs during their green fabrication. Hence, the capping of bioactive agents over iron oxide NPs improves antibacterial applications.
Collapse
Affiliation(s)
- Muhammad Shakeeb Sharif
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur 10250, Pakistan; (M.S.S.); (H.H.)
| | - Hajra Hameed
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur 10250, Pakistan; (M.S.S.); (H.H.)
| | - Abdul Waheed
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur 10250, Pakistan; (M.S.S.); (H.H.)
| | - Afshan Afreen
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur 10250, Pakistan; (M.S.S.); (H.H.)
| | - Asif Kamal
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt
| | - Hosam O. Elansary
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Saddam Saqib
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
25
|
Nano-managing silver and zinc as bio-conservational approach against pathogens of the honey bee. J Biotechnol 2023; 365:1-10. [PMID: 36708999 DOI: 10.1016/j.jbiotec.2023.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Herein, silver and zinc oxide Nanoparticles (NPs) were synthesized by using W. coagulant fruit extract as reducing agent and capping agent. The green synthesized NP with distinct properties were used for novel application against fungal and bacterial pathogen of honey bee (A. mellifera). The UV-spectroscopy confirms the synthesis of silver and zinc oxide NPs at 420 nm and 350 nm respectively. Further, XRD evaluated the monoclinic structure of Ag NPs while ZnO NPs showed wurtzite hexagonalcrystlized structure. Resistant honey bee pathogens such Paenibacilluslarvae, Melissococcus plutonius and Ascosphaera apis were isolated, identified and cultured in vitro to assess the antimicrobial potentials of Ag and ZnO NPs. Additionally, different biomolecules provide access to achieve maximum and stable Ag and ZnO NPs. It was also observed that with increasing the concentration of zinc oxide NPs and sliver NPs, zone of inhibition was also increased. Thus, present findings show that plant extracts can be a useful natural resource to prepare functional nonmaterial for targeted applications especially in the field of apicultural research.
Collapse
|
26
|
Fatimah I, Hidayat H, Citradewi PW, Tamyiz M, Doong RA, Sagadevan S. Hydrothermally synthesized titanium/hydroxyapatite as photoactive and antibacterial biomaterial. Heliyon 2023; 9:e14434. [PMID: 36950579 PMCID: PMC10025910 DOI: 10.1016/j.heliyon.2023.e14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
The present work investigated hydrothermal synthesis of titanium/hydroxyapatite (Ti/HA) nanocomposite at varied Ti content. The synthesis was performed by coprecipitation method using CaO, ammonium dihydrogen phosphate and titanium oxide chloride precursor with the additional cetyl trimethyl ammonium chloride as templating agent, followed by hydrothermal treatment at 150 °C. The derived materials were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy analyses. The photocatalytic properties of materials were tested on methyl violet (MV) photocatalytic oxidation, meanwhile the antibacterial testing was performed against Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, and Streptococcus pyogenes. In addition, cytotoxicity evaluation of the materials as potential biomaterial was also conducted. The results showed that physicochemical character of Ti/HA exhibits exhibit the excellent properties to be photocatalyst along with antibacterial activity. From the detail study of effect of varied titanium content ranging from 5 to 10 %wt., the increasing crystallite size of anatase phase of about 25.81 nm and 38.22 nm for Ti content of 5 and 10 % wt., respectively. In other side, the band gap energy value increases as the increasing Ti content, i.e. the values are 3.08; 3.18; and 3.20 eV for Ti content of 5, 10, 20 % wt., respectively. The band gap energy is correlated with the photocatalytic activity which the highest MV degradation was 96.46% over Ti/HA with 20% wt. of Ti (Ti20/HA). The nanocomposites also express the antibacterial activity with comparable minimum inhibitory concentration (MIC) with other similar Ti/HA nanocomposites. The MIC values of Ti20/HA against E. coli, S. aureus, K. pneumonia, and S. pyogenes are 25; 25; 50 and 50 μg/mL, respectively. In addition, the cytotoxicity test revealed the potency to be a biomimetic material as shown by severe toxicity.
Collapse
Affiliation(s)
- Is Fatimah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia
- Corresponding author.
| | - Habibi Hidayat
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia
| | - Putwi Widya Citradewi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia
| | - Muchammad Tamyiz
- Universitas Nahdlatul Ulama Sidoarjo, Jl. Lingkar Timur KM 5,5 Rangkah Kidul, Kecamatan Sidoarjo, Kabupaten Sidoarjo, Jawa Timur, 61234, Indonesia
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, 101, Sec 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Ruey-an Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, 101, Sec 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Suresh Sagadevan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
27
|
Mahmood F, Zehra SS, Hasan M, Zafar A, Tariq T, Abdullah M, Nazir MA, Jamil M, Hassan SG, Huang X, Javed HU, Shu X. Bioinspired Cobalt Oxide Nanoball Synthesis, Characterization, and Their Potential as Metal Stress Absorbants. ACS OMEGA 2023; 8:5836-5849. [PMID: 36816675 PMCID: PMC9933469 DOI: 10.1021/acsomega.2c07545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Massive accumulation of heavy metals in agricultural land as a result of enhanced levels of toxicity in the soil is an emerging global concern. Among various metals, zinc contamination has severe effects on plant and human health through the food chain. To remove such toxicity, a nanotechnological neutralizer, cobalt oxide nanoballs (Co3O4 Nbs) were synthesized by using the extract of Cordia myxa. The Co3O4 Nbs were well characterized via UV-vis spectrophotometry, scanning electron microscopy, and X-ray diffraction techniques. Green-synthesized Co3O4 Nbs were exposed over Acacia jacquemontii and Acacia nilotica at different concentrations (25, 50, 75, and 100 ppm). Highly significant results were observed for plant growth by the application of Co3O4 Nbs at 100 ppm, thereby increasing the root length (35%), shoot length (48%), fresh weight (44%), and dry weight (40%) of the Acacia species with respect to the control. Furthermore, physiological parameters including chlorophyll contents, relative water contents, and osmolyte contents like proline and sugar showed a prominent increase. The antioxidant activity and atomic absorption supported and justified the positive response to using Co3O4 Nbs that mitigated the heavy-metal zinc stress by improving the plant growth. Hence, the biocompatible Co3O4 Nbs counteract the zinc toxicity for governing and maintaining plant growth. Such nanotechnological tools can therefore step up the cropping system and overcome toxicity to meet the productivity demand along with the development of agricultural management strategies.
Collapse
Affiliation(s)
- Faisal Mahmood
- Department
of Botany, The Islamia University, Bahawalpur63100, Pakistan
| | - Syeda Sadaf Zehra
- Department
of Botany, The Islamia University, Bahawalpur63100, Pakistan
| | - Murtaza Hasan
- Department
of Biotechnology, The Islamia University
of Bahawalpur, Bahawalpur63100, Pakistan
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou510225, China
| | - Ayesha Zafar
- Department
of Biotechnology, The Islamia University
of Bahawalpur, Bahawalpur63100, Pakistan
- Department
of Biomedical Engineering, College of Future Technology, Peking University, Beijing100871, China
| | - Tuba Tariq
- Department
of Biotechnology, The Islamia University
of Bahawalpur, Bahawalpur63100, Pakistan
| | - Muhammad Abdullah
- Cholistan
Institute of Desert Studies, The Islamia
University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muniba Anum Nazir
- Department
of Biotechnology, The Islamia University
of Bahawalpur, Bahawalpur63100, Pakistan
| | - Muhammad Jamil
- Department
of Botany, The Islamia University, Bahawalpur63100, Pakistan
| | - Shahbaz Gul Hassan
- College of
Information Science and Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou510225, China
| | - Xue Huang
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou510225, China
| | - Hafiz Umer Javed
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou510225, China
| | - Xugang Shu
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou510225, China
| |
Collapse
|
28
|
Raoof F, Munawar A, Ahmad M, Rizvi SFA, Ali Z, Shahid AB. Multifunctional Iron Oxide Nanocarriers Synthesis for Drug Delivery, Diagnostic Imaging, and Biodistribution Study. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04345-9. [PMID: 36701093 DOI: 10.1007/s12010-023-04345-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
The aim of the current study is to design the radiolabeled and drug-loaded nanocarrier with high loading capacity and pH-dependent drug release characteristics that could effectively transport loaded compounds to various organs for efficient diagnostic imaging and chemotherapeutic drug delivery. The aqueous extract of green tea leaves was used to synthesize the small-sized iron oxide nanoparticles (IONPs). The nanoparticles were characterized with UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray analysis (EDX). Iron oxide nanoparticles with sizes smaller than 50 nm were successfully synthesized, making them suitable for in vivo studies. In drug loading trials, 94% of the drug was loaded onto the active surface of iron oxide nanoparticles from the solution. The in vitro drug release study revealed that an acidic environment (pH 4.5) effectively triggers the release of doxorubicin (DOX) from the nanoparticles as compared to a neutral environment (pH 7.4). The gamma-emitting radionuclide 99mTc was successfully labeled with IONPs for biodistribution and imaging studies. The efficiency of radiolabeling was observed to be ≥ 99%. Furthermore, the in vivo biodistribution study of radiolabeled IONPs in rabbit model showed rapid accumulation in various organs such as heart, liver, and kidneys. This work suggested that green synthesized iron oxide nanoparticles are potential nanocarriers for diagnostic imaging and efficiently distributing DOX to specific organs. The aqueous extract of green tea leaves was used for the facile green synthesis of iron oxide nanoparticles (IONPs). Furthermore, the chemotherapeutic drug doxorubicin (DOX) and gamma-emitting radionuclide 99mTc were loaded on these iron oxide nanoparticles to evaluate the in vivo biodistribution and drug delivery studies in the rabbit models.
Collapse
Affiliation(s)
- Farzana Raoof
- Department of Chemistry, The University of Engineering and Technology, Lahore-54000, Punjab, Pakistan.,Department of Oncology, Institute of Nuclear Medicine and Oncology (INMOL), Lahore-54000, Punjab, Pakistan
| | - Aisha Munawar
- Department of Chemistry, The University of Engineering and Technology, Lahore-54000, Punjab, Pakistan.
| | - Munir Ahmad
- Department of Oncology, Institute of Nuclear Medicine and Oncology (INMOL), Lahore-54000, Punjab, Pakistan
| | - Syed Faheem Askari Rizvi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Zahid Ali
- Department of Chemistry, The University of Lahore, Lahore, 53700, Punjab, Pakistan
| | - Abu Bakar Shahid
- Department of Oncology, Institute of Nuclear Medicine and Oncology (INMOL), Lahore-54000, Punjab, Pakistan
| |
Collapse
|
29
|
Skłodowski K, Chmielewska-Deptuła SJ, Piktel E, Wolak P, Wollny T, Bucki R. Metallic Nanosystems in the Development of Antimicrobial Strategies with High Antimicrobial Activity and High Biocompatibility. Int J Mol Sci 2023; 24:2104. [PMID: 36768426 PMCID: PMC9917064 DOI: 10.3390/ijms24032104] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Antimicrobial resistance is a major and growing global problem and new approaches to combat infections caused by antibiotic resistant bacterial strains are needed. In recent years, increasing attention has been paid to nanomedicine, which has great potential in the development of controlled systems for delivering drugs to specific sites and targeting specific cells, such as pathogenic microbes. There is continued interest in metallic nanoparticles and nanosystems based on metallic nanoparticles containing antimicrobial agents attached to their surface (core shell nanosystems), which offer unique properties, such as the ability to overcome microbial resistance, enhancing antimicrobial activity against both planktonic and biofilm embedded microorganisms, reducing cell toxicity and the possibility of reducing the dosage of antimicrobials. The current review presents the synergistic interactions within metallic nanoparticles by functionalizing their surface with appropriate agents, defining the core structure of metallic nanoparticles and their use in combination therapy to fight infections. Various approaches to modulate the biocompatibility of metallic nanoparticles to control their toxicity in future medical applications are also discussed, as well as their ability to induce resistance and their effects on the host microbiome.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | | | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| |
Collapse
|
30
|
Vernet-Crua A, Cruz DM, Mostafavi E, Truong LB, Barabadi H, Cholula-Díaz JL, Guisbiers G, Webster TJ. Green-synthesized metallic nanoparticles for antimicrobial applications. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
31
|
Islam SU, Bairagi S, Kamali MR. Review on Green Biomass-Synthesized Metallic Nanoparticles and Composites and Their Photocatalytic Water Purification Applications: Progress and Perspectives. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
32
|
Gambhir RP, Vibhute AA, Patil TP, Tiwari AP. Surface-Functionalized Iron Oxide (Fe3O4) Nanoparticles for Biomedical Applications. CHEMICALLY DEPOSITED METAL CHALCOGENIDE-BASED CARBON COMPOSITES FOR VERSATILE APPLICATIONS 2023:411-432. [DOI: 10.1007/978-3-031-23401-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Kumar Mandal R, Ghosh S, Pal Majumder T. Comparative study between degradation of dyes (MB, MO) in monotonous and binary solution employing synthesized bimetallic (Fe-CdO) NPs having antioxidant property. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
34
|
Patel A. Metal nanoparticles produced by plants with antibacterial properties against Staphylococcus aureus. BRAZ J BIOL 2023; 82:e268052. [PMID: 36888798 DOI: 10.1590/1519-6984.268052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/15/2022] [Indexed: 03/08/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathogenic bacteria that causes a variety of potentially fatal infections. The emergence of antibiotic-resistant strains of S. aureus has made treatment even more difficult. In recent years, nanoparticles have been used as an alternative therapeutic agent for S. aureus infections. Among various methods for the synthesis of nanoparticles, the method utilizing plant extracts from different parts of a plant, such as root, stem, leaf, flower, seeds, etc. is gaining widespread usage. Phytochemicals present in plant extract are an inexpensive, eco-friendly, natural material that act as reducing and stabilization agent for the nanoparticle synthesis. The utilization of plant-fabricated nanoparticles against S. aureus is currently in trend. The current review discusses recent findings in the therapeutic application of phytofabricated metal-based nanoparticles against Staphylococcus aureus.
Collapse
Affiliation(s)
- A Patel
- King Khalid University, College of Medicine, Department of Clinical Biochemistry, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Manzoor Y, Hasan M, Zafar A, Dilshad M, Ahmed MM, Tariq T, Hassan SG, Hassan SG, Shaheen A, Caprioli G, Shu X. Incubating Green Synthesized Iron Oxide Nanorods for Proteomics-Derived Motif Exploration: A Fusion to Deep Learning Oncogenesis. ACS OMEGA 2022; 7:47996-48006. [PMID: 36591177 PMCID: PMC9798745 DOI: 10.1021/acsomega.2c05948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The nanotechnological arena has revolutionized the diagnostic efficacies by investigating the protein corona. This displays provoking proficiencies in determining biomarkers and diagnostic fingerprints for early detection and advanced therapeutics. The green synthesized iron oxide nanoparticles were prepared via Withania coagulans and were well characterized using UV-visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, and nano-LC mass spectrophotometry. Iron oxides were rod-shaped with an average size of 17.32 nm and have crystalline properties. The as-synthesized nanotool mediated firm nano biointeraction with the proteins in treatment with nine different cancers. The resultant of the proteome series was filtered oddly that highlighted the variant proteins within the differentially expressed proteins on behalf of nano-bioinformatics. Further magnification focused on S13_N, RS15, RAB, and 14_3_3 domains and few abundant motifs that aid scanning biomarkers. The entire set of variant proteins contracting to common proteins elucidates the underlining mechanical proteins that are marginally assessed using the robotic nanotechnology. Additionally, the iron rods indirectly possess a prognostic effect in manipulating expression of proteins through a smarter route. Thereby, such biologically designed nanotools provide a dual approach for medical studies.
Collapse
Affiliation(s)
- Yasmeen Manzoor
- Department
of Biotechnology, The Institute of Biochemistry, Biotechnology and
Bioinformatics, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Murtaza Hasan
- Department
of Biotechnology, The Institute of Biochemistry, Biotechnology and
Bioinformatics, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
- College of
Chemistry and Chemical Engineering, Zhongkai
Agriculture University and Engineering Guangzhou, Guangzhou 510225, PR China
| | - Ayesha Zafar
- Department
of Biotechnology, The Institute of Biochemistry, Biotechnology and
Bioinformatics, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
- Department
of Biomedical Engineering, College of Future Technology, Peking University, Beijing 510225, PR China
| | - Momina Dilshad
- Department
of Biotechnology, The Institute of Biochemistry, Biotechnology and
Bioinformatics, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Mahmood Ahmed
- Department
of Bioinformatics, The Institute of Biochemistry, Biotechnology and
Bioinformatics, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Department
of Biotechnology, The Institute of Biochemistry, Biotechnology and
Bioinformatics, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Shahzad Gul Hassan
- National
Institute of Cardiovascular Diseases (NICVD) Cantonment, Karachi 75510, Pakistan
| | - Shahbaz Gul Hassan
- College
of Information Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Aqeela Shaheen
- Deaprtment
of Chemistry, Govt, Sadiq College Women
University, Bahawalpur 63100, Pakistan
| | - Giovanni Caprioli
- Chemistry
Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - Xugang Shu
- College of
Chemistry and Chemical Engineering, Zhongkai
Agriculture University and Engineering Guangzhou, Guangzhou 510225, PR China
| |
Collapse
|
36
|
Bhangi BK, Ray S. Adsorption and photocatalytic degradation of tetracycline from water by kappa‐carrageenan and iron oxide nanoparticle‐filled poly (
acrylonitrile‐co‐N
‐vinyl pyrrolidone) composite gel. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bidyut Kumar Bhangi
- Department of Polymer Science and Technology University of Calcutta Kolkata India
| | - SamitKumar Ray
- Department of Polymer Science and Technology University of Calcutta Kolkata India
| |
Collapse
|
37
|
Batool S, Hasan M, Dilshad M, Zafar A, Tariq T, Shaheen A, Iqbal R, Ali Z, Munawar T, Iqbal F, Hassan SG, Shu X, Caprioli G. Green synthesized ZnO-Fe2O3-Co3O4 nanocomposite for antioxidant, microbial disinfection and degradation of pollutants from wastewater. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Batool S, Hasan M, Dilshad M, Zafar A, Tariq T, Wu Z, Chen R, Gul Hassan S, Munawar T, Iqbal F, Saqib Saif M, Waqas M, Shu X. Green synthesis of Cordia myxa incubated ZnO, Fe2O3, and Co3O4 nanoparticle: Characterization, and their response as biological and photocatalytic agent. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
39
|
Ma Y, Lin W, Ruan Y, Lu H, Fan S, Chen D, Huang Y, Zhang T, Pi J, Xu JF. Advances of Cobalt Nanomaterials as Anti-Infection Agents, Drug Carriers, and Immunomodulators for Potential Infectious Disease Treatment. Pharmaceutics 2022; 14:pharmaceutics14112351. [PMID: 36365168 PMCID: PMC9696703 DOI: 10.3390/pharmaceutics14112351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Infectious diseases remain the most serious public health issue, which requires the development of more effective strategies for infectious control. As a kind of ultra-trace element, cobalt is essential to the metabolism of different organisms. In recent decades, nanotechnology has attracted increasing attention worldwide due to its wide application in different areas, including medicine. Based on the important biological roles of cobalt, cobalt nanomaterials have recently been widely developed for their attractive biomedical applications. With advantages such as low costs in preparation, hypotoxicity, photothermal conversion abilities, and high drug loading ability, cobalt nanomaterials have been proven to show promising potential in anticancer and anti-infection treatment. In this review, we summarize the characters of cobalt nanomaterials, followed by the advances in their biological functions and mechanisms. More importantly, we emphatically discuss the potential of cobalt nanomaterials as anti-infectious agents, drug carriers, and immunomodulators for anti-infection treatments, which might be helpful to facilitate progress in future research of anti-infection therapy.
Collapse
Affiliation(s)
- Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Hongmei Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Dongsheng Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Tangxin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| |
Collapse
|
40
|
Hasan M, Zafar A, Imran M, Iqbal KJ, Tariq T, Iqbal J, Shaheen A, Hussain R, Anjum SI, Shu X. Crest to Trough Cellular Drifting of Green-Synthesized Zinc Oxide and Silver Nanoparticles. ACS OMEGA 2022; 7:34770-34778. [PMID: 36211074 PMCID: PMC9535654 DOI: 10.1021/acsomega.2c02178] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/20/2022] [Indexed: 06/16/2023]
Abstract
Green nanotechnology facilitates the blooming of zinc oxide (ZnO) and silver (Ag) nanoparticles (NPs) with distinct flowerlike and spherical morphologies, respectively. The well-characterized NPs with an average size of 35 nm (ZnO) and 25 nm (Ag) were functionalized on the cresty plates for antibacterial inhibition against Staphylococcus aureus and Pseudomonas aeruginosa, with the flowerlike ZnONPs exhibiting 90.9% inhibition and AgNPs exhibiting 100% inhibition. Further, the in vivo underwater troughs for hematological, immunological, and serological analysis in Labeo rohita exhibited 102 > 575 > 104 and 206 > 109 > 81% at concentrations of 1, 2, and 3 mg/L with 4-day and 15-day treatment, respectively, over ZnONPs. However, AgNPs exhibited 257 > 408 > 124 and 86 > 202 > 43% with 4-day and 15-day treatment, respectively, at the same concentrations. The classical ZnNPs and AgNPs exhibited excellent inhibition potential and significant transfiguration of hematological, enzymological, and protein parameters as safe nanomedicine, but ZnONPs were found to be 58, 69, 29 and 34, 51, 70% more active than AgNPs with 4-day and 15-day treatment, respectively. Therefore, the onset of ROX and antioxidant arena favors beneficial cellular drifting of NPs.
Collapse
Affiliation(s)
- Murtaza Hasan
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, P. R. China
- Department
of Biotechnology, The Islamia University
of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ayesha Zafar
- Department
of Biotechnology, The Islamia University
of Bahawalpur, Bahawalpur 63100, Pakistan
- School
of Biomedical Engineering, Department of Future Technology, Peking University 10081 Beijing, China
| | - Muhammad Imran
- Department
of Biotechnology, The Islamia University
of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Khalid Javed Iqbal
- Department
of Zoology, The Islamia University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Department
of Biotechnology, The Islamia University
of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Javed Iqbal
- Department
of Agriculture Engineering, Khawaja Fareed
University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan 64200, Pakistan
| | - Aqeela Shaheen
- Department
of Chemistry, Govt, Sadiq College Women
University, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Department
of Zoology, Kohat University of Science
and Technology, Kohat 26000, Pakistan
| | - Syed Ishtiaq Anjum
- Department
of Zoology, Kohat University of Science
and Technology, Kohat 26000, Pakistan
| | - Xugang Shu
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, P. R. China
| |
Collapse
|
41
|
Jakhrani MA, Tahira A, Bhatti MA, Shah AA, Shaikh NM, Mari RH, Vigolo B, Emo M, Albaqami MD, Nafady A, Ibupoto ZH. A green approach for the preparation of ZnO@C nanocomposite using agave americana plant extract with enhanced photodegradation. NANOTECHNOLOGY 2022; 33:505202. [PMID: 36103847 DOI: 10.1088/1361-6528/ac91d8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
The present study demonstrates the crucial role of agave americana extract in enhancing the optical properties of zinc oxide (ZnO) through thermal treatment method. Various analytical and surface science techniques have been used to identify the morphology, crystalline structure, chemical composition, and optical properties, including scanning electron microscopy, x-ray diffraction, high resolution transmission electron microscopy (HRTEM), x-ray spectroscopy (EDS) and UV-visible spectroscopy techniques. The physical studies revealed the transformation of ZnO nanorods into nanosheets upon addition of an optimized amount of agave americana extract, which induced large amount of amorphous carbon deposited onto ZnO nanostructures as confirmed by HRTEM analysis. The use of increasing amount of americana extract has significantly reduced the average crystallite size of ZnO nanostructures. The resultant hybrid system of C@ZnO has produced a significant effect on the ultraviolet light-assisted photodegradation of malachite green (MG) dye. The photocatalyst dose was fixed at 10 mg for each study whereas the amount of agave americana extract and MG dye concentration are varied. The functionality of hybrid system was greatly enhanced when the amount of agave americana extract increased while dye concentration kept at lower level. Ultimately, almost 100% degradation efficiency was achieved via the prepared hybrid material, revealing combined contribution from synergy, stabilization of ZnO due to excess of carbon together with the high charge separation rate. The obtained results suggest that the driving role of agave americana extract for surface modification of photocatalyst can be considered for other nanostructured photocatalysts.
Collapse
Affiliation(s)
| | - Aneela Tahira
- Dr. M.A Kazi Institute of Chemistry University of Sindh Jamshoro, 76080, Sindh, Pakistan
| | - Muhammad Ali Bhatti
- Center for Environmental Sciences University of Sindh Jamshoro, 76080, Sindh, Pakistan
| | - Aqeel Ahmed Shah
- Department of Metallurgical Engineering, NED University of Engineering and Technology, Karachi, Sindh, Pakistan
| | | | - Riaz Hussain Mari
- Institute of Physics, University of Sindh Jamshoro, 76080, Sindh, Pakistan
| | | | - Mélanie Emo
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | - Munirah D Albaqami
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zafar Hussain Ibupoto
- Dr. M.A Kazi Institute of Chemistry University of Sindh Jamshoro, 76080, Sindh, Pakistan
| |
Collapse
|
42
|
K V, G P, S M, G R, S S. Echinochloa frumentacea grains extract mediated synthesis and characterization of iron oxide nanoparticles: A greener nano drug for potential biomedical applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
43
|
Al-Harbi LN, Al-Shammari GM, Subash-Babu P, Mohammed MA, Alkreadees RA, Yagoub AEA. Cinchona officinalis Phytochemicals-Loaded Iron Oxide Nanoparticles Induce Cytotoxicity and Stimulate Apoptosis in MCF-7 Human Breast Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3393. [PMID: 36234520 PMCID: PMC9565860 DOI: 10.3390/nano12193393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed to synthesize iron oxide nanoparticles loaded with quinine and alkaloids-rich Cinchona officinalis (Peruvian bark) stem bark extract, and further evaluate their cytotoxic effect and apoptosis mechanisms in MCF-7 breast cancer cells. Nanoparticles were prepared by biological reduction of iron oxide with Cinchona officinalis extract, using the green synthesis method. The nanoparticles were characterized by XRD, FT-IR, and UV-vis spectroscopy and transmission electron microscopy (TEM). In vitro cytotoxicity analyses of Cinchona officinalis extract, ferrous oxide, and Cinchona officinalis extract-loaded iron oxide nanoparticles (CO-NPs) were carried out using the MTT test for 24 h and 48 h. We found that CO-NPs reduced the MCF-7 cell viability with IC50 values of 16.2 and 9 µg/mL in 24 h and 48 h, respectively. In addition, CO-NPs were tested with normal hMSCs to determine their toxicity, and we did not find noticeable cytotoxicity. Confocal fluorescent microscopy revealed that CO-NPs efficiently increased the nuclear condensation and chromatin damage in propidium iodide staining; meanwhile, there was decreased mitochondrial membrane potential in CO-NPs-treated MCF-7 cells. In addition, AO-EB staining confirmed the late apoptotic and apoptotic morphology of cancer cells. Further gene expression analysis confirmed that the upregulation of tumor suppressors, Cdkn1A, Prb, and p53 was significantly increased, and inflammatory traits such as TNF-α and Nf-κb were increased in cancer cells treated with CO-NPs. Apoptotic stimulators such as Bax and caspase-3 expression were highly significantly increased, while mdm-2 and Bcl-2 were significantly decreased. Overall, the enhanced cytotoxic potential of the Cinchona officianlis stem bark extract loaded CO-NPs versus free Cinchona officianlis extract might be due to the functional stabilization of bioactive compounds, such as alkaloids, quinine, flavonoids, phenolics, etc., into the iron oxide, providing bioavailability and internalization of cinchona metabolites intracellularly.
Collapse
|
44
|
Green Synthesis and Antibacterial Activity of Ag/Fe2O3 Nanocomposite Using Buddleja lindleyana Extract. Bioengineering (Basel) 2022; 9:bioengineering9090452. [PMID: 36134998 PMCID: PMC9495838 DOI: 10.3390/bioengineering9090452] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/11/2022] Open
Abstract
In the study reported in this manuscript, silver/iron oxide nanocomposites (Ag/Fe2O3) were phytosynthesized using the extract of Buddleja lindleyana via a green, economical and eco-friendly strategy. The biosynthesized Ag/Fe2O3 nanocomposites were characterized using UV-Vis spectrophotometry, FTIR, XRD, TEM, DLS and SEM-EDX analyses. The particulates showed a triangular and spherical morphology having sizes between 25 and 174 nm. FTIR studies on the nanoparticles showed functional groups corresponding to organic metabolites, which reduce and stabilize the Ag/Fe2O3 nanocomposite. The antimicrobial efficacy of the phytosynthesized Ag/Fe2O3 against bacterial pathogens was assessed. In addition, Ag/Fe2O3 exhibited broad spectrum activities against B. subtilis, S. aureus, E. coli, and P. aeruginosa with inhibition zones of 23.4 ± 0.75, 22.3 ± 0.57, 20.8 ± 1.6, and 19.5 ± 0.5 mm, respectively. The Ag/Fe2O3 composites obtained showed promising antibacterial action against human bacterial pathogens (S. aureus, E. coli, B. subtilis and P. aeruginosa), making them candidates for medical applications.
Collapse
|
45
|
Hasan M, Zafar A, Jabbar M, Tariq T, Manzoor Y, Ahmed MM, Hassan SG, Shu X, Mahmood N. Trident Nano-Indexing the Proteomics Table: Next-Version Clustering of Iron Carbide NPs and Protein Corona. Molecules 2022; 27:molecules27185754. [PMID: 36144499 PMCID: PMC9500999 DOI: 10.3390/molecules27185754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Protein corona composition and precise physiological understanding of differentially expressed proteins are key for identifying disease biomarkers. In this report, we presented a distinctive quantitative proteomics table of molecular cell signaling differentially expressed proteins of corona that formed on iron carbide nanoparticles (NPs). High-performance liquid chromatography/electrospray ionization coupled with ion trap mass analyzer (HPLC/ESI-Orbitrap) and MASCOT helped quantify 142 differentially expressed proteins. Among these proteins, 104 proteins showed upregulated behavior and 38 proteins were downregulated with respect to the control, whereas 48, 32 and 24 proteins were upregulated and 8, 9 and 21 were downregulated CW (control with unmodified NPs), CY (control with modified NPs) and WY (modified and unmodified NPs), respectively. These proteins were further categorized on behalf of their regularity, locality, molecular functionality and molecular masses using gene ontology (GO). A STRING analysis was used to target the specific range of proteins involved in metabolic pathways and molecular processing in different kinds of binding functionalities, such as RNA, DNA, ATP, ADP, GTP, GDP and calcium ion bindings. Thus, this study will help develop efficient protocols for the identification of latent biomarkers in early disease detection using protein fingerprints.
Collapse
Affiliation(s)
- Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (M.H.); (X.S.); (N.M.)
| | - Ayesha Zafar
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Maryum Jabbar
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Yasmeen Manzoor
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Mahmood Ahmed
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Shahbaz Gul Hassan
- College of Information Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence: (M.H.); (X.S.); (N.M.)
| | - Nasir Mahmood
- School of Science, RMIT University, Victoria 3000, Australia
- Correspondence: (M.H.); (X.S.); (N.M.)
| |
Collapse
|
46
|
Mahlaule-Glory LM, Mapetla S, Makofane A, Mathipa MM, Hintsho-Mbita NC. Biosynthesis of iron oxide nanoparticles for the degradation of methylene blue dye, sulfisoxazole antibiotic and removal of bacteria from real water. Heliyon 2022; 8:e10536. [PMID: 36105454 PMCID: PMC9465119 DOI: 10.1016/j.heliyon.2022.e10536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/02/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Water pollution that is caused by dyes, bacteria and antibiotics, has resulted in a threat to living organisms, animals and humans, hence there is a need to synthesize multifunctional materials that can be used for the degradation of various pollutants. The aim of this study was to synthesize Iron oxide (Fe3O4) NPs and test this material for photocatalytic degradation and antibacterial activity. The synthesis of Iron oxide (Fe3O4) NPs was conducted using M. burkeana extract and characterised using UV-vis, XRD, BET, SEM, EDS and TGA. The material was then tested for its photocatalytic and antibacterial efficiency against methylene blue dye, antibiotic sulfisoxazole and E. coli and S. aureus bacterial strains. XRD confirmed the formation of Fe3O4 NPs. UV-vis gave optical information whereby an excitation at 320 nm and a bandgap of 3.74 eV was noted. The deposition of the phytochemicals onto the Fe3O4 NPs was demonstrated using FTIR. From the surface analysis, the morphology of the synthesized NPs was found to be rod like and mesoporous. Upon testing for methylene blue degradation, the Fe3O4 NPs were more potent under basic conditions (pH 12) and the O2 radicals were found to be the species responsible for the degradation. Against sulfisoxazole, a 60% degradation was observed. Lastly, when testing these materials against bacterial strains found in tap, pond, river and sewage water, they were potent in particular against gram positive strains. These results show that at optimum conditions, these materials are able to degrade various pollutants in wastewater. Biosynthesis of Fe304 NPs using M. burkeana for the first time. 99% and 60% degradation of MB dye and antibiotic SSX, respectively. Superoxides were the major species responsible for MB degradation. Materials could be reused several times. High potency against gram positive strains using real water.
Collapse
Affiliation(s)
- Louisah M Mahlaule-Glory
- DSI/NRF-CoE In Strong Materials, Department of Chemistry, Faculty of Science and Agriculture, University of Limpopo, Sovenga, Polokwane, 0727, South Africa
| | - Sabetha Mapetla
- DSI/NRF-CoE In Strong Materials, Department of Chemistry, Faculty of Science and Agriculture, University of Limpopo, Sovenga, Polokwane, 0727, South Africa
| | - Aubrey Makofane
- DSI/NRF-CoE In Strong Materials, Department of Chemistry, Faculty of Science and Agriculture, University of Limpopo, Sovenga, Polokwane, 0727, South Africa
| | - Morongwa M Mathipa
- Limpopo Agro-Food Technology Station, University of Limpopo, Sovenga, Polokwane, 0727, South Africa
| | - Nomso C Hintsho-Mbita
- DSI/NRF-CoE In Strong Materials, Department of Chemistry, Faculty of Science and Agriculture, University of Limpopo, Sovenga, Polokwane, 0727, South Africa
| |
Collapse
|
47
|
KILIC A, Emin KARATAS M, BEYAZSAKAL L, OKUMUS V. Preparation and spectral studies of boronate ester modified magnetite iron nanoparticles (Fe3O4@APTES-B) as a new type of biological agents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Chinnaiah K, Kannan K, Sivaganesh D, Gurushankar K. Electrochemical performance and charge density distribution analysis of Ag/NiO nanocomposite synthesized from Withania somnifera leaf extract. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Effective photocatalytic degradation of malachite green dye by Fe(III)-Cross-linked Alginate-Carboxymethyl cellulose composites. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
50
|
Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1841. [PMID: 35683697 PMCID: PMC9182092 DOI: 10.3390/nano12111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.
Collapse
Affiliation(s)
- Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Claude K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Joseph Kyana
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
| | - Justin B. Safari
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Grégoire V. Mbusa
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Yannick B. Nuapia
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo;
| | - Jean-Marie I. Liesse
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Christian I. Nkanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
- Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| |
Collapse
|